

Atomic & Molecular Data Needs for ITER

Presented by A.S. Kukushkin ITER Organization With contributions from R. Pitts, M. Shimada

Page 1

Present ITER Construction Site

Updated Schedule

Approach to DT Operation

- First D-T Plasma foreseen at the end of 2026 or beginning of 2027

The timescale for modeling development

Rer china eu india japan korea russia usa ADAS Workshop, October 4-6, 2009, Schloss Ringberg, Germany

ITER materials choices

ITER Modeling

Current Modeling

- Most of effort on modeling the energy and particle transport
 - Analysis of divertor design
 - Data on ionisation, recombination, and total emissivity
- Burning plasma conditions with C targets (the decision on W targets for D-T phase was made rather recently)
 - \rightarrow Data for H isotopes, He, Be, and C;
 - $T_e \in [0.01 \div 1000] \text{ eV}, n_e \in [10^{18} \div 10^{21}] \text{ m}^{-3}$
 - generally, existing; refinement desirable
 - Vibrational excitations for D₂ molecules important for neutral transport
 → Data for DT? For T₂?
- Turning to the pre-DT phase (especially, He plasmas) with C targets
 - → He data more important, in particular, 3-body recombination and radiation emissivity refinement desirable

Next step

- Turning to the DT phase with W targets
 - Rather urgent: the second set of divertor cassettes to be designed before start of ITER operation
 - → Impurity seeding
 - \rightarrow W, Ne, Ar, N, (Kr, Xe) data;
 - $T_e \in [10^2 \div 10^4] \text{ eV}, n_e \in [10^{19} \div 10^{20}] \text{ m}^{-3}$ core
 - $T_e \in [10^{-2} \div 10^3] \text{ eV}, n_e \in [10^{18} \div 10^{21}] \text{ m}^{-3}$ edge
 - High-Z \rightarrow bundling the charge states desirable
 - Transport-dependent \rightarrow convenient tools needed
 - N₂ molecules: vibrational excitations?

Further plans

- Diagnostics assessment: test bench for diagnostics developers
 - Emissivity of separate lines
 - for spectroscopy
 - disturbing e.g. Thomson scattering measurements
 - \rightarrow identification of proper lines
- Abnormal event detection (water leak, loss of tiles, ...)
 - H_2O , O, O_2 , Fe, Cu data
- Parasitic plasma under the dome
 - Photo-ionisation & photo-dissociation data
- Wall interaction data
 - Excitation of reflected/desorbed particles?

Summary

- Usual non-specific request: more data, better evaluated
- W data seem to be critical for near future
 - Continued validation of tungsten atomic data important
 - Tools for bundling charge states are needed
- Importance of line radiation data
 - Selection of proper lines: input from diagnostics community needed
- Molecule excitations
 - Isotope effect?
 - Gaseous impurities?