Fundamental research at INFLPR

V. Stancalie Laser Department

Generic flux surface, TM Portal

Integrating Applications

- Web based tools, web services
- Command line tools
- Graphical tools (SCILAB)
 - XWindow Protocol
 - VNC
 - Migrating Desktop Project

Portal Architecture

Portal Architecture

Atomic data production

- R-matrix for Li-like and Be-like ions
- R-matrix Floquet for LIDS and DR
- R-matrix for Fe-peak elements: Co 3+
 - Cowan's suite codes for W ions
 - Local codes for ion-impact excitation

Study on the Laser induced or assisted phenomena

- (LIDS) Laser-induced degenerate states model for nonperturbative treatment of dielectronic recombination of Lilike into Be-like ions (POP2005,POP2005, AIP Conf Ser.2006);
- (<u>LICS) Laser-induced continuum structures</u> in Potassium, the modification of the photoelectron angular distribution(*PRA2005*);
- <u>Free-free transitions</u> in laser-assisted electron-Hydrogen scattering in a laser field within the second order perturbation theory, elastic and inelastic scattering, polarization effects due to the laser field, circular dichroism (*JPB 2001*);
- <u>Multiphoton ionization</u> of the Magnesium atom by linearly and circularly polarized laser field using *ab-initio* nonperturbative method, above-threshold ionization (ATI), coherent phase control(*PRA*,2006).

Double poles in the S matrix in laser assisted electron-atom scattering

Diagram illustrating the first double-resonant process considered. The electron energy is chosen to be at an electron-atom scattering resonance corresponding to an autoionizing state of the (N+1)-electron system. The laser of angular frequency ω resonantly couples the autoionizing state and the ground state (or some excited bound state) of the (N+1)-electron atom.

QDT & RMF

The motion of the complex energies in the complex plane as function of the field intensity for different frequencies and atomic parameters; the critical region where a crossing (or a avoiding crossing) of trajectories occurs

LIDS for DR: electron-collision and radiative processes are included in a consistent way

Consequences of the one-photon LIDS

- trapping" of population at some non zero field intensity;
- The rate of ionisation of the 'ground' excited Rydberg state will first increase with intensity and then exhibit a typical "stabilisation", namely, a decrease of the ionisation rate with increasing intensity >>> Population transfer from the excited to autoionizing state

The 2-state model indicates that at degeneracy there are two points corresponding to :

$$\delta^{\pm} = \Gamma_a [q \pm \sqrt{q^2 + 1}; \qquad I^{\pm} = (\delta^{\pm})^2 / \gamma_a \Gamma_a$$

If we take q>0, then the trapping frequency is given by:

$$\omega^T(I) = E_a - E_g + \frac{1}{2}q[\Gamma_g - \Gamma_a]$$

At this trapping frequency, the poles in the S matrix in laser-assisted electron-scattering are :

$$z_1^T(I,\omega^T(I)) = E_a + \frac{1}{2}q\Gamma_g - \frac{i}{2}[\Gamma_a + \Gamma_g],$$
$$z_2^T(I,\omega^T(I)) = E_a - \frac{1}{2}q\Gamma_a$$

$$T(E, I, \omega^{T}) = \frac{1}{2\pi} \frac{\Gamma_{a} + \Gamma_{g}}{[E - E_{a} - q\frac{1}{2}\Gamma_{g} + i\frac{1}{2}[\Gamma_{a} + \Gamma_{g}]]}$$

$$\sigma(E,I,\omega^{T}) = \frac{2\pi g}{E} \frac{\frac{1}{4} [\Gamma_{a} + \Gamma_{g}]}{[E - E_{a} - q\Gamma_{g}/2]^{2} + \frac{1}{4} [\Gamma_{a} + \Gamma_{g}]^{2}}$$

$$\Gamma^{r,n} = I/\omega_{LIDS} \rightarrow \Gamma^{r,n(CIV)}/\Gamma^{r,n(ALXI)} = 11/4$$

$$\Gamma^{a,n(CIV)}/\Gamma^{a,n(ALXI)} = (11/4)^{1/3}$$

$$B^{n,CIV} = \Gamma^{r,n}/\Gamma^{LIDS} = 0.986/n^{3}, \quad B^{n,ALXI} = \Gamma^{r,n}/\Gamma^{LIDS} = 0.306/n^{3}$$

$$B^{ALXI}/B^{CIV} \approx 1/3 \qquad \mu \rightarrow \mu + \frac{\Delta}{\pi} = \mu - \frac{1}{\pi} \arctan \frac{E_{n} - E_{\varphi} - F(E_{n})}{\pi |V_{E_{n}}|^{2}}$$

$$V_{ac} \rightarrow V_{ac} + M_{ac}I \qquad \Gamma_{a} = 2\pi |V_{ac} + M_{ac}I|^{2}$$

Electron collisions with Fe-peak elements: Ni⁴⁺, Co³⁺ 'two-particle-one-hole' resonances

• $e^- + Ni^{4+} (3p^63d^6 {}^5D) \rightarrow Ni^{3+*}(3p^5 {}^3d^8, 3p^5 {}^3d^74s or 3p^5 {}^3d^74p)$ or $3p^5 {}^3d^74p)$ \downarrow $Ni^{4+}(3p^63d^6, 3p^63d^54s or 3p^63d^54p) + e^-$ Co³⁺ (1s²2s²2p⁶3s²3p⁶3d^{6 5}D): Target models: 3p²-3d² two electron promotions (A) Includes all levels in the target approximation with the electronic configurations 3p⁶3d⁶, 3p⁶3d⁵4s and 3p⁶ 3d⁵4p
(the Hartree-Fock orbitals of the 1s²2s²2p⁶3s²3p⁶3d⁶ ⁵D ground state configuration augmented with three spectroscopic orbitals, namely, the *4s*, *4p* and *4d*)
136 LS coupled states with a maximum of around 400 channels for any LSπ symmetry.

