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In order to model realistic quantum devices it is necessary to simulate quantum systems strongly
coupled to their environment. To date, most understanding of open quantum systems is restricted
either to weak system-bath couplings, or to special cases where specific numerical techniques become
effective. Here we present a novel general numerical approach to efficiently describe the time evo-
lution of a quantum system coupled to a non-Markovian environment. We demonstrate the power
and flexibility of our method by numerically identifying the localisation transition of the Ohmic
spin-boson model, and considering a model with widely separated environmental timescales arising
for a pair of spins embedded in a common environment.

The theory of open quantum systems describes the in-
fluence of an environment on the dynamics of a quan-
tum system [1]. It was first developed for quantum opti-
cal systems [2], where the coupling between system and
environment is weak and unstructured. In such situa-
tions, one can almost always assume that the environ-
ment is memoryless and uncorrelated with the system —
i.e. the Markov and Born approximations hold — allow-
ing a time-local equation of motion to be derived for the
open system. The resulting Born-Markov master equa-
tion works because the environment-induced changes to
the system dynamics are slow relative to the typical cor-
relation time of the environment.

There are now a growing number of quantum sys-
tems where a structureless environment description is not
justified, and memory effects [3] play a significant role.
These include micromechanical resonators [4], quantum
dots [5, 6], and superconducting qubits [7], and can
underpin emerging quantum technologies such as the
single photon sources needed for quantum communica-
tion [8]. In addition, structured environments are ubiq-
uitous in problems involving the strong interplay of vi-
brational and electronic states. For example, those in-
volving the photophysics of natural photosynthetic sys-
tems [9, 10], complex organic molecules used for light
emission or solar cells [11], or semiconductor quantum
dots [12, 13]. Similar problems arise when consider-
ing non-equilibrium energy transport in molecular sys-
tems [14] or non-adiabatic processes in physical chem-
istry [15]. Non-Markovian effects can even be a resource
for quantum information [16, 17].

Various approaches exist for dealing with non-
Markovian dynamics [1, 3]. Some particular problems
have exact solutions [18]. For others, unitary transfor-
mations can uncover effective weak coupling theories,
and perturbative expansions beyond the Born-Markov
approximations [19, 20]; these techniques typically yield
time-local equations and are limited to certain parame-
ter regimes. Finally, there are non-perturbative methods
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that enlarge the state space of the system. This can be
through hierarchical equations of motion [21], through
capturing part of the environment within the system
Hilbert space [22–24], or by using augmented density
tensors to capture the system’s history [25, 26]. These
can be very powerful but require either specific assump-
tions about the environments [21, 24], or resources that
scale poorly with bath memory time. In this Article, we
will describe a computationally efficient, general, and yet
numerically exact approach to modelling non-Markovian
dynamics for open quantum systems.

Our new method, which we call the Time-Evolving
Matrix Product Operator (TEMPO), exploits the aug-
mented density tensor (ADT) [25, 26] to represent a sys-
tem’s history over a finite bath memory time τc. We will
show that TEMPO enables accurate calculations with
computational resources scaling only polynomially with
τc. To demonstrate how effective TEMPO can be, we will
explore two contrasting problems: the localisation transi-
tion in the spin-boson model [27] and spin dynamics with
an environment that has both fast and slow correlation
timescales.

TIME-EVOLVING MATRIX PRODUCT
OPERATORS

In this section we outline how the TEMPO algorithm
works; further details are provided in the Methods. We
start by introducing the ADT. To define the notation and
our graphical representation of it we first consider the
evolution of a Markovian system, which can be described
by a density operator that contains d2 numbers for a d
dimensional Hilbert space. Usually, the density operator
is written as a d× d matrix, but we instead use a length
d2 vector with elements ρi(t). To evolve by a timestep ∆
we write

ρi(t+ ∆) =
[
e∆L]i

j
ρj(t), (1)

where L is the Liouvillian [1]. The graphical representa-
tion of this is shown in Fig 1(a). The red circle represents
the density operator, with the protruding ‘leg’ indicating
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FIG. 1. Schematic description of the TEMPO algorithm. (a) Shows how we pictorially represent matrix vector multiplication.
In (b) we show how the ADT can be decomposed into a MPS. (c) Shows the full tensor network starting from an initial
standard density operator which is grown to an ADT with K legs, as shown in (d), where we have contracted the contents of
the green box. To propagate forward one step we contract the ADT with the next row of the propagator, as in (e). A schematic
representation of the spin-boson model is shown in (f).

this is a tensor of rank one, i.e. a vector. This leg is in-
dexed by an integer i = 1 . . . d2. The blue square with two
legs represents the propagator e∆L, written as a d2 × d2

superoperator [1]. The matrix-vector multiplication in
Eq. (1) is shown by joining a leg of the propagator to
the density operator, indicating tensor contraction. This
contraction generates the density operator at time t+ ∆.

