

Max-Planck-Institut für Plasmaphysik

Issues of Modelling Tungsten in Hot Plasmas

T. Pütterich

13th of November 2006

<u>Thanks to:</u> R. Neu¹, M. O'Mullane², A. Whiteford², R. Dux¹, S. Loch³, A. Kallenbach¹, C. Fuchs¹, H. Meister¹

and the ASDEX Upgrade Team

1) IPP, Garching

2) University of Strathclyde, Glasgow

3) University of Auburn, Alabama

T. Pütterich, 13th of November 2006, ADAS Workshop 2006, Abingdon

- Tungsten in AUG
- Modelling/Predictions for JET and ITER (focus on $T_e \ge 5$ keV)
- Ionization equilibrium of tungsten
- Special focus on single spectral line (0.793 nm) in SXR
- Low temperature emissions (<1keV and >50 eV)
- Cooling factor of tungsten

Tungsten in AUG

- 1995/1996 W-divertor experiment
- Increased tungsten coverage in main chamber since 1999
- 100% coverage in 2007 \Rightarrow metal machine!

Predictions for JET and ITER

T. Pütterich, 13th of November 2006, ADAS Workshop 2006, Abingdon

Fractional Abundances are Determined Experimentally for 1-4.5 keV

T. Pütterich, 13th of November 2006, ADAS Workshop 2006, Abingdon

Modelled Spectrum in the SXR

from Ralchenko et al., PRA, 74, 042514 (2006)

- Upper state $(5/2, 1/2)_1$ is fueled also by $(3/2, 1/2)_1$ (not in Cowan code)
- Magnetic octopole (M3) is said to blend in EBIT spectrum
- In plasma, M3 is probably not important!?
- from Fournier et al.: population by ionization of Cu-like W⁴⁵⁺

FIG. 2. Energy diagram for the $3d^{10}$ (ground state configuration) and $3d^94s$ (first excited configuration) levels in W⁴⁶⁺. Solid lines: *M*1 transitions; dashed lines: *E*2 transitions; and dot-dashed line: *M*3 transition. Transition probabilities (in s⁻¹) are given next to the corresponding lines. Notation a(b) means $a \times 10^b$.

Below 1.2 keV - Poor Understanding

T. Pütterich, 13th of November 2006, ADAS Workshop 2006, Abingdon

Plasma Cooling by Tungsten

- Connection to absolute concentration via cooling factor: $P_{rad}/V = L_Z \cdot n_e^2 c_W$
- Average Ion Model predicts slightly larger cooling factor than ADAS

- More detailed measurements of tungsten emissions below 1.2keV \Rightarrow AUG, EBITs
- Measurements of tungsten lines above 5 keV \Rightarrow JET, ILW at JET, AUG, EBITs
- Improved atomic data for special ion states (R-matrix) \Rightarrow work-in, C. Ballance, D. Griffin
- Baseline-quality cooling factor below 2 keV \Rightarrow work-in

Break-down of Line-Of-Sight Integral

IPP

- Special discharges with 'impurity accumulation'
- Spectrum dominated from emissions at narrow T_e range
- Dominant ion states depend on T_e in accumulation zone

T. Pütterich, 13th of November 2006, ADAS Workshop 2006, Abingdon

Diagnostic in the VUV, II

Plasma Cooling by Tungsten

- Connection to absolute concentration via cooling factor: $P_{rad}/V = L_Z \cdot n_e^2 c_W$
- Average Ion Model predicts slightly larger cooling factor than ADAS

