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1 Motivation

Using spontaneous parametric down conversion (SPDC) the orbital angular momentum (OAM) states

|ψ±〉 =
∑L
l=−L cl |l,±l〉 are relatively easy to create. The anti-correlated OAM state occurs readily in

SPDC due to conservation of angular momentum and the entanglement itself arises from the transverse
phase-matching conditions [1, §8][6]. The other entangled state with correlated angular momenta can
be created from the anti-correlated OAM entangled state by a dove prism. These OAM entangled
states are useful because they allow for the study of two-particle entanglement in higher dimensional
state spaces than electron spin and photon polarisation systems have allowed for in the past. These
two states provide a possible extension of the Bell states to higher dimensional spaces.

Our study has primarily a photonic implementation in mind but there is no reason to restrict theoretical
investigation into these entangled states to bosons only as there is considerable interest in electron
vortices carrying orbital angular momentum. We consider both bosons and fermions in the above
entangled state1.

The starting point was to ask how these two states upon propagation through a beam splitter. This
starting point was motivated by a view towards optical quantum computing and the fact that a beam
splitter is a device that can couple optical modes without the low probabilities that come with using
non-linear effects [5].

We denote the input modes by â†p,l and the output modes by b̂†p,l (see figure 1) where p labels the port
of the beam splitter and l labels the angular momentum of the particle. The beam splitter couples the
input and output modes according to

â†1,l = tb̂†1,l + rb̂†2,l

â†2,l = rb̂†1,l + tb̂†2,l.
(1)

The requirement that input and output modes satisfy the usual commutation (anticommutation)
relations for bosonic (ferminoic) creation and annihilation operators impose the relations

|t|2 + |r|2 = 1

r∗t+ rt∗ = 0.

To satisfy these relations we use the convention t = |t| and r = i|r|.

2 Methods: exchange symmetry considerations

Investigation is guided primarily by exchange symmetry considerations of the two particle state2. It is
well known that a system of two indistinguishable particles must either be symmetric or antisymmetric
under particle exchange and that this symmetry of a two particle state under particle exchange does not
change [7]. This is because to respect the indistinguishability of identical particles any Hamiltonian
on two identical particles must be invariant under the exchange of these two particles. Hence the
Hamiltonian commutes with the particle exchange operator and the symmetry of the state under

1I cite the talks given at the Spin-Orbit Interaction for Light and Matter Waves conference which was organised at
the Max-Planck-Institute for Complex Systems in Dresden in April 2013 to back up this statement

2We consider only two particle systems for the moment however there is potential to apply the tools of exchange
symmetry to entangled states of more than two particles. However OAM entangled states of 3 particles are hard to
produce has been done?
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Figure 1: The labels of the two input ports and the two output ports.

exchange is a constant of motion.

Now consider the exchange of two particles in the setup under consideration. In second quantised
notation a two particle state is labeled by the product3 of two creation operators â†p,lâ

†
q,j . The particles

are labeled by which port they are in p, q ∈ {1, 2} and their orbital angular momentum l, j ∈ Z. To
achieve the exchange of two particles one must exchange both these numbers between the two creation
operators. To this end we can define exchange operators P̂ and L̂ that exchange the port and OAM
numbers respectively. Thus these two operators can then be used to define the particle exchange
operator

P̂L̂ = L̂P̂ =: Ê. (2)

The relevant phase (0 or π) due to particle exchange is introduced by the commutation and anticom-
mutation relations

[â†p,l, â
†
q,j ] = {â†p,l, â

†
q,j} = 0

for the boson and fermion cases respectively. For states that have at most one particle in a port
of the beam splitter4, such as the input states that we are investigating, it is also possible to treat
these operators in bra-ket notation however for the case of 2 particle per port states5 second quantised
notation is far more convenient. The main results of exchange symmetry considerations can be obtained
from considering the input states only which can be represented in bra-ket notation without the
inherent clutter of second quantised notation due to the fact that all the important symbols are
subscripts. To this end let us choose the convention that the first label in the ket always describes the
OAM in port mode 1 and the second label always describes the OAM in port 2. Given this convention
the effect of L̂ is simply to exchange the two OAM labels,

L̂ |l, j〉 = |j, l〉 .

