Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V

Kanti M. Aggarwal

Astrophysics Research Centre, Queen's University Belfast

and

P. Bogdanovich, R. Karpuškienė, F. P. Keenan, R. Kisielius, V. Stancalie

1 October 2015

Emission lines of Co IV and Ni V ions are listed in the CHIANTI Database at

http://www.chiantidatabase.org

Atomic Line List (v2.04) of Peter van Hoof at http://www.pa.uky.edu/~peter/atomic

Emission lines of Ni V have been observed in several stars, such as Eta Carinae (η Car) and White Dwarf G191-B2B

Co IV Stancalie: Phys. Scr. **83** (2011) 025301 136 *LS* terms, CIV3 code, limited CI, significant differences (up to 25%) with NIST energies, focus on collisional data

Ni V Ong et al: Phys. Rev. **A 88** (2013) 052517 131 levels of (3d⁵) 4s and 4p configurations, CI+MBPT, agreement with NIST energies within 2%, but lowest 34 levels of 3d⁶ ground configuration neglected

no A-values are reported

Co IV and Ni V

Poppe et al: Physica **77** (1974) 165 Identified $3d^{6} {}^{5}D - 3d^{5}({}^{6}S)4p {}^{5}P^{o}$ lines from laboratory spectrograph and deduced energies for other levels by some analytical expressions, which are in NIST

van het Hof et al: Phys. Scr. **44** (1991) 343 Uylings and Raassen: Phys. Scr. **54** (1996) 505

predicted energies for a few levels of (3d⁵) 4s and 4p, based on least square fitting of Slater-Condon parameters

GRASP0: PH Norrington

http://web.am.qub.ac.uk/DARC/

21 configurations

 $3d^{6}$, $3d^{5}4\ell$, $3d^{5}5\ell$, $3d^{4}4\ell^{2}$, $3d^{4}4\ell4\ell'$, and $3p^{5}3d^{7}$ total 14 732 levels

Comparison of GRASP/NIST Energies (cm⁻¹) for Co IV.

Index	Configuration/Level	NIST	GRASP	ΔE	% Differences
1	3d ⁶ ⁵ ₄ D ₄	0.0	0	0	0
2	3d ⁶ ⁵ ₄ D ₃	639.1	562	77.1	12.1
3	3d ⁶ ⁵ ₄ D ₂	1077.7	956	121.7	11.3
4	3d ⁶ ⁵ ₄ D ₁	1357.3	1209	148.3	10.9
5	3d ⁶ ⁵ ₄ D ₀	1493.6	1333	160.6	10.8
6	3d ⁶ ³ ₄ P ₂	22883.3	29081	-6197.7	-27.1
7	3d ⁶	23679.5	26414	-2734.5	-11.5
8	3d ⁶ ³ ₄ H ₅	24031.8	26753	-2721.2	-11.3
9	3d ⁶ ³ ₄ H ₄	24272.0	27008	-2736.0	-11.3
10	3d ⁶ ³ ₄ P ₁	24729.2	30715	-5985.8	-24.2
11	3d ⁶ ³ ₄ P ₀	25448.7	31378	-5929.3	-23.3
12	3d ⁶ ³ ₄ F ₄	25396.0	30270	-4874.0	-19.2
13	3d ⁶ ³ ₄ F ₃	25735.9	30592	-4856.1	-18.9
14	3d ⁶ ³ ₄ F ₂	25969.0	30819	-4850.0	-18.7
15	3d ⁶ ³ ₄ G ₅	29021.8	33282	-4260.2	-14.7
16	3d ⁶ ³ ₄ G ₄	29592.2	33813	-4220.8	-14.3
17	3d ⁶ ³ ₄ G ₃	29867.5	34080	-4212.5	-14.1
18	3d ⁶ ¹ ₄ I ₆	35942.7	39747	-3804.3	-10.6
19	3d ⁶ ³ ₄ D ₂	36348.0	42787	-6439.0	-17.7
20	3d ⁶ ³ ₄ D ₁	36382.0	42778	-6396.0	-17.6
21	3d ⁶ ³ ₄ D ₃	36554.5	42939	-6384.5	-17.5

