

Science & Technology Facilities Council Rutherford Appleton Laboratory

Generalised collisional-radiative modelling, contribution functions and solar spectra

Alessandra Giunta

Introduction

- Formation of He lines in the EUV solar spectrum enables understanding of the physics of the solar upper atmosphere (transition region and corona) plasma
- Observed intensities of He resonance lines are enhanced compared to theoretical models of the solar TR built up from other characteristic lines
- To what extent can emission measure distribution reproduce the observed fluxes of the He I and He II lines?
- He I (591.4 Å) intercombination line can be used as support to investigate the anomalous behaviour of He line intensities without including opacity effects
- New joint observations for all He I and He II EUV lines, using Hinode/EIS, SoHO/SUMER and SoHO/CDS
- Revisit of atomic data to build up updated contribution functions

Solar context

Problem of He enhancement

- Enhancement factors of 15 for He I 584.3 Å and 5.5 for He II 303.8 Å (*Jordan (1975)* : emission measure (EM) analysis)
- New enhancement factors of 2-5 for He I 584.3 Å and 2-9 for He II 303.8 Å (*Pietarila & Judge (2004)* : EM analysis and radiative transfer calculations)

Analysis of quiet Sun and active regions

- Jordan (1975) : mixing low temperature He atoms and ions with higher temperature electrons
- Shine et al. (1975), Fontenla et al. (1993): diffusion effects
- Andretta et al. (2000): velocity redistribution
- Smith & Jordan (2002): transport of He atoms and ions by turbulent motions
- Mauas et al.(2005): He line formation in a specific active region prior to a two ribbon flare
- Andretta et al. (2008): He line formation during the flare

The observational spectroscopic dimension

Requirements to clarify the He problem

Differential Emission Measure (D.E.M.) analysis

The D.E.M. describes the temperature and density structure of the solar atmosphere Intensity of spectral line of optically thin plasma:

$$I_{j \rightarrow k} = \frac{A(Z)}{4 \pi} \int G_{j \rightarrow k}(T_e) \Phi(T_e) dT_e$$

A realistic study of EUV He lines through D.E.M. analysis requires:

Initial approach - modelling

ADAS601: D.E.M. estimated by *data adaptive smoothing approach* (Lanzafame et al., 2005), using the integral inversion algorithm of Thompson (1990, 1991)

Input data

- Set of observed intensities I_i
- Elemental abundances A(Z)
- Contribution functions $G_i(T)$

Data for the lines included in D.E.M.

- Ionisation balance calculations of Arnaud & Rothenflug (1985) and Van Maanen (JET, 1985)

Data to reconstruct He line intensities

- Ionisation balance calculations of Summers et al. (2006) (Generalised Collisional-Radiative approach)
- New calculations for the distribution of level population for He I, merging R-matrix (Ballance, 2003; Paton, 2003) with Cowan code calculations to add n=5 levels

Initial approach - results

ABUNDANCE	I _{OBS} (Hel 5914 Å) I _{REC} (Hel 5914 Å)
Gr.&And. (1989)	2.01
Meyer (1985)	1.67
FI.&Sch. (1999)	4.51
Feldman (2000)	4.16

• Ratio between observed and reconstructed intensity for the intercombination line at electron pressure $P_e=3\times10^{14}$ cm⁻³K, using four sets of abundances: photospheric from Grevesse & Anders (1989), coronal from Meyer (1985), Fludra & Schmelz (1999) and Feldman et al. (2000)

 Comparison between D.E.M. for quiet Sun using Meyer abundance at P_e=3×10¹⁴cm⁻³K with the Warren (2005) emission measure distribution

New joint observations

Campaign of April 2009:

1. 17th April 2009 12:00-16:00 UT, Sun centre pointing
2. 28th April 2009 20:00-24:00 UT, Sun centre pointing

Instruments:

Solar UV Measurements of Emitted Radiation onboard SoHO Coronal Diagnostic Spectrometer onboard SoHO EUV Imaging Spectrometer onboard Hinode (Solar-B)

New observation sequences:

- Helium lines: He I, He II

- Lines at log(T/K)≤4.5: e.g. Si II, C II
- Lines at 4.5≤log(T/K)≤6.0: e.g. O III, Ne V
- Lines at log(T/K)≥6.0: e.g. Fe X, Fe XII
- Lines for co-alignment: e.g. O IV, O V, Si VII

Calibration and co-alignment

Images showing temperature variability

05-10-09

Example of He images

Update of contribution functions

Silicon work

Silicon work

STEP 3 - Comparison with Dere (2007) ionisation rates

Silicon work

Future work

- Complete Si ionisation work and perform calculation for other elements of astrophysical interest, such as Mg
- Complete cross calibration for the new observations from the three different instruments (SUMER, CDS and EIS)
- Evaluate D.E.M. using the new observations and the updated atomic data
- Extend work to more active regions to investigate a possible connection with the stronger magnetic field
- Include opacity effects (full radiative transfer calculations)
- Examine how FIP (First Ionisation Potential) effect can affect the reconstructed intensities of He lines, since He is the element with the highest FIP (24 eV). As a consequence of its high FIP value, He lines show high excitation energies that make them very sensitive to non-equilibrium effects.