In order to capture non-Markovian dynamics, we ex-
tend our representation of the state at time t from a
vector to an ADT, representing the history of the sys-
tem. This is motivated by the path integral of a system
interacting linearly with a bosonic environment. After
integrating out the environment, the influence of the en-
vironment on the system can be captured by an ‘influence
functional’ of the system paths alone [1]. The influence
functional couples the current evolution to the history,
and captures the non-Markovian dynamics. Makri and
Makarov [25, 26] showed that by considering discrete time
steps, and writing the sum over system states in a dis-
crete basis, the path integral could be reformulated as a
propagator for the ADT, written as a discrete sum over
paths. The influence functional becomes a series of in-
fluence functions Ik(j, j′) that connect the evolution of
the amplitude of state j to the amplitudes of states j′

an integer number, k, of timesteps ago. This approach is
known as the Quasi-Adiabatic Path Integral (QUAPI).

As described so far, the ADT grows at each timestep,
to record the lengthening system history. However the
influence functions have no effect once k∆ exceeds the
bath correlation time τc. One can therefore propagate
an ADT containing only the previous K = τc/∆ steps:
this is the finite memory approximation. This means we
consider an ADT of rank K, written as Ai1,i2,...,iK (t),
where each index runs over ik = 1 . . . d2. The explicit
construction of this tensor is described in the Methods.
In general Ai1,i2,...,iK (t) contains d2K numbers, which
scales exponentially with the correlation time τc. If the
full tensor is kept, one quickly encounters memory prob-
lems, and typical simulations are restricted toK less than

20 [28, 29]. Improved QUAPI algorithms [30, 31] show
that (for some models) typical evolution does not explore
this entire space, leading us to seek a minimal represen-
tation of the ADT.

Matrix product states (MPS) [32, 33] are natural tools
to represent high-rank tensors efficiently where correla-
tions are constrained in some way. Examples include the
ground state of 1D quantum systems with local inter-
actions [34], steady state transport in 1D classical sys-
tems [35], or time-evolving 1D quantum states [36]. In-
spired by these results, we show how an ADT can be effi-
ciently represented and propagated using standard MPS
methods. One may decompose high-rank tensors into
products of low-rank tensors using singular value decom-
positions (SVD) and truncation. By combining indices,
the tensor A can be written as [33]:

A{i1,...,ik},{ik+1,...,iK}

= U{i1,...,ik},αλα
[
V †
]
α,{ik+1,...,iK}

. (2)

Here, U, V are unitary matrices, and λα denotes a sin-
gular value of the matrix A. Truncation corresponds
to throwing away singular values λα smaller than some
cutoff λc, consequently reducing the size of the matri-
ces U, V . This procedure can be iterated by sweeping
k across the whole tensor. The result of this is shown
graphically in Fig. 1(b), and can be written as

Ai1,...,ik,...,iK = ai1α1
ai2α1,α2

. . . aikαk−1,αk
. . . aiKαK−1

. (3)

This provides an efficient representation of the state, with
a precision controlled by λc.
Ai1,i2,...,iK (t) can be time locally propagated using a

tensor Bji,...,jKi1,...,iK
. Crucially, this propagation can be per-

formed directly on the matrix product representation of
A. Moreover, the tensor product description of Bji,...,jKi1,...,iK

,

shown as the connected blue squares in Fig. 1(c), has a
small dimension d2 for the internal legs. Similarly to the
time evolution shown in Fig. 1(a), the state A(t + ∆)
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is generated by contracting the legs of A(t) with the in-
put legs of B. Contracting a tensor network with a ma-
trix product state, and truncating the resulting object
by SVDs is a standard operation [33]. In all the appli-
cations we discuss below, we find that as time propa-
gates we are able to maintain an efficient representation
of Ai1,i2,...,iK (t) with precision determined by λc.

