Determination of Tungsten Fluxes from W I- and W II-lines

A.Pospieszczyk, G.Sergienko, S.Brezinsek, I.Beigman^{*}, L.Vainshtein^{*}

R.Doerner**, D.Nishijima**, W.Bohmeyer***

Institut für Energieforschung - Plasmaphysik, Forschungszentrum Jülich GmbH, *Lebedev Physical Institute, Moscow, **UCSD-Center for Energy Research, San Diego, ***MPIPP-Berlin-HUB

Present status

- Results from TEXTOR (published in 2007, PPCF 49, 1833) modelling of the corresponding S/XB

Latest S/XB experimental data for WI

- measurements on PISCES-B (weight loss)
- measurements on TEXTOR (injection)

Measurements on W II - (transport studies) - comparison of experimental and theoretical data

Conclusions

S/XB for 4008 Å

from Model (Beigman & Vainshtein)

"ATOM", v.Regemorter, cor. approx.

Test other lines for quantitative measurements

Longer wavelengths:

Shorter wavelengths:

better for hot surfaces

ADAS-Workshop Rinabera 4.-7.10.2009

Institut für Energieforschung - Plasmaphysik Assoziation EURATOM-Forschungszentrum Jülich

better for fiber transmission $\Phi_A = \frac{4\pi}{\Gamma} \frac{I_{tot}}{hv} \frac{\langle \sigma_I v_e \rangle}{\langle \sigma_{Fvo} v_e \rangle} = 4\pi \frac{I_{tot}}{hv} \frac{S}{XB}$

W I lines - dependence on target temperature

W-line ratios 200V / 60V - diff.target temp. (1260^oC / 760^oC)

ADAS-Workshop Ringberg 4.-7.10.2009 Institut für Energieforschung - Plasmaphysik Assoziation EURATOM-Forschungszentrum Jülich

Tungsten S/XB from sputtering experiments (Ar) - PISCES-B

WF₆-blow through a hole in a graphite plate in Limiter Lock 1 (TEXTOR) During 107368-107378 7 discharges with WF₆ blow – 1 (0.5) s

Tungsten transport in SOL

- defined conditions
- controlled amount (about 4% of the D-content)

Safety measures had been taken

Institut für Energieforschung - Plasmaphysik Assoziation EURATOM-Forschungszentrum Jülich

S/XB (400.8nm) from flux calibration

Nominally identical WF_6 - flux – but factor of 2 in intensity

-Trilateral Euregio Cluster WII – lines from HR-spectroscopy at TEXTOR

	40000						' /	
	10000 -					W II		
	8000 -							/
	- 0009 -							
	. ב 4000 -			_ D _γ	4			
,	2000 -	\sim	www	<u> </u>	h		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5.0	43	3.0	433.5	434.0	434.5	435.0	435.5	436.0
					wavelength / r	nm		
				Те	erms			

(Ar 11)

Institut für Energieforschung - Plasmaphysik

ADAS-Workshop Ringberg 4.-7.10.2009

Assoziation EURATOM-Forschungszentrum Jülich

Comparison W II – lines from HR-spectroscopy and 2-D spectroscopy at TEXTOR

ADAS-Workshop Ringberg 4.-7.10.2009 Institut für Energieforschung - Plasmaphysik Assoziation EURATOM-Forschungszentrum Jülich

WII level diagram

SXB WII 364.1nm SXB WII 434.8nm

WΙ WII λ / nm 400.9 429.5 434.8 364.1 Intensity / au 1.72 ×10⁴ 1.92 ×10³ 2.22 ×10⁴ 4.25 ×10³ S/XB @ 20eV 60 112 6000 2500 T_{W= 4eV} S/XB @ 20eV 57 106 1423 666 $T_{W=1eV}$ Flux_{4eV} 1.33 ×10⁶ 1.93 ×10⁶ 1.15 ×107 1.06 ×107 Flux_{1eV} 1.27 ×10⁶ 1.82 ×10⁶ 2.73 ×10⁶ 2.83 ×10⁶

Calculations similar as for the W I case

Institut für Energieforschung - Plasmaphysik

ADAS-Workshop Ringberg 4.-7.10.2009

Assoziation EURATOM-Forschungszentrum Jülich

conclusions

Recent injection experiments confirm the known S/XB values for the WI 400.8nm line

Additional experimental data for 3 other W I lines – in the blue and green – are now available (better transmission characteristics)

For different W-target temperatures (in our cases between 700^oC and 1300^oC) the level population of the W-lines investigated remains unchanged

"branching" method for spectrometer calibrations seems to be possible with W-atoms

S/XB values have now also been calculated for several W II lines in the UV and visible

To fit to the W I fluxes a ground state population with extremely low " T_w " has to be assumed

Always advisable

refine level populations (cascading, transfer, ground state) – experimental input

