CXR and MSE on MAST

Presented by Paddy Carolan

Team(s) members:-

- Neil Conway Nick Hawkes
- Mattias Kuldkepp Elisabeth Rachlew
- Mikhail Turnyianski Mike Walsh
- Marco Wisse

Previous CXR System - problems

- Sees both beams edge emission
 from South (S) NBI spoils core chords for SW
- Spatial resolution poor
- Transmission and throughput poor (largely due to sacrifices made for UV)
- Insufficient bandwidth spectral overlap
- No shuttering inter-chord smearing
- No notching of beam
- Limited time slices max. 72 Paddy Carolan:- CXR and MSE on MAST (ADAS 2006)

Detailed electron and ion temperature and density distributions in edge and internal transport barriers

UKAEA

More CXR points needed for transport barrier investigations

New ports required

Poloidal views

New 200+ chord CXR spectrometer

Outline specifications

- 64-80 continuous channels per view
 - (80 means ~1cm resolution at edge)
 - viewable 720-1500mm
 - f/2 lens, 75mm focal length
 - Use 400/424um fibres
 - Get 224 views
 - Manufacture in bunches of 8
 - Make them side and top stackable so can add more 'viewers' to ports
- multiple views
 - look at both beams
 - 24 passive channels
 - 64 poloidal channels (incl. passive)
 - 1 to 2 radial channels

- CCD Pixelvision BioXight
 - 652 x 488 x 12um pixels
 - Fast Readout (4 taps @ 2.2Mhz each)
 - bin 32 rows: clock-down time + shutter close/open time + digitisation time
 - •14-bit ADC
 - Achievable frame rate ~ 300Hz
 - Pixel width corresponds to ~0.4A
 - Filter BW ~3nm
 - Channel spacing 3.7nm
- Use tuned FLC (ferroelectric liquid crystal) shutter (response time ~100us)

Spectrometer details

- Equal incidence and diffraction angles no anamorphic distortion
- Large grating (transmission; refractive index modulated)
- Off-the-shelf SLR lenses (as "fast" as possible)
- Demagnification ~2.3
- Good lens to lens coupling assisted by use of "over-fast" input lens.
- Extract light from fibres at ~f/3 very credible NA, keeps collection lens reasonably straightforward
- f/# coupled onto the CCD camera is about f/1.2 f/1.3...
- Design allows variable wavelength
- Design decisions:
 - Single spectrometer for all chords (224: 64 toroidal, 32 poloidal for each beam; remaining chords for background and radial views)

UKAEA

- system will work best for Ti < 3keV, vi < 300km/s</p>
- system will work fairly well for Ti < 5keV, vi < 500km/s</p>
- nominal required bandwidth = 2.3nm

Bandpass filter and spectra

Radial Resolution for new ports

CCD camera

Key component - underpins many design parameters

- many aspects not easy to control
 - pixel size, sensor dimensions, readout speed are often driven by large markets, so we have to make do with best match to our needs
- want good QE, fast digitisation, fast row-transfers, low readout noise...

At the time of commencing the redesign of the diagnostic, we already possessed one high-end camera from PixelVision, with 4-tap readout @ 2.2MHz per tap, 14-bit ADC, ~30 electron RMS readout noise...

As the design took shape, it became clear that this camera was ideal, particularly in enabling the large number (224) of spatial channels.

CXRS sector 9 fibres on wall, plus overlay of various objects...

High resolution kinetic measurements

High resolution timeresolved (5ms) CXRS and Thomson scattering allow detailed transport analysis e.g. using TRANSP

Paddy Carolan:- CXR and MSE on MAST (ADAS 2006)

Transport analysis

High ExB flow shear in MAST

ITBs readily formed in both electron and ion channel

 $\Box \chi_e, \chi_i$ can approach χ_i^{neo} at ITB and in H-mode

□ For both co- and counter-NBI, barriers form in the core initially then broaden substantially and weaken

□ Broad rotation profile with counter-NBI gives $\chi_e \sim \chi_i \sim 2m^2/s$ over a wide region

MSE Implementation on MAST

Different options available for spectral selection. We opted for narrow-band interference filters.

- Use ~1Å interference filters
- This is very narrow and small tilt angles will broaden bandwidth considerably.
- => no angular adjustment to filter
- Select filters according to Doppler shift (viewing angle and beam voltage).
- Optically share with CXR ports.
- For the initial 2 channel pilot experiment use spare CXR lens and have sole access during first testing period (now completed).