The structure of the propagator depends on the influ-
ence functions Ik(j, j′) as shown in Fig. 1(c) (see also
Methods). We use darker colours to represent influ-
ence functions corresponding to more recent time points,
which are expected to generate stronger correlations in
the ADT. The input and output legs of the propagator
are offset in the figure, so time can be viewed as propagat-
ing from left to right. In effect, at each step the register is
shifted so that the right-most output index corresponds
to the new state, with the ‘oldest’ leg at the left edge
of the structure dropped since it does not influence the
future evolution: it corresponds to events that occurred
more than τc ago. Evolution over a series of time steps
is depicted in Fig. 1(c)-(e). In Fig. 1(c) we show the full
tensor network. Assuming the initial state of the sys-
tem is uncorrelated with its environment means it can
be drawn as a regular density operator. In the ‘grow’
phase, a series of asymmetric B propagators are applied,
which allow the relevant system correlations to extend in
time. Once the system has grown to an object with K
legs, we enter the regular propagation phase, shown in
Fig. 1(d),(e).

APPLICATIONS

Spin-boson phase transition

To demonstrate the utility of the TEMPO algorithm,
we apply it to two problems of a quantum system coupled
to a non-Markovian environment. We first consider the
unbiased spin-boson model (SBM) [27], which has long
served as the proving ground for open system methods.
The generic Hamiltonian of this model is

H = ΩSx +
∑
i

Sz(giai + g∗i a
†
i ) + ωia

†
iai, (4)

where the Si are the usual spin operators, a†i (ai) and ωi
are respectively the creation (annihilation) operators and
frequencies of the ith bath mode, which couples to the
system with strength gi. The behaviour of the bath is
characterised by the spectral density function

J(ω) =
∑
i

|gi|2δ(ω − ωi). (5)

This model is known to show a rich variety of physics
depending on the particular form of spectral density and
system parameters chosen. When the spectral density
is Ohmic, J(ω) = 2αω exp(−ω/ωc), the model is known

to exhibit a quantum phase transition in the BKT uni-
versality class [37], at a critical value of the system-
environment coupling α = αc [27, 38]. The transition
takes the system from a delocalised phase below αc,
where any spin excitation decays (〈Sz〉 = 0 in the steady
state), to a localised phase above αc (〈Sz〉 6= 0 in the
steady state). Most analytic results are restricted to the
regime where the cut-off frequency ωc � Ω. For example,
when S describes a spin-1/2 particle, the phase transition
occurs at αc = 1 +O(Ω/ωc) [27, 37, 39].

We are able to explore the dynamics around this phase
transition using TEMPO. In Fig. 2(a) we show the po-
larisation dynamics of the spin-1/2 SBM for a range of
α at K = 200. This memory length is an order of mag-
nitude larger than standard ADT implementations [28]
and is required to reach the asymptotic limit of the dy-
namics in the vicinity of the phase transition. We achieve
convergence by varying the timestep ∆ and SVD cutoff
λc. We take an initial condition 〈Sz〉 = +1/2 with no
excitations in the environment, and find 〈Sz(t)〉.

Below the Toulouse point, i.e. for α < 0.5, we find
decaying oscillations as expected [27]. For α > 0.5
we find 〈Sz〉 always decays to zero asymptotically as
〈Sz(t)〉 ∝ exp(−γt) to a very good approximation; fits
to this function are shown as dashed lines in Fig. 2(a).
Decay to zero for all α > 0.5 conflicts with the existence
of a localised phase at large α, where 〈Sz〉 should asymp-
totically approach a non-zero value. The origin of this
discrepancy is the finite memory approximation, which
produced a time-local equation in the enlarged space of
K timesteps. Time local dynamics of a finite system
typically generates a gapped spectrum of the effective
Liouvillian [40]. In the localised phase, α > αc, the spec-
tral gap should vanish asymptotically as we increase the
memory cutoff τc = K∆. We should thus examine how
the extracted decay rate, γ, depends on the memory cut-
off. For α < αc, γ should remain finite as τc →∞ while
for α > αc it should vanish. In Fig. 2(b) we plot γ as a
function of 1/K = ∆/τc for different values of α around
the phase transition. At small α, γ does appear to re-
main finite as K → ∞, while at large α the behaviour
appears consistent with localisation.

