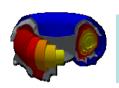
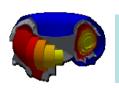


Use of ADAS in SOLPS


- SOLPS is the combination of
 - Eirene: kinetic (Monte-Carlo) neutrals code
 - Uses own atomic physics package
 - B2: fluid plasma code (+ fluid neutral model)
 - Uses STRAHL, ADPAK or ADAS
- Topics
 - Bundled charge state model
 - Electron cooling rates
 - CX for more than just C

Bundled charge states

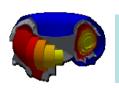

- Want to be able to model W
- Want to be able to speed up Ar/Kr calculations
 - Bundled charge state
 - Need
 - $-Z(n_e,T_e)$
 - $-Z^2(n_e,T_e)$
 - $E_{pot}(n_e, T_e)$
 - Electron cooling rate
 - On SOLPS side will need to
 - Make Z, Z^2 and E_{pot} functions of n_e and T_e

Bundled charge states, II

- Would like to have, or be able to generate, tables with varying amounts of bundling
 - For example, for W
 - 6 bundles (same cost to run as C)
 - 10 bundles (same cost as Ne)
 - 18 bundles (same cost as Ar)
- Also would like to be able to predict lines arising from the bundles to match against experiment

Electron cooling rate

ADAS provides


- Radiation rate
- Ionization rate
- In addition
 - Formula for bremsstrahlung
 - Tables for ionization potential
- Need electron cooling rate
- Current solution
 - Combine the above to generate the electron cooling rate
 - Would like to have an ADAS table that does better!

CX rates

- Currently only ADAS data for C and T (not H or D) seems to exist
- SOLPS (B2) had been using a fit that Braams created for CX values for which no data was available
 - This turned out to be wildly wrong for C under some conditions
 - Typically now use
 - ADAS for C
 - Braams' fit for H/D/T
 - 0 for all other species
 - Would like to do better!

Time-scales for using updates

- New CX data
 - Could be used immediately
- New electron cooling rate tables (or better prescription for deriving it)
 - < 1 day to implement</p>
- Bundled charge state model
 - Some coding necessary: < 1 month</p>