Now we know that the exchange of two bosons results in the same state and the exchange of the two
fermions results in a sign change so we can write that Ê = (−1)T 1̂ where the variable T (for ‘type’) is
0 for bosons and 1 for fermions and 1̂ is the identity operator. Then we can deduce that the effect of
P̂ is to exchange the OAM labels and introduce the relevant phase

P̂ |l, j〉 = (−1)T |j, l〉

as the subsequent application of L̂ and P̂ must result in Ê = (−1)T 1̂. While the two operators L̂ and P̂
may not be physical they are well defined and whether a state is symmetric or antisymmetric6 under
either of these does have physical consequences. The operators P̂ and L̂ commute with the application
of the beam splitter transformation. Thus we can define the concepts of port (anti)symmetry and OAM
(anti)symmetry and conclude that they remain unchanged under the beam splitter transformations.
Any exchange symmetry argument for the input states, which have a relatively simple form, remains
valid for the output states, which may be more complicated in form, for example due to the introduction

3and by the principle of superposition any linear combination of such products
4Because we consider two particles in a two output port device this means that the state is necessarily described over

two ports so we refer to it as a two port state
5Again due to considering two particles in two ports this is then necessarily a state over one port and we hence refer

to it as a one port state.
6States that are symmetric under P̂ we refer to as P̂-symmetric and states antisymmetric under P̂ we refer to as

P̂-antisymmetric and likewise for L̂.
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of two particle per port states.

It is useful to think of a more general form of writing the input states |ψ±〉 and observing the special
cases they correspond to. This will allow for their classification of these states based on their properties
under exchange.

L∑
l,j=−L

clj |l, j〉 =

L∑
l=−L

cll |l, l〉+

L∑
l=−L

l−1∑
j=−L

(clj |l, j〉+ cjl |j, l〉) . (3)

We restrict ourselves to an arbitrary but finite (2L+ 1) dimensional space so that the coefficients cij
may be viewed as a finite matrix. We can consider the state to be described by the (2L+ 1)× (2L+ 1)
matrix of coefficients clj . The argument of the double summation in the second term can be rewritten
as

clj + cjl
2

(|l, j〉+ |j, l〉) +
clj − cjl

2
(|l, j〉 − |j, l〉) .

Thus we see that there are three distinct classes of states present in (3).

1. states described by the diagonal (a necessarily symmetric part) of the matrix dl := cll

2. states described by the symmetric component of the off-diagonal part of the matrix c(lj) :=
clj+cjl

2

3. states described by the anti-symmetric component of the off-diagonal part of the matrix c[lj] :=
clj−cjl

2 .

The state corresponding to each of the above types of coefficients have similar symmetry properties to
the symmetry properties of the coefficients. Respectively the corresponding states are

1. OAM-degenerate and hence L̂-symmetric states |l, l〉

2. non-OAM-degenerate but L̂-symmetric states |l, j〉+ |j, l〉

3. L̂-antisymmetric states |l, j〉 − |j, l〉

Thus the symmetric and anti-symmetric parts of the matrix clj correspond to L̂-symmetric and L̂-
antisymmetric parts of the state. This statement is true for bosons as well as fermions given that
we use the convention outlined earlier7. By tuning the ratio between these components in the matrix
clj we can tune the ratio of L̂-symmetric and L̂-antisymmetric parts of the state and hence also the

P̂-symmetric and L̂-antisymmetric parts. This can be done by introducing a relative phase between
clj and cjl.