We may estimate the location of the phase transition
by extrapolating 1/K → 0 for each α, and find the small-
est value of α consistent with γ → 0. To do this we
use cubic fits in Fig. 2(b) (solid lines), and extract the
constant part. Errors are assessed by checking the con-
vergence of the fit, and monitoring the sensitivity of the
result to truncation precision λc. Note the extracted γ
cannot be negative. These errors are all less than 10−4

and so are smaller than the points in Fig. 2; this allows
us to find an error in the extracted K → ∞ limit. The
extracted values for γ are displayed in Fig. 2(d) where
we show our estimate for its 68% and 95% confidence
intervals. These suggest that αc ' 1.25, consistent with
the scaling limit expectation. We note that identifying
αc precisely from the time dependence of 〈Sz〉 is partic-
ularly challenging: since the localisation transition is in
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FIG. 2. Behaviour of the spin-1/2 system through the localisation phase transition. Panel (a) shows the dynamics captured
at K = 200 for the values of α indicated. The dotted lines show the exponential fits to the data above the Toulouse point.
The vertical black line shows the location of the memory cutoff used. Panel (b) shows how the decay rate of the exponential
fit depends on 1/K, this allows us to analyse the behaviour as K → ∞. Panel (c) shows how the decay rate changes as we go
through the transition by varying α for the values of K indicated. In (d) we give 68% (blue) and 95% (red) confidence intervals
for the extrapolated decay rate which crosses zero at around αc ' 1.25. The bath cutoff frequency is ωc = 5 and everything is
measured in units of the Hamiltonian driving term Ω.

the BKT class [37], the order parameter approaches zero
continuously.

The efficiency of TEMPO enables consideration of
models with a larger local Hilbert space. To demonstrate
this we examine the localisation transition in the spin-1
SBM. Physically this could either arise from a spin-1 im-
purity, or from a pair of spin-1/2 particles interacting
with a common environment [41]. On switching to this
problem, the local dimension of each leg of our state ten-
sor increases from d2 = 4 to d2 = 9, reducing the values
of K we can reach. However, we also find convergence oc-
curs for larger timesteps, allowing access to similar values
of τc.

In Fig. 3(a) we show the dynamics of this model, after
initialising to 〈Sz〉 = 1. In this case, on both sides of
the localisation transition, the dynamics shows complex
oscillatory behaviour before settling down to an expo-
nential decay. This introduces more uncertainty to our
exponential fits. However, as shown in Fig. 3(b) the ex-
tracted decay rate vanishes at αc ' 0.28, indicative of
the phase transition and agreeing with numerical renor-
malization group results [41, 42], but in contrast to the
results found using a variational ansatz [43].

Two Spins in a Common Environment

We next demonstrate the flexibility of TEMPO by ap-
plying it to a dynamical problem for which other meth-
ods are not available. We consider a pair of identical
spins-1/2, at positions ra and rb, which couple directly
to each other through an isotropic Heisenberg coupling
Ω, and which both couple to a common environment, see
Fig. 4(a). The Hamiltonian reads:

H = ΩSa ·Sb+
∑
ν=a,b

∑
i

Sz,ν(gi,νai+g
∗
i,νa
†
i )+ωia

†
iai. (6)

The system-bath coupling constants have a position-
dependent phase, gi,ν = gie

−iki·rν , where ki is the
wavevector of the ith bosonic mode. We assume linear
dispersion ωi = c|ki| and c = 1.

This model exhibits complex dissipative dynamics on
two different timescales. The faster timescale describes
dissipative dynamics of the spins due to interactions with
their nearby environment, typically set by the ωc defined
earlier. The other timescale is set by the spin separa-
tion R = |ra − rb| over which there is an environment-
mediated spin-spin interaction. By changing R we can
control the ratio of these timescales. The dimension, D,
of the bath also has an effect: the intensity of environ-
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FIG. 3. Behaviour of the spin-1 system through the localisation phase transition. Panel (a) shows the dynamics captured at
K = 80 for the values of α indicated. The dotted lines show the exponential fits to the data. Panel (b) shows how the decay
rate changes as we go through the transition by varying α for the values of K indicated. The system parameters are the same
as Fig. 2
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FIG. 4. Dynamics of two coupled spins-1/2, separated by a distance R, interacting with the same environment. Panel (a)
shows a schematic of this system. Panels (b) and (c) show dynamics of the system in 1D and 3D respectively, at different
values of the spin separation R. Insets to these plots are the corresponding spectral densities and bath correlation functions
(see Methods for details). The dimensionless couplings α used for 1D and 3D are α = 2 and α = 0.25 respectively. We set the
speed of sound c = 1, so that all parameters are in units of Ω and we choose T = 0.5, ωc = 0.5. In all cases we have used 180
timesteps, but not used the memory cutoff meaning K = 180.

