Ionisation cross sections and ionisation balance

Stuart Loch Auburn University 11th October 2007

M. S. Pindzola, J. Munoz & J. Berengut Auburn University, AL USA

> C.P. Ballance & D.C. Griffin Rollins College, FL USA

Overview

- Methods of generating ionisation cross sections.
- New ionisation data for ADAS.
- Recent findings:
 - Importance of the near threshold region
 - Experimental measurements of metastable fraction.
- Ionisation project results.
- Future work.

Method of generating ionisation cross sections

- Experimental measurements
 - Most experiments don't know the metastable fraction.
- Theory
 - Semi-empirical and classical (e.g. Lotz, ECIP)
 - Perturbation theory
 - Distorted-wave [Not good for near neutrals or excited states]
 - Non-perturbative methods
 - R-matrix with pseudostates (RMPS)
 - Time-dependent close-coupling (TDCC)
 - Converged close coupling (CCC)
 - Exterior complex scaling (ECS)

New data in the last year

- Iso-nuclear work (Configuration-average distorted-wave: CADW)
 - Xe
 - Sn
 - Ar^1
- Non-perturbative calculations
 - Neutral Ar [RMPS]²
 - Be-like C, N and O [RMPS]
 - Li⁺ 1s2s (³S) [TDCC & RMPS]³
 - B [TDCC & RMPS]⁴
- Isoelectronic sequences
 - H-like
 - He-like
 - Li-like

¹Loch et al. Phys. Rev. A **76** 022706 (2007)
²Ballance et al. J. Phys. B **40** F27 (2007)
³Berengut et al. J. Phys. B **40** 1331 (2007)
⁴Ballance et al. J. Phys B **40** 1131 (2007)

Processing the adf23 files

- The new data is produced in adf23 format.
- Various utility codes can process the files. These will:
 - Make S-lines that can be added to an adf04 file.
 - Make a zero-density scd adf11 file from a set of adf23 files for an element.
- We also have some tools for more automatic checking of the new data against existing ADAS data.

Iso-nuclear calculations Example: Xe⁴³⁺

- For our iso-nuclear work we use the CADW method to calculate
 - Direct ionization
 - Excitationautoionisation
- This method generally does very well, except for near neutrals.
- For certain ion stages the excitationautoionisation contribution can be very large.
 - Radiative decay damps the excitationautoionisation for the higher ion stages.

Iso-nuclear calculations Example : Neutral Ar

- The DW methods usually overestimate the near neutral ionisation cross sections.
- Thus, nonperturbative methods generally have to be used for the near neutrals.
 - The RMPS method was used to calculate the ionisation cross section of neutral Ar.
 - Good agreement with experiment was found.

Ar ionisation balance

- We calculated the low density ionisation balance of Ar using the new data.
 - We also included new CADW dielectronic recombination for the low ion stages.
 - The new data makes a difference to the abundances of the near neutral ion stage.
- The predicted abundances appear to be verified with a plasma experiment at Auburn University.

New experimental measurements Be-like ions

- An experimental technique recently implemented at the Oak Ridge National Laboratory allows the metastable fraction to be measured in ionisation cross section experiment.
- Measurements were made on
 - $C^{2+} (46 \pm 7)\%$
 - $N^{3+} (30 \pm 6)\%$
 - $O^{4+}(24 \pm 7)\%$
- The results were compared with RMPS and CADW theory data Fogle et al. The Astrophysical Journal (in press)

Gas attenuation measurements for C²⁺

ORNL C²⁺ cross section comparison

- The RMPS results are in good agreement with experiment
- The CADW results lie above the measured cross section.

C²⁺ rate coefficients

- The ions start to have significant abundance at ~0.1 of the ionisation potential.
- The low temperature rate coefficients sample mostly the near threshold part of the cross section.
 - The rate coefficients are very sensitive to the fitting of this region.
 - A Rost fit, or a Chebychev polynomial fit is recommended.

The ionisation project

- An ADAS project aimed at the large scale generation of ionisation rate coefficients is now producing data.
- The data consists of
 - CADW direct ionization, that is then level-resolved via some angular factors.
 - CADW excitation to autoionising configurations.
 - Level-resolved Auger yields (from Autostructure)
- The data is metastable resolved for both initial and final ion stages.
- The idea is to work through iso-electronic sequences in a similar way to the `DR project'.

Recent results

- Data is completed for the
 - The H-like isoelectronic sequence
 - 1s, 2s
 - The He-like isoelectronic sequence
 - 1s², 1s2s (³S & ¹S)
 - The Li-like isoelectronic sequence.
 - 1s²2s
- Calculations are underway for the Be and B-like sequences.
- The plans are to continue along the iso-electronic sequences.
- The near neutral ion stages often already have nonperturbative calculations for them. If this is the case, the non-perturbative data is used.

Selected He-like cross sections

Iso-electronic rate coefficients Li-like ions

Future plans

- We will continue working through the isoelectronic sequences for the ionisation project.
- The main challenge remaining for ionisation is the near neutral heavier species (and a few of the lighter ions).
 - Thus we intend to use the RMPS and TDCC methods to improve the data available for these systems.
 - Let us know if there are particular ion stages you would like us to set up.
- We also intend to look into improving the ionisation data for excited states.