MSE and CXRS mounted on same port

Selection of polarised components

n*

Calculated (ab initio) spectra (R=0.84m)

- 1.0 Å filter gaussian(FWHM)
- B_T=0.5 T
- 4 cm dia. finite beam volume
- 60 keV beam
- Use a filter to select out the part of the spectrum that maxmises the polarisation difference
- •Total of 1.4-1.5 Å broadening (FWHM), included depth of beam

Signal to Noise

- Only shotnoise and dark current considered as noise sources
- 1 ms integration time
- 40% transmission in filter
- APD with 80% QE considered

- Beam emission from separate code, H-mode emission used.
- Noise in polarization angle close to what is commonly expected from other Tokamak experiments. This is surprising but in line with measurements by Levinton on NSTX.

Light Collection End

View of collection lens back end and fibre holder

Paddy Carolan:- CXR and MSE on MAST (ADAS 2006)

Fibre width is 1.2mm Have a very simple facility for adjustment to get zero order setting for filters

Use CXR techniques for spatial calibration

Light Detection End

Comparison of different systems

System	Fibres	Collection	Effective	Triple	
	mm ²	Solid Angle(sr)	efficiency	Product	
JET	6x1mm¢ (4.7)	0.15	1	0.71	
NSTX	76x1mm¢(60)	0.08	0.2	1	
MAST	36x0.4mm∳(4.5)	0.2	1	0.88	

This assumes all systems see same polarisation fraction and light collection [NSTX lens is large but collects a thin slice of light 250mmx30mm thus dropping the collected solid angle and their chosen approach (Lyot filter) is narrow band but poor in transmission at the moment]

Pilot MSE measurements

MSE – Future ambitions on MAST

- Opt for simplicity in design to reduce costs and efforts, primarily by using fixed wavelength interference filters.
- Aim for ~25 chords per beam, phasing in first set ~Sept. 2007.
- Providing a second diagnosed beam (2008/9) will give greater beam implementation flexibity and reliability but also, with accurate alignment, allow ~ 50 diagnosed positions.
- Use CXR in determining Er contribution to total E.
- Continue to analyse present results e.g. Sources of depolarisations.
- Recruit/collaborate... ③

Beam divergence and optics dominate the smearing of the Stark splitting.

FLC shutter

Parameter

Typical @ 21°C

Open shutter transmission	28-30%	Model Number	Polarizers	Clear Aperture	Outer Dimension
Closed shutter transmission	<0.03%	LV1300-AC	Adjustable	12.7 mm (Round)	44.5 mm
Contrast ratio ¹	1000:1 (30	LV2500-AC	Adjustable	25.4 mm (Round)	57.2 mm
Transmitted image quality	150 lp/mm	0 lp/mm LV1300P-OEM LV2500P-OEM LV4500P-OEM	Fixed Fixed	12.7 mm (Round) 25.4 mm (Round)	25.2 mm 37.9 mm
Operating wavelength range ²	400-700 nm		Fixed	45.0 mm (Round)	65.0 mm

Angular acceptance 20° (max), 0.34 N.A. or f/1.4

Optical rise/fall time³ 35 µs (10-90%/90-10%)

One state transition time³ (0-90%/100-10%)

70 µs

FLC = "Ferro-electric liquid crystal" UKAEA

Stark shifts compared

<u>Stark shift</u> :-						
$\Delta \nu_S = \pm$	$lpha_{S_n} E$ linear dominant		$b_n E^2$ quadratic small	Ŧ	$c_n E^3$ cubic negligible	
Zeeman shift:- Zeeman	$\Delta \nu_Z$	\propto	В			
Motional Stark	$\begin{array}{c} \Delta\nu_S\\ \underline{\Delta\nu_S}\\ \underline{\Delta\nu_Z} \end{array}$	× =	$v \times B$ $\frac{3}{\alpha} \frac{v \sin \Theta}{c}$ 1.9×10^{-2}	$\frac{E(e)}{4}$	$\left(\frac{eV}{V}\right)^{\frac{1}{2}}\sin\Theta$	
H, 10keV and Θ	$=\frac{\pi}{2}$	⇒	~ 2	\ AI	407	

Only the beam energy matters in relative magnitude of Motional Stark to Zeeman splitting.

Doppler:-

Only the magnetic field strength matters in relative magnitude of Motional Stark to Doppler spectral shifts. Paddy Carolan:- CXR and MSE on MAST (ADAS 2006)

First Results from new CXR spectrometer

Paddy Carolan:- CXR and MSE on MAST (ADAS 2006)

Neil Conway, Mike Walsh, Paddy Carolan, et al