mental excitations propagating from one spin to the other
will be stronger for lower D.

When the spins are close together, R < ω−1
c , it is

difficult to distinguish local dissipative effects from the
environment-mediated interaction and both master equa-
tion techniques [44] and the standard ADT method [45]
generate accurate dynamics. Instead, we consider large
separation R > ω−1

c , about which little is known. The
ADT then requires both a small timestep ∆ � ω−1

c to
capture the fast local dissipative dynamics, and a large
cutoff time τc = K∆ > R, to capture environment-
induced interactions; hence, a very large K is needed.
Using TEMPO we are able to investigate these dynam-
ics without even having to go beyond the tensor growth
stage shown in Fig. 1(c), and thus avoid any error caused
by a finite memory cutoff K.

We project onto the Sz,a+Sz,b = 0 subspace of the sys-
tem, consisting of the two anti-aligned spin states, since
this is the only sector with non-trivial dynamics. The
effective Hamiltonian for this 2d subspace can then be
mapped onto the spin-1/2 SBM, Eq. (4), albeit with a
modified spectral density that depends on R. Details of
this procedure are given in Methods.

In Fig. 4(b) and (c) we show dynamics for different R
for environments with D = 1 and D = 3. Insets show
the effective spectral densities, J(ω), and real part of the
bath autocorrelation functions, C(t), which we define in
Methods. We initialise the spins in a product state with
〈Sz,a〉 = 1/2, 〈Sz,b〉 = −1/2 and calculate the probabil-
ity, P (t), of finding the system in this state at time t.
The bath is initialised in thermal equilibrium at temper-
ature T . For D = 1, after initial oscillations decay away
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over a timescale ∼ ω−1
c , there are revivals at t = R. This

is due to the strongly oscillating spectral density which
results in a large peak at C(t = R). As expected for
a one-dimensional environment, the profile of these sec-
ondary oscillations is independent of R when R � ω−1

c .
Additionally for R = 20 more small amplitude oscilla-
tions appear at t ≈ 40, due to the effective interaction of
the spins at t ≈ 20 sending more propagating excitations
into the environment. For D = 3 the spectral density
still has an oscillatory component though it is much less
prominent. The resulting peaks at C(t = R) are thus
much smaller than the t = 0 peak and have only a small
effect on the dynamics. Small amplitude oscillations can
be seen at t ≈ R when R = 8, but with R = 16 it is
difficult to see any significant features in the dynamics.

CONCLUSION

We have presented a novel and highly efficient method
for modelling the non-Markovian dynamics of open quan-
tum systems. Our method is applicable to a wide variety
of situations. In well established ADT methods, non-
Markovianity is accounted for by encoding the system’s
history in a high-rank tensor; we have overcome the re-
strictive memory requirements from storing this tensor
by representing it as an MPS. We can then efficiently cal-
culate open system dynamics by propagating this MPS
via iterative application of an MPO. To test our new
technique we used it to find the localisation transition
in the SBM, for both spin-1/2 and spin-1, and found es-
timates for the critical couplings, consistent with other
techniques. We then applied our method to a pair of
interacting spins embedded within a common environ-
ment, in a regime where a large separation of timescales
prevents the use of other methods.

The key to our new technique is that tensor networks
provide an efficient representation of high-dimensional
tensors encoding restricted correlations. As well as
the widespread application of such methods in low-
dimensional quantum systems [32–34, 36], they have also
been applied to sampling problems in classical statistical
physics [46], and analogous techniques (under the name
“Tensor trains”) have been developed in computer sci-
ence [47]. Moreover there has been a recent synthesis
showing how techniques developed in one context can
be extended to others, such as machine learning [48], or
Monte Carlo sampling of quantum states [49]. Our work
defines a new application for these methods, and further
work may yet yield even more efficient approaches.