토 🛌 🗉

Index	Configuration/Level	NIST	GRASP	ΔE	% Differences
22	3d ⁶ ¹ ₄ G ₄	36683.3	42130	-5446.7	-14.8
23	3d ⁶ ¹ ₄ S ₀	41441.9	48782	-7340.1	-17.7
24	3d ⁶ ¹ ₄ D ₂	42341.8	52248	-9906.2	-23.4
25	3d ⁶ ¹ ₄ F ₃	50630.1	60097	-9466.9	-18.7
26	3d ⁶ ³ ₂ P ₀	58320.6	69566	-11245.4	-19.3
27	3d ⁶ ³ ₂ P ₁	58919.8	70113	-11193.2	-19.0
28	3d ⁶ ³ ₂ F ₂	59748.9	69869	-10120.1	-16.9
29	3d ⁶ ³ ₂ F ₄	59838.2	69966	-10127.8	-16.9
30	3d ⁶ ³ ₂ F ₃	59902.8	69996	-10093.2	-16.8
31	3d ⁶ ³ ₂ P ₂	60098.4	71167	-11068.6	-18.4
32	$3d^{6} \frac{1}{2}G_{4}$	67907.0	79426	-11519.0	-17.0
33	3d ⁵ (⁶ ₅ S)4s ⁷ S ₃	90554.4	71035	19519.4	21.6

NIST/GRASP differences are up to 27% and they are not systematic

ی به ۱۹۹۹ ا FAC: MF Gu: Can. J. Phys. 86 (2008) 675 https://www-amdis.iaea.org/FAC/

FAC1: 1334 levels $3d^{6}$, $3d^{5}4\ell$, $3p^{5}3d^{7}$, $3p^{4}3d^{8}$, $3p^{3}3d^{9}$, and $3p^{2}3d^{10}$ FAC2: 21 992 levels $3d^{6}$, $3d^{5}4\ell$, $3d^{5}5\ell$, $3p^{6}3d^{4}4\ell 4\ell'$, $3p^{5}3d^{7}$, and $3p^{4}3d^{7}4\ell$ FAC3: 59 190 levels $(FAC2 +) 3p^43d^8, 3p^33d^9, 3p^23d^{10}, 3p^63d^45\ell 5\ell', and 3p^43d^75\ell$ FAC4: 71 528 levels $(FAC3 +) 3p^{5}3d^{6}4\ell$ and $3p^{5}3d^{6}5\ell$ FAC5: 76 138 levels

(FAC4 +) $3p^33d^84\ell$, $3p^23d^94\ell$ and $3p3d^{10}4\ell$

э

Comparison of FAC/NIST Energies (cm^{-1}) for Co IV.

Index	Configuration/Level	NIST	FAC	ΔE	% Differences
1	3d ⁶ ⁵ ₄ D ₄	0.0	0	0	0
2	3d ⁶ ⁵ ₄ D ₃	639.1	606	77.1	5.2
3	$3d^{6} \frac{5}{4}D_{2}$	1077.7	1022	121.7	5.2
4	3d ⁶ ⁵ ₄ D ₁	1357.3	1287	148.3	5.2
5	3d ⁶ ⁵ ₄ D ₀	1493.6	1416	160.6	5.2
6	3d ⁶ ³ ₄ P ₂	22883.3	24427	-6197.7	-6.7
7	3d ⁶	23679.5	27126	-2734.5	-14.6
8	3d ⁶ ³ ₄ H ₅	24031.8	27457	-2721.2	-14.3
9	3d ⁶ ³ ₄ H ₄	24272.0	27468	-2736.0	-13.2
10	3d ⁶ ³ ₄ P ₁	24729.2	26197	-5985.8	-5.9
11	3d ⁶ ³ ₄ P ₀	25448.7	26863	-5929.3	-5.6
12	3d ⁶ ³ ₄ F ₄	25396.0	27890	-4874.0	-9.8
13	3d ⁶ ³ ₄ F ₃	25735.9	27999	-4856.1	-8.8
14	3d ⁶ ³ ₄ F ₂	25969.0	28231	-4850.0	-8.7
15	3d ⁶ ³ ₄ G ₅	29021.8	32378	-4260.2	-11.6
16	3d ⁶ ³ ₄ G ₄	29592.2	32891	-4220.8	-11.1
17	3d ⁶ ³ ₄ G ₃	29867.5	33160	-4212.5	-11.0
18	3d ⁶ ¹ ₄ l ₆	35942.7	40844	-3804.3	-13.6
19	3d ⁶ ³ ₄ D ₂	36348.0	39600	-6439.0	-8.9
20	3d ⁶ ³ ₄ D ₁	36382.0	39612	-6396.0	-8.9
21	3d ⁶ ³ ₄ D ₃	36554.5	39791	-6384.5	-8.9