- (B) 6-state LS –coupled R-matrix calculation. We included in the R-matrix expansion all 136 LS coupled states which arise from six target configuration 3d⁶, 3d⁵ 4s, 3d⁵ 4p + 3p⁴ 3d⁸, 3p⁴ 3d⁷ 4s and 3p⁴ 3d⁷ 4p looking at the effect of configuration interaction
- a) L = 2, 3 and 4 to illustrate the role of configuration interaction, two-particle-one-hole resonances (M.P.Scott et al. 2006) and the position of the 3d⁵ 4d levels.
- b) the inclusion of the 3p²-3d² two electron promotions in order to try and account for electron-correlation effects in the both the target and scattering wavefunctions)

(C)9-state LS –coupled R-matrix calculation. Starting with the 136-level model, we included in the R-matrix expansion all states which arise from nine target configuration:

3d⁶, 3d⁵4s, 3d⁵4p, 3p⁴3d⁸, 3p⁴3d⁷4s, 3p⁴3d⁷4p, 3p⁵3d⁷, 3p⁵3d⁶4s, 3p⁵3d⁶4p

a) 152 *LS* coupled states which arise from four target configuration 3d⁶, 3d⁵4s, 3d⁵4p, 3d⁴4s²,

b) 184 *LS* coupled states which arise from four target configuration 3d⁶, 3d⁵ 4s, 3d⁵ 4p, 3p⁵ 3d⁷ and

c) 272 *LS* coupled states which arise from four target configuration 3d⁶, 3d⁵4s, 3d⁵4p and 3p⁶3d⁴4s4p.

Table1. Summary of Co 1V target models.									
Label	Number	Configurations							
	of configs.								
1	3	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p							
2	4	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p, 3p ⁵ 3d ⁷							
3	4	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p, 3d ⁴ 4s4p							
4	4	$3d^{6}$, $3d^{2}4s$, $3d^{2}4p$, $3d^{4}4s^{2}$							
5	6	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p, 3p ⁴ 3d ⁸ , 3p ⁴ 3d ⁷ 4s, 3p ⁴ 3d ⁷ 4p							
6	9	3d ⁶ , 3d ⁵ 4s, 3d ⁵ 4p, 3p ⁴ 3d ⁸ , 3p ⁴ 3d ⁷ 4s, 3p ⁴ 3d ⁷ 4p, 3p ⁵ 3d ⁷ , 3p ⁵ 3d ⁶ 4s, 3p ⁵ 3d ⁶ 4p							

 $\mathbf{T}_{\mathbf{r}}$ **b** $\mathbf{l}_{\mathbf{r}}$ **f** $\mathbf{C}_{\mathbf{r}}$ **f** $\mathbf{T}_{\mathbf{r}}$ **f** $\mathbf{C}_{\mathbf{r}}$ **f** $\mathbf{T}_{\mathbf{r}}$ **f** $\mathbf{C}_{\mathbf{r}}$ **f** $\mathbf{T}_{\mathbf{r}}$

Table 3. The number of *LS*-coupled scattering channels for even and odd parity associated with the total angular momentum value L = 2 in e^2 - Co³⁺ collisions using the three-configuration model for specific spin symmetries in the present 136-state calculation.

	Singlets	Triplets	Quintets	Septets	
L	S =0	S = 1	S = 2	<i>S</i> = 3	
		Even parity			
2	117	147	41	3	
		Odd parity			
	105	144	38	1	

Table 4. Summary of the total number of coupled channels associated with the total angular momentum value L = 2 in e^{-1} - collision of Co IV states of particular spin (S_i) belonging to $3d^6$, $3d^54s$, $3d^54p$ configurations.

$S_i = 1/2$		$S_i = 3/2$		$S_i = 5/2$		$S_i = 7/2$	
Even	Odd	Even	Odd	Even	Odd	Even	Odd
parity	parity	parity	parity	parity	parity	parity	parity
264	269	188	182	44	39	3	1

Ni⁴⁺ Model

- Calculation (A) -136 LS-coupled target where the intermediate resonance states are not included;
- Calculation (B): (A)+3p⁵3d⁸, 3p⁵3d⁷4s and 3p⁵3d⁷4p (136 LS-coupled states)
- Calculation (C) = (B) + 3p⁵ 3d⁷ (184 –LS coupled states)

• Selected electron excitation rates, for $3d^{10}4s^2$ – $3d^{10}4s4p$ (o) and $3d^{10}4s4d$ - $3d^{10}4s4f$ (Δ) transition

 Position and widths of the resonant states of type 1s²2s²p⁶3s²3p⁶3d¹⁰4s²nl

Auger Rates for Configurations 3e-10 of Type 2s 3d¹⁰ 4s² nl Excitation rates (cm**3/s) 2.5e-10 5.5E+13 5E+13 2e-10 4.5E+13 rates 4E+13 3,5E+13 1.5e-10 Auger 3E+13 2.5E+13 2E+13 1e-10 1,5E+13 1E+13 25 AS2 68 23452 59 23452 58 Le her by 25426 25 ASL 55 25 452 50 25 452 50 25 452 55 25 452 50 25452 68 5e-11 0 500 1000 1500 2000 2500 3000 0 Investigated Configurations Te (eV)

electron impact excitation rates and collision strengths for transitions of type 3d104snl - 3d104sn'l', *n*, *n*'=4,5, and Δ J=0,1.