The methods described in this article are already very
powerful in their ability to model general non-Markovian
environments. They also enable easy extension to study
larger quantum systems, by adapting other methods from
tensor networks such as the optimal boson basis [50] —
these will be the subject of future work. With such tools
available, the study of the dynamics of quantum systems
in non-Markovian environments [3] can now move from

studying isolated examples to elucidating general physi-
cal principles, and modelling real systems.

METHODS

TEMPO Algorithm

In this section we will present the details of the
TEMPO algorithm, paying particular attention to how
the ADT and propagator are constructed in a matrix
product form.

The generic Hamiltonian of the models we consider is

H =H0 +O
∑
i

(giai + g∗i a
†
i ) +

∑
i

ωia
†
iai (7)

=H0 +HE , (8)

where H0 is the (arbitrary) free system Hamiltonian and
HE contains both the bath Hamiltonian and the system-

bath interaction. Here a†i (ai) and ωi are the creation
(annihilation) operators and frequencies of the ith envi-
ronment mode. The system operator O couples to bath
mode i with coupling constant gi. As outlined in the
main text, we work in a representation where d×d density
operators are given instead by vectors with d2 elements.
These vectors are then propagated using a Liouvillian as
in Eq. (1) of the main text, L = L0 + LE , where L0

and LE generate coherent evolution caused by H0 and
HE respectively. It has been shown recently that it is
straightforward to include additional Markovian dynam-
ics in the reduced system Liouvillian [51] in the ADT
description.

If the total propagation over time tN is composed of
N short time propagators etNL = (e∆L)N we can use a
Trotter splitting [52]

e∆L ≈ e∆LEe∆L0 +O(∆2). (9)

We note the following arguments can be easily adapted to
use the higher order, symmetrized, Trotter splitting [25,
26, 53] that reduces the error to ∆3. All the numerical
results presented use this symmetrized splitting but for
ease of exposition we use the form of Eq. (9) here. We
assume the initial density operator factorises into system
and environment terms, with the environment initially in
thermal equilibrium at temperature T . Time evolution
can then be written as a path sum over system states, by
inserting resolutions of identity between each e∆LEe∆L0

and then tracing over environmental degrees of freedom.
The result is the discretized Feynman-Vernon influence
functional [25, 26], which yields the following form for
the time evolved density matrix:

ρjN (tN ) =
∑

j1...jN−1

(
N∏
n=1

n−1∏
k=0

Ik(jn, jn−k)

)
ρj1(∆). (10)
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The indexing here is in a basis where O is diagonal.
Each j index runs from 1 to d2 and due to the or-
der of the splitting in Eq. (9) the initial state of the
system has been propagated forward a single timestep,
ρj1(∆) =

[
e∆L0

]
j1j0

ρj0(0). We have defined the influ-

ence functions

Ik(j, j′) =

{
eφk(j,j′) k 6= 1[
e∆L0

]
jj′
eφ1(j,j′) k = 1

, (11)

with

φk(j, j′) = −O−j (O−j′Re[ηk] + iO+
j′Im[ηk]). (12)

Here O−j are the d2 possible differences that can be taken

between two eigenvalues of O and O+
j the corresponding

sums. The coefficients, ηk, quantify the non-Markovian
correlations in the reduced system across k timesteps of
evolution and are given by the integrals

ηn−n′ =



∫ tn

tn−1

dt′
∫ tn′

tn′−1

dt′′C(t′ − t′′) n 6= n′

∫ tn

tn−1

dt′
∫ t′

tn−1

dt′′C(t′ − t′′) n = n′
,

(13)
where C(t) is the bath autocorrelation function

C(t) =

∫ ∞
0

dωJ(ω)
[
coth

( ω
2T

)
cos(ωt)− i sin(ωt)

]
,

(14)

with temperature measured in units of frequency and
with the spectral density J(ω) =

∑
i |gi|2δ(ωi − ω). We

note it has recently been shown that if the spectrum of
O has degeneracies, such that O−j = 0 for some values

of j, part of the sum in Eq. (10) can be performed ana-
lytically, vastly reducing computational cost of the ADT
method for systems where the environment only couples
to a small subsystem [54].