æ

< ∃ >

Index	Configuration/Level	NIST	FAC	ΔE	% Differences
22	3d ⁶ ¹ ₄ G ₄	36683.3	38839	-5446.7	-5.9
23	3d ⁶ ¹ ₄ S ₀	41441.9	41549	-7340.1	-0.3
24	3d ⁶ ¹ ₄ D ₂	42341.8	47274	-9906.2	-11.6
25	3d ⁶ ¹ ₄ F ₃	50630.1	56308	-9466.9	-11.2
26	3d ⁶ ³ ₂ P ₀	58320.6	63400	-11245.4	-8.7
27	3d ⁶ ³ ₂ P ₁	58919.8	64000	-11193.2	-8.6
28	3d ⁶ ³ ₂ F ₂	59748.9	65151	-10120.1	-9.0
29	3d ⁶ ³ ₂ F ₄	59838.2	64712	-10127.8	-8.1
30	3d ⁶ ³ ₂ F ₃	59902.8	64725	-10093.2	-8.1
31	3d ⁶ ³ ₂ P ₂	60098.4	64545	-11068.6	-7.4
32	3d ⁶ ¹ ₂ G ₄	67907.0	74469	-11519.0	-9.7
33	3d ⁵ (⁶ ₅ S)4s ⁷ S ₃	90554.4	59639	19519.4	34.1

NIST/FAC differences are up to 34% – see particularly level 33 and they are not systematic

э

QRHF: Bogdanovich and Rancova: Phys. Rev. **A 74** (2006) 052501 + **A 76** (2007) 012507

All orbitals up to n = 8 and one and two electron excitations from $3\ell^N$

Over 1000 configurations and levels (CSFs) exceed 10⁹

568 even and 310 odd configurations selected leading to

656 832 even and 907 014 odd CSFs

Comparison of QRHF/NIST Energies (cm⁻¹) for Co IV.

Index	Configuration/Level	NIST	QRHF	ΔE	% Differences
1	3d ⁶ ⁵ ₄ D ₄	0.0	0	0	0
2	3d ⁶ ⁵ ₄ D ₃	639.1	636	3.1	0.5
3	3d ⁶ ⁵ ₄ D ₂	1077.7	1076	1.7	0.2
4	3d ⁶ ⁵ ₄ D ₁	1357.3	1358	-0.7	-0.1
5	3d ⁶ ⁵ ₄ D ₀	1493.6	1496	-2.4	-0.2
6	3d ⁶ ³ ₄ P ₂	22883.3	23613	-729.7	-3.2
7	3d ⁶ ³ ₄ H ₆	23679.5	24357	-677.5	-2.9
8	3d ⁶ ³ ₄ H ₅	24031.8	24717	-685.2	-2.9
9	3d ⁶ ³ ₄ H ₄	24272.0	24975	-703.0	-2.9
10	3d ⁶ ³ ₄ P ₁	24729.2	25379	-649.8	-2.6
11	3d ⁶ ³ ₄ P ₀	25448.7	26151	-702.3	-2.8
12	3d ⁶	25396.0	26081	-685.0	-2.7
13	$3d^{6} \frac{3}{4}F_{3}$	25735.9	26490	-754.1	-2.9
14	3d ⁶ ³ ₄ F ₂	25969.0	26721	-752.0	-2.9
15	$3d^{6}_{4}G_{5}^{3}$ G ₅	29021.8	29830	-808.2	-2.8
16	3d ⁶ ³ ₄ G ₄	29592.2	30399	-806.8	-2.7
17	3d ⁶ ³ ₄ G ₃	29867.5	30687	-819.5	-2.7
18	3d ⁶ 4 ¹ l ₆	35942.7	36999	-1056.3	-2.9
19	$3d^{6}_{4}D_{2}^{3}$	36348.0	37435	-1087.0	-3.0
20	3d ⁶ ³ ₄ D ₁	36382.0	37467	-1085.0	-3.0
21	3d ⁶ ³ ₄ D ₃	36554.5	37613	-1058.5	-2.9
22	3d ⁶ ¹ ₄ G ₄	36683.3	37727	-1043.7	-2.8