3 Some consequences of exchange symmetry applied to |ψ±〉
To understand the physical significance of P̂-(anti)symmetry consider a state of two particles in one

port. This state is degenerate in port number and hence P̂-symmetric. That means that the amplitude
distribution of OAM must be L̂-symmetric for bosons and L̂-antisymmetric for fermions. In both cases
the OAM probability distribution is symmetric due to the absolute value involved in going from
amplitudes to probabilities.

Now consider the input state |ψ+〉. This is an OAM-degenerate state and hence L̂-symmetric. An
equivalent approach is to say that it corresponds to the diagonal state clj = clδlj . Therefore fermions
in the |ψ+〉 input state cannot scatter into the same output port and must scatter to different ports
independently of the value of t2+r2. This value of t2+r2 arises in Hong-Ou-Mandel (HOM) scattering
as the coefficient of the term that describes bosons in different ports [3] but it does not appear for the
corresponding fermionic calculation. Bosons scatter strictly into the same port only when the beam

7It may appear that it depends on the notational convention whether the state is symmetric or antisymmetric under
a given exchange operator. This is not the case but we do have a freedom to write the state in two forms. We can
either write it in L̂-symmetrised and L̂-antisymmetrised form independently of whether we are speaking of fermions or
boson and then the P̂ symmetry will be dependent on whether the state is fermionic or bosonic or we can write it
in P̂-symmetrised and P̂-antisymmetrised form independently of bosonic or fermionic nature and the L̂-symmetry will
conform according to P̂L̂ = (−1)T 1̂. Bra-ket notation only lends itself readily to the former but in second quantised
notation the former corresponds to OAM-ordered form and the latter corresponds to port-ordered form.
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splitter is a 50:50 one.

Using the beam splitter relations (1) it can be computed that for bosons the probabilities of scattering
into the same port and into different ports are the same as in the case of HOM interference

P (scatter into the same port) = 2|t|2|r|2

P (scatter into different ports) =
(
|t|2 − |r|2

)2
.

In fact the HOM interference is a special case of |ψ+〉 scattering for c0 = 1, cl 6=0 = 0. This suggests that

the deviation of |t|2−|r|2 from zero controls to what extent two port output states can be P̂-symmetric.

In the special case of |t|2 − |r|2 = 0 a state of one boson in each port is purely P̂-antisymmetric.

Now consider the input state |ψ−〉 with the l = 0 term removed8

∣∣ψ−〉 =

L∑
l=−L,l 6=0

cl−l |l,−l〉 =

L∑
l,j=−L

clδ−l,j |l, j〉 .

By the beam splitter transformation (1) it emerges that the output state depends on the relation of cl
to c−l or in the more general notation cl−l to c−ll. We introduce a relative phase between these terms
according to

cl−l = eisgn(l)φRc−ll. (4)

In this relation it is implicit that we assume the special case |clj | = |cjl|. The the symmetric and
antisymmetric components of this antidiagonal tensor then become

c(l−l) = cl−le
−iφR2 cos

(
φR
2

)
c[l−l] = cl−le

−iφR2 i sin

(
φR
2

)
.

Then the L̂-symmetric and L̂-antisymmetric components take the very familiar form of a qubit

L∑
|l|=1

cl |l − l〉 = e−i
φR
2

{
cos

(
φR
2

) L∑
l=1

cl−l (|l,−l〉+ |−l, l〉) + i sin

(
φR
2

) L∑
l=1

cl−l (|l,−l〉 − |−l, l〉)

}
.

Again by the beam splitter relation (1) for the 50:50 beam splitter it can be shown that

P (scatter into the same port) = cos2
(
φR
2

)
P (scatter into different ports) = sin2

(
φR
2

)
for bosons and exactly the opposite is true for fermions, again showing that for a 50:50 beam splitter
the two-port output state is strictly P̂-antisymmetric and the one-port output state is P̂-symmetric.
The 50:50 beam splitter acts as an L̂-symmetry sorter.