The summand of the discretised path integral in
Eq. (10) can be interpreted as the components of an N -
index tensor AjN ,jN−1,...,j1 . This tensor is an ADT of the
type originally proposed by Makri and Makarov [25, 26].
We will show below that this N -index tensor can also be
written as tensor network consisting of N(N + 1)/2 ten-
sors with, at most, four legs each and that this network
can be contracted using standard MPS-MPO contraction
algorithms [32, 33]. First we gather terms in the inner
piece of the double product in Eq. (10) into a single ob-
ject, which we write as components of an n-index tensor

Bjn,jn−1,...,j1 =

n−1∏
k=0

Ik(jn, jn−k). (15)

Next, we define the (2n− 1)-index tensors

B
jn,jn−1,...,j1
in−1,...,i1

=

(
n−1∏
k=1

δ
jn−k
in−k

)
Bjn,jn−1,...,j1 , (16)

for n > 1, and the 1-index initial ADT

Aj1 = Bj1ρj1(∆). (17)

We may now evolve this ADT in time iteratively by suc-
cessive contraction of tensors. This process is shown
graphically in Fig. 1(c). The first contraction produces a
2-index ADT which describes the full state and history
at the second time point:

Aj2,j1 = Bj2,j1i1 A
i1 . (18)

We next contract with Bj3,j2,j1i2,i1
to produce a 3-index

ADT and so on. The nth step of this process then looks
like

Ajn,jn−1,...,j1 = B
jn,jn−1,...,j1
in−1,...,i1

Ain−1,in−2,...,i1 , (19)

and the density operator for the open system at time
tn = n∆ is recovered by summing over all but the jn leg,

ρjn(tn) =
∑

jn−1...j1

Ajn,jn−1,...,j1 , (20)

from which observables can be calculated. At each itera-
tion the size of the ADT grows by one index, since up to
now we have made no cut-off for the bath memory time:
we are in the ‘grow’ phase depicted in Fig. 1(c). To com-
press the state after each application of this B tensor we
sweep along the resulting ADT performing SVD’s and
truncating at each bond, throwing away the components
corresponding to singular values smaller than our cutoff
λc. This gives an MPS representation of the ADT, as
given in Eq. (3). As discussed in [55], we must in fact
sweep both left to right and then right to left to ensure
the most efficient MPS representation is found. If no bath
memory cut-off is made, this whole process is repeated
until the final time point is reached at n = N .

The (2n− 1)-index propagation tensor, B, can be rep-
resented as an MPO such that the above process of itera-
tively contracting tensors becomes amenable to standard
MPS compression algorithms [32, 33]. The form required
is

B
jn,jn−1,...,j1
in−1,...,i1

= [b0]jnα1

(
n−2∏
k=1

[bk]
αk, jn−k
αk+1,in−k

)
[bn−1]

αn−1,j1
i1
,

(21)
where we define the rank-4 tensor

[bk]α, jα′,i = δαα′δ
j
i Ik(α, j), (22)

and the rank-2 and rank-3 tensors appearing at the ends
of the product are

[b0]jα′ = δiα[b0]α, jα′,i = δjα′I0(j, j), (23)

and

[bn−1]α,ji =
∑
α′

[bn−1]α, jα′,i = δji In−1(α, j). (24)
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FIG. 5. Tensor network diagram depicting the MPO decom-
position of the rank-(2n+1) tensor, B. The squares show the
bk tensors in Eqs. (22)-(24), with k increasing right to left.
The in and jn tensor indices correspond to the vertical legs
with n increasing from left to right. When n = K the j1 leg
is summed over to give the rank-2K propagation phase MPO,
represented in the figure by contraction with a rank-1 object;
the d2 dimensional vector whose elements are all equal to one.

Upon substituting these forms, Eqs. (22)-(24) into
Eq. (21) it is straightforward to verify that we recover
the expression Eq. (16). The rank-(2n − 1) MPO,

B
jn,jn−1,...,j1
in−1,...,i1

, is represented by the tensor network di-
agram in Fig. 5.