글 ▶ 글

Index	Configuration/Level	NIST	QRHF	ΔE	% Differences
22	3d ⁶ ¹ ₄ G ₄	36683.3	37727	-1043.7	-2.8
23	3d ⁶ ¹ ₄ S ₀	41441.9	42693	-1251.1	-3.0
24	3d ⁶ ¹ ₄ D ₂	42341.8	43577	-1235.2	-2.9
25	3d ⁶ ¹ ₄ F ₃	50630.1	52124	-1493.9	-3.0
26	3d ⁶ ³ ₂ P ₀	58320.6	60380	-2059.4	-3.5
27	3d ⁶ ³ ₂ P ₁	58919.8	60930	-2010.2	-3.4
28	3d ⁶ ³ ₂ F ₂	59748.9	61734	-1985.1	-3.3
29	3d ⁶ ³ ₂ F ₄	59838.2	61739	-1900.8	-3.2
30	3d ⁶ ³ ₂ F ₃	59902.8	61834	-1931.2	-3.2
31	3d ⁶ ³ ₂ P ₂	60098.4	62006	-1907.6	-3.2
32	3d ⁶ ¹ ₂ G ₄	67907.0	70057	-2150.0	-3.2
33	3d ⁵ (${}_{5}^{6}$ S)4s 7 S ₃	90554.4	88117	2437.4	2.7

NIST/QRHF differences are up to 3.5% for the lowest 34 levels of 3d⁶ configuration

– but are within 1% for the remaining 288 levels of the $3d^5$ 4s and 4p configurations

Index	Configuration/Level	Present	Earlier ^a
55	3d ⁵ (⁴ ₃ P)4s ³ P ₀	140554	141238
64	3d ⁵ (² ₅ D)4s ³ D ₁	150602	151202
70	3d ⁵ (⁴ ₃ F)4s ⁵ F ₁	152090	152844
87	3d ⁵ (⁴ ₃ F)4s ³ F ₃	160219	160433
91	3d ⁵ (² ₅ F)4s ³ F ₂	163283	163789
98	3d ⁵ (² ₅ S)4s ¹ S ₀	173942	173968
99	3d ⁵ (² ₃ D)4s ³ D ₁	178332	178380
117	3d ⁵ (³ ₃ P)4p ⁵ D ₀ ⁰	195340	195562.2
271	3d ⁵ (² ₅ S)4p ³ P ^ŏ ₀	233747	232730.5
301	3d ⁵ (² ₃ P)4p ³ P ^o ₀	268904	267271.7
304	3d ⁵ (² ₃ P)4p ¹ S ^o ₀	272355	270879.8
319	3d ⁵ (² ₁ D)4p ³ P ₁ ⁰	289735	287698.9
320	3d ⁵ (² ₁ D)4p ³ P ₀	290083	288081.3
322	3d ⁵ (² ₁ D)4p ¹ P ^ŏ ₁	295845	292881.3

a: energies for the $3d^54s$ levels are of van het Hof *et al* (1991) and for $3d^54p$ are of Uylings *et al* (1996)

no significant differences

Index	Configuration/Level	Present	Earlier ^a
55	3d ⁵ (⁴ ₃ P)4s ³ P ₀	221924	221693
98	3d ⁵ (² ₅ S)4s ¹ S ₀	259591	258454
153	3d ⁵ (² ₃ P)4s ³ P ₂	297781	296114
154	3d ⁵ (² ₃ P)4s ³ P ₁	297821	296157
155	3d ⁵ (² ₃ P)4s ³ P ₀	297848	296187
168	3d ⁵ (² ₃ P)4s ¹ P ₀	302675	300587
116	3d ⁵ (⁴ ₃ P)4p ⁵ D ₀	287705	287776.7
304	3d ⁵ (² ₃ P)4p ¹ S ₀	374539	373086.6
319	3d ⁵ (² ₁ D)4p ³ P ₁	394868	393054.9
321	3d ⁵ (² ₁ D)4p ³ P ₀	395370	393602.5
322	3d ⁵ (² ₁ D)4p ¹ P ₁	401752	399195.4

a: energies for the $3d^54s$ levels are of van het Hof *et al* (1991) and for $3d^54p$ are of Uylings *et al* (1996) – no significant differences

Comparison of Energies for the $3d^5$ 4s levels of Ni V (cm⁻¹).