The notion of label exchange operators allows us to say quite a lot about the angular dependence of
the output states. We do this by defining the angle exchange operator Â. The action of this operator
is defined in the angle basis as it exchanges angle numbers. We have then the relation that

P̂Â = P̂L̂ = Ê.

This means that the state has the same exchange symmetry in angle as it does in OAM. Consider again
a 50:50 beam splitter and the input state |ψ−〉 =

∑L
l=−L,l 6=0 cl |l,−l〉. The two particle per port output

states are P̂-symmetric and so must be Â-symmetric for bosons and Â-antisymmetric for fermions so
both must give angle probability distributions that are symmetric under the exchange of the two
angles. Given that for a 50:50 beam splitter the two port output state is P̂-antisymmetric it must also
be Â-antisymmetric for bosons and Â-symmetric for fermions hence the angle probability distributions

8The term c0 |0, 0〉 is an OAM degenerate one and we want its behaviour to be absent for now so that we may
concentrate on the off diagonal terms. This term really belongs to the diagonal state clj = clδl,j in behaviour.
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must again by Â-symmetric in both cases (see figure 2)9. However when it is no longer the case that
the transmission and reflection coefficients have the same magnitude the two port output state is no
longer restricted to having a well defined symmetry under P̂ meaning that it can be a superposition of
P̂-symmetric and a P̂-antisymmetric component. Hence the resulting angle probability distributions
no longer have a well defined symmetry under angle exchange. The P̂-symmetry of a two particle per
port state however cannot be changed so the distributions will always be symmetric (see figure 3).

4 Next steps

The next immediate possible directions in investigating this problem are the following.

• The relative phase (4) needs some consideration as it is required to be dependent on the sign of
l but not on its magnitude. The experimental implementation of it does not seem to be a trivial
one. Perhaps the extension of the results to an l-dependent relative phase might be required to
see if sufficiently many effects of the relative phase survive if an l-dependent relative phase is
readily available in an experimental setup.

• As the main principles guiding the research are those of symmetries under particle exchange a
sufficient framework is in place to investigate some properties of three particle entangled states

L∑
l1,l2,l3=−L

cl1,l2,l3 |l1, l2, l3〉 .

In this extention one thing to note is that the coefficients clj of the two particle system can
be viewed as matrices but they are more specifically rank-2 tensors. This follows straight
forwardly from the fact that changing basis by local unitaries |l〉 =

∑
l′ Ull′ |l′〉 results in

cl′j′ =
∑
l,j Ull′Ujj′clj . The two of the three main ingredients to make this extension have

been explored already in the two particle case. These are the symmetries of rank-2 tensors and
exchange symmetries of the two particle state. In the three particle state the tensors of concern
will be rank-3 and the third ingredient will be the symmetric group S3, the group of permutations
of 3 objects which will govern the relation of the symmetries of rank-3 tensors to the symmetries
under of three particle states under exchanging particles. However three particle OAM entangled
states are not as readily (if at all) available experimentally as two particle entangled states.

• Consideration needs to be given to what this classification of entangled states according to P̂, L̂
and Â symmetry implies for some protocols such as the KLM protocol [4] and teleportation
[2]. Teleportation should be an interesting case because the role of exchange symmetry plays
an important role in the teleportation of a two dimensional state. The question is whether this
extends in a clean way to a higher dimensional state space.
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isgn(l−j)φR2 to satisfy the relation (4). The left two

column of figures describes the functions for bosons and the right two columns describe the functions for
fermions. Density plots are functions of relative phase φR on the vertical axis and functions of Θ−Θ′ on
the horizontal axis. Each lineplot describes a cross section of the 2d plot of the corresponding position.
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2 = 3
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figure 2.

6



[6] Filippo M. Miatto, Alison M. Yao, and Stephen M. Barnett. Full characterization of the quantum
spiral bandwidth of entangled biphotons. Physical Review A, 83, 2011.

[7] Wolfgang Pauli. General Principles of Quantum Mechanics. Springer-Verlag, 1980.

7