The finite memory approximation can now be intro-
duced by throwing away information in the ADT for
times longer than τc = K∆ into the system’s history.
To do this we write

[bk]α, jα′,i = δαα′δ
j
i k > K, (25)

Thus, when propagating Ajn,...,j1 beyond the Kth
timestep only indices jn to jn−K+1 have any relevance
and we can sum over the rest. The way we do this in
practice is to define the 2K-leg tensor MPO

B
jK+1...,j2
iK ,...,i1

=
∑
j1

B
jK+1,jK ,...,j1

iK ,...,i1
, (26)

such that contraction with a rank-K MPS is equivalent
to first growing by the MPS by one leg and then sum-
ming over (i.e. removing) the leg which is earliest in
time. Repeating this contraction propagates an A-tensor
MPS forward in time, but maintains its rank of K for all
timesteps n > K. This is what we show in the ‘propa-
gate’ phase of Fig. 1(c). For some spectral densities it is
possible to improve the convergence with τc by making
a softer cutoff [56, 57] but since TEMPO can go to very
large values of K this is not necessary here.

For time independent problems (as we study here),
the ‘propagate’ phase involves repeated contraction with
the same MPO, Eq. (26), which is independent of the
timestep. To make this clear, it is convenient to change
our index labelling (which, so far has referred to the
absolute number of timesteps from t = 0). We will
instead relabel the indices on the MPO and MPS as
follows: B

jK+1,...,j2
iK ,...,i1

→ Bj1,...,jKi1,...,iK
and Ajn,...,jn−K+1 →

Aj1,...,jK (tn). The indices now refer to the distance back
in time from the current time point. To summarize, with
the new labelling we first grow the initial state into a

K-index MPS, Aj1,...,jK (τc), and then propagate as:

Aj1,...,jK (t+ ∆) = Bj1,...,jKi1,...,iK
Ai1,...,iK (t), (27)

and the physical density operator is found via

ρj1(t) =
∑

j2,...,jK

Aj1,...,jK (t). (28)

Mapping two spins in a common environment to a
single spin model

We show here how to map Eq. (6) describing a pair of
spin-1/2 particles in a common environment onto Eq. (4),
a single spin-1/2 SBM. The Hamiltonian Eq. (6) has the
property that the total z-component of the two-spin sys-
tem is conserved, [Sz,a + Sz,b, H] = 0. Thus, the prob-
lem can be separated into three distinct subspaces: the
two states with the spins anti-aligned (Sz,a + Sz,b = 0)
form one subspace and the two aligned spin states (Sz,a+
Sz,b = ±1) are the other two. The one-dimensional sub-
spaces with aligned spins cannot evolve in time, hence,
all non-trivial dynamics in this model happen in the
Sz,a + Sz,b = 0 subspace. We therefore focus on this
subspace. By doing so, we may subtract a term propor-
tional to Sz,a + Sz,b from the system-bath coupling in
Eq. (6). The remaining the system-bath interaction is
given by

1

2
(Sz,a − Sz,b)

∑
i

(|g̃i|ai + |g̃i|a†i ). (29)

The effective coupling here is |g̃i| = |gi,a − gi,b| =
2gi sin[ki ·(ra−rb)/2]. These couplings lead to a modified
effective spectral density [44, 58]

J(ω) = 2Jp(ω)(1− FD(ωR)), (30)

where Jp(ω) is the actual density of states of the bath.
The function FD(ωR) arises from angular averaging in
D dimensional space, and so crucially depends on the
dimensionality of the environment. Specifically we have:

FD(x) =


cos(x) D = 1

J0(x) D = 2

sinc(x) D = 3

(31)

where J0(x) is a Bessel function. We note that
FD(ωR) → 0 as R → ∞ for D > 1, due the diminish-
ing effect of the environment induced coupling in higher
dimensions. [When considering R → ∞, we should note
that in the original Hamiltonian we neglected any retar-
dation in the Heisenberg interaction.] At small separa-
tions, R→ 0, FD(ωR)→ 1 and so J(ω)→ 0 for all D due
to the loss of relative phase shift between the couplings
of the anti-aligned states to the environment.
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For the bare density of states Jp(ω), we consider a
simple model of e.g. a quantum dot in a phonon environ-
ment, for which the coupling constants appearing in the
Hamiltonian, Eq. (6), have gi ∼

√
ωi [18]. This means

that in the continuum limit the spectral density for a
D-dimensional environment is

Jp(ω) =
α

2

ωD

ωD−1
c

e−ω/ωc , (32)

where ωc describes a high frequency cutoff and α is the
strength of the interaction with the environment.
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