-Trilateral Euregio Cluster

The End

Model Calculations

ionization rate coefficients: from the **Code "ATOM" (B & BO appr.)** for the lowest configurations $5d^4$ (6S) $6s^2$ and $5d^5$ (6S) 6s using $\sqrt{B}(B+1+D)$

$$\langle v\sigma_{iz} \rangle = 10^{-8} A \frac{\sqrt{\beta} \left(\beta + 1 + D\right)}{\left(\beta + \chi\right) \left(\beta + 1\right) \sqrt{\beta_{iz} + 1}} e^{-\beta_{iz}} \left[cm^3 s^{-1} \right],$$

$$\beta = Ry / T_e; \ \beta_{iz} = E_{iz} / T_e,$$

 E_{iz} =7.864 eV ionization energy, T_e is the electron temperature; A=84.9, χ =0.22, D= -0.4 from the code

excitation rates: complicated coupling scheme and configuration mixing. For many levels the identification is unknown: =>semi-empirical **van Regemorter formula:**

$$\left\langle v\sigma_{k_{0},k} \right\rangle = 0.11 \cdot 10^{-16} \cdot \frac{g_{k}}{g_{k_{0}}} A_{k,k_{0}} \left(\frac{Ry}{\Delta E} \right)^{3} u(T_{e}) e^{-\beta_{ex}} [cm^{3}s^{-1}],$$

$$u(T_{e}) = \beta^{0.5} l \operatorname{og}(2 + 1/(1.78\beta_{ex})), \ \beta_{ex} = \Delta E / T_{e}, \ \beta = Ry / T_{e},$$

where $A_{k,k0}$ is the radiative transition probability. Non-dipole collisional transitions were not considered.

Model: Coronal approximation with excitation only from the group of "ground" levels $5d^4$ (⁵D) $6s^2$ ⁵D₁ and $5d^5$ (⁶S) 6s ⁷S₃

$$\begin{aligned} Q_{k,k'} &= \frac{A_{k,k'}}{A_k} \sum_{k_0} N_{k_0} \left\langle v \sigma_{k_0,k} \right\rangle, & S / XB = \left\langle v \sigma_{iz} \right\rangle / Q_{k,k} \\ A_k &= \sum_{k''} A_{k,k''}. \end{aligned}$$
 is the total radiative decay probability:

Lines with transition probabilities A(k,k') and A(k,k₀) used if provided in the NIST tables (522 lines) Assumption: level population (k_0) -> Boltzmann distribution with T_W (free parameter)

ADAS-Workshop Ringberg 4.-7.10.2009 Institut für Energieforschung - Plasmaphysik Assoziation EURATOM-Forschungszentrum Jülich

W-I lines considered

λ/Α	E/cm	$\boldsymbol{g}_{\scriptscriptstyle L}$		Transition		A / s ⁻¹	br	
	low	Up	low	ир	Low	Up		%
2551.35	0.00 0.000	39183.20 4.858	0.0	1.00	a ⁵D ₀	x J=1	1.8e+8	79
2681.42	2951.29 0.366	40233.97 4.988	1.98	1.50	b ⁷ S ₃	x J=4	7.4e+7	86
4008.75	2951.29 0.366	27889.68 3.458	1.98	1.70	b ⁷ S ₃	d ⁷ P ₄	1.6e+7	99
4294.61	2951.29 0.366	26229.77 3.252	1.98	1.84	b ⁷ S ₃	d 7P ₂	1.2e+7	94
4886.90	6219.33 0.771	26676.48 3.307	1.50	1.46	a ⁵ D ₄	c ⁷ F ₅	8.1e+5	100
4982.59	0.00 0.000	20064.30 2.488	0.0	1.54	a ⁵D ₀	c ⁷ F ₁	4.2e+5	79
5053.28	1670.29 0.297	21453.90 2.660	1.51	2.51	a ⁵ D ₁	c ⁷ D ₁	1.9e+6	52
5224.66	4830.00 0.859	23 964.67 4.261			a ⁵D₃	b ⁷ D ₂	1.2·10 ⁶	

Designations: $a=5d^4(^5D)6s^2$, $b=5d^5(^6S)6s$, $c=5d^4(^5D)6s6p$, $d=5d^5(^6S)6p$, x means unidentified.

from NIST; other sources: R. Kling, M. Kock JQSRT 62 (1999) 129 - 263 lines

C.H.Corliss, W.R.Bozman NBS 53 (1962) 499 - 261 lines

note: the large number of W I lines is a strong help for absolute calibrations (via br -> UV)

one useful example found: $426.022 / 261.308 - A_{ik}$ in $10^8 s^{-1} 0.174 / 0.54$

Institut für Energieforschung - Plasmaphysik Assoziation EURATOM-Forschungszentrum Jülich

-Trilateral Euregio Cluster

Tungsten distribution with sputtering energy (Ar) - PISCES-B

429.471 20-16 150 - 75V Ar on W normalized n_e=5.1x10¹²cm⁻³, T_e=4.6eV

W-photon profiles @ 401nm as a function of U_{bias} Ar->W

Increase of W-penetration depth with sputtering energy

Reason : Cooling of plasma by radiating W particles ?

concentration in forward direction

Concentration (<u>narrowing</u>) of the emission cone into the forward direction <u>with increasing sputtering</u> <u>energy</u>