Index	Configuration	Level	NIST	QRHF	CI+MBPT	δE	τ (s)
		_					
35	3d ⁵ (⁶ ₅ <i>S</i>)4s	⁷ S ₃	164525.9	163527	161376	-0.61	2.883-01
36	3d ⁵ (⁶ ₅ <i>S</i>)4s	⁵ S ₂	178019.8	177804	175638	-0.12	3.751 - 05
37	3d ⁵ (⁴ ₅ <i>G</i>)4s	⁵ G ₆	208046.4	207923	206960	-0.06	1.086-04
38	3d ⁵ (⁴ ₅ G)4s	⁵ G ₅	208131.0	208005	206965	-0.06	1.101-04
39	3d ⁵ (⁴ ₅ G)4s	⁵ G ₄	208163.7	208043	206930	-0.06	1.113-04
40	3d ⁵ (⁴ ₅ G)4s	⁵ G ₂	208151.5	208053	206820	-0.05	1.130-04
41	3d ⁵ (⁴ ₅ <i>G</i>)4s	⁵ G ₃	208164.6	208055	206873	-0.05	1.123-04
42	3d ⁵ (³ / ₃ <i>P</i>)4s	⁵ P3	212095.8	212052	212267	-0.02	9.852-05
43	3d ⁵ (³ / ₃ <i>P</i>)4s	⁵ P ₂	212253.4	212184	212451	-0.03	9.939-05
44	3d ⁵ (³ / ₃ <i>P</i>)4s	⁵ P1	212455.7	212346	212727	-0.05	9.991-05
45	3d ⁵ (⁴ ₅ D)4s	⁵ D ₄	216189.9	216154	215975	-0.02	9.248-05
46	3d ⁵ (⁴ ₅ D)4s	⁵ D ₀	216305.7	216290		-0.01	9.314-05
47	3d ⁵ (³ ₅ D)4s	⁵ D ₁	216434.7	216382	216201	-0.02	9.320-05
48	3d ⁵ (³ ₅ D)4s	⁵ D ₃	216596.0	216481	216518	-0.05	9.330-05
49	3d ⁵ (³ ₅ D)4s	⁵ D ₂	216590.5	216491	216469	-0.05	9.334-05
50	3d ⁵ (⁴ ₅ <i>G</i>)4s	³ G ₅	217048.7	217525	216442	0.22	3.674-05
51	3d ⁵ (⁴ ₅ G)4s	³ G ₄	217129.1	217613	216431	0.22	3.673-05
52	3d ⁵ (⁴ ₅ G)4s	³ G ₃	217101.0	217615	216298	0.24	3.668-05
53	3d ⁵ (⁴ ₃ <i>P</i>)4s	³ P ₂	221087.6	221648	221778	0.25	3.475-05
54	3d ⁵ (³ / ₃ P)4s	³ P ₁	221429.0	221924	222149	0.22	3.470-05

CI+MBPT: energies of Ong et al (2013) - no significant differences

э

- Energies for the 3d⁶ levels of Co IV and Ni V are accurate to ~3%, but better than 1% for the remaining 288 levels of the (3d⁵) 4s and 4p configurations. Therefore, scope remains for improvement.
- Energies for 26 levels of Co IV and 12 of Ni V are predicted, which are not in the NIST database.
- Measurements of energies for Cr-like ions has been useful in improving theoretical results. Measurements for a few more levels will be further helpful in improving theory.
- For some ions such as Cr-like, large calculations from QRHF (or other similar codes) are necessary.

- If differences between theoretical results and/or with measurements are significant, do not ignore.
- Detailed results will be available in ADNDT 107 (2016) 000 also see – http://arxiv.org/abs/1509.07648
- Further calculations for Ω and Υ will be welcome.