<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
p.msonormal0, li.msonormal0, div.msonormal0
{mso-style-name:msonormal;
mso-margin-top-alt:auto;
margin-right:0cm;
mso-margin-bottom-alt:auto;
margin-left:0cm;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
span.EmailStyle19
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-GB" link="blue" vlink="purple">
<div class="WordSection1">
<p><i><span style="font-size:9.0pt">*sent on behalf of the Physics Society* <o:p>
</o:p></span></i></p>
<p>Hi everyone, <o:p></o:p></p>
<p>Following this week's break in the lecture series, I am happy to announce the next talk in the series taking place next Tuesday (29th October). This talk will be delivered by the one and only Dr Carol Trager-Cowan and is titled "Thank Goodness Nothing is
Perfect: A Lifetime Studying Defects in Crystals". As always, this talk is open to all staff, students, postgrads etc. Please see the link below to book your free tickets.<o:p></o:p></p>
<p><a href="https://www.eventbrite.co.uk/e/thank-goodness-nothing-is-perfect-by-dr-carol-trager-cowan-tickets-1026743817397?aff=oddtdtcreator"><span style="background:white">https://www.eventbrite.co.uk/e/thank-goodness-nothing-is-perfect-by-dr-carol-trager-cowan-tickets-1026743817397?aff=oddtdtcreator</span></a><o:p></o:p></p>
<p>For this talk we will be back in the John Anderson building (JA317) at 5pm. I hope to see you all there!<o:p></o:p></p>
<p>Abstract:<o:p></o:p></p>
<p>"I am very happy that nothing is perfect, as this has kept me busy for more years than I care to remember. My research has revolved around defects in synthetic crystals grown to make devices ranging from high-power lasers, to LEDs for lighting, to transistors
for electric cars.<o:p></o:p></p>
<p>Defects can be crucial to the operation of a device, e.g., adding chromium impurities to sapphire produces ruby and leads to lasing in ruby lasers; adding impurities to semiconductors is crucial to the production of LEDs. However, where the arrangement of
atoms “goes awry”, forming what are referred to as extended structural defects, this can significantly impede a device’s performance, leading to the generation of heat instead of light in an LED for example.<o:p></o:p></p>
<p>My present research is driven by the need for rapid, non-destructive techniques to reveal and analyse crystal structure, defects and strain in crystalline materials, in particular in III-nitride semiconductor thin films. III-nitride materials are presently
the basis of a fast-growing, multi-billion-pound solid-state lighting industry and commercial nitride-based electronic devices are now in use in chargers for phones and laptops; cell phone base stations; satellite communication systems and cable television
networks.<o:p></o:p></p>
<p>Myself and colleagues exploit the diffraction of electrons in crystals to map crystal structure, detect and identify defects and map orientation and strain on the nanoscale. We develop and apply the novel scanning electron microscope techniques of electron
backscatter diffraction and electron channelling contrast imaging to “see” defects and changes in orientation and strain to support rapid optimisation of next-generation semiconductor devices."<o:p></o:p></p>
<p>Thanks,<o:p></o:p></p>
<p>Matt<o:p></o:p></p>
<p>____________________________________<o:p></o:p></p>
<table class="MsoNormalTable" border="0" cellspacing="0" cellpadding="0" width="495" style="width:371.25pt">
<tbody>
<tr>
<td width="495" style="width:371.25pt;padding:0cm 0cm 0cm 0cm">
<p>Matthew R. Wilson<o:p></o:p></p>
<p>PhD Student<o:p></o:p></p>
<p>Institute of Photonics<o:p></o:p></p>
<p>Department of Physics, University of Strathclyde<o:p></o:p></p>
<p>Technology and Innovation Centre, Floor 5, Desk 128<br>
99 George Street<br>
Glasgow, G1 1RD, UK <o:p></o:p></p>
<p> <o:p></o:p></p>
<p><a href="https://www.linkedin.com/in/matthew-wilson-physics/">https://www.linkedin.com/in/matthew-wilson-physics/</a><o:p></o:p></p>
<p>____________________________________<o:p></o:p></p>
</td>
</tr>
</tbody>
</table>
<p class="MsoNormal"><o:p></o:p></p>
</div>
</body>
</html>