

Progress of CR modeling for molecules relevant to fusion

D. Wünderlich, U. Fantz

Molecules in fusion experiments

Wall materials

- ITER: Be, W and C
- ASDEX Upgrade: W
- ITER like wall of JET: Be, W
- Boronization of the walls (impurities, recycling)

Low temperatures in the plasma edge \Rightarrow formation of molecules

Recycling at the wall

H₂, D₂, T₂, HD, HT, DT **Plasma wall interaction**

CH, CD, CT, C₂ BeH, BeD, BeT BH, BD, BT

CR models for molecules

Split-up of electronic energy levels due to vibrational and rotational excitation

 $\epsilon = n_{v'}^{n'}(J') \cdot A_{v'v''}^{n'n''}(J', J'')$

CR models for molecules much more complex than for atoms

Vibrationally and rotationally resolved cross sections and transition probabilities

- Coupling with molecules, atoms or ions (e.g. dissociative excitation or recombination)
- Isotope effect
- Low intensity of single lines ⇒ no relevance of optical thickness
- Thermalization ⇒ Rotational levels neglected in most CR models

Potential curves of H₂

Born-Oppenheimer approximation

Electronic and nuclear motion can be separated due to mass ratio

⇒ Separate treatment of electronic, vibrational (and rotational) excitation

 $\Phi(\mathbf{R},\mathbf{r}) = Y(\mathbf{R},\mathbf{r}) \cdot \Psi(\mathbf{R})$

Potential curves: eigenvalues of electronic wave functions

TraDiMo for BH

TraDiMo for C₂

TraDiMo for CH

Excitation rate coefficients: forbidden transitions

Gryzinski method

Based on Franck Condon Factors, low accuracy

- In principle very simple method
- Some obscurities, like definition of "next allowed level" (difficult in molecules)
- Calculations for H₂, C₂, CH

More accurate data for forbidden transitions highly desirable

Excitation rate coefficients: allowed transitions

Impact parameter method

Based on transition probabilities, very accurate

- IPProg: simple tool to calculate rate coefficients
- Good agreement with Born-Bethe calculations^{*}
- Calculations for H₂, C₂, CH, BH

Sufficient data basis for allowed transitions

*: R. Celiberto et al, Plasma Phys. Control. Fusion 51, 2009, 085012

Yacora: CR model for CH

Yacora: CR model for C₂

A¹Π_u(v=0)

population

electron impact

de-excitation

depopulation

 Strong influence of plasma parameters on relevance of excitation and de-excitation processes

D. Wünderlich

Molecular CR Modeling for Fusion, Ringberg, 6. October 2009

0.0

10¹⁵

10¹⁶

10¹⁷

10¹⁸

n_e [m⁻³]

electron impact

de-excitation

electron impact

ionization

Application of CR models: effective rate coefficients

CH/C₂: Deviation from corona model in a wide parameter range, application of the CR model mandatory

H₂: drastically improved agreement of measured and calculated population densities by exchange of input data

Potential curves	H ₂	C ₂ , CH, BH, BeH
FCF, Transition probabilities TraDiMo	H ₂ , D ₂ , T ₂ , HD, DT	C ₂ , CH, CD, CT, BH, BeH
Electron impact cross sections IPProg, Gryzinski method	${\sf H}_2$ (some transitions)	C ₂ , CH, BH, BeH
CR model _{Yacora}	H ₂	C ₂ , CH

- Proved set of codes for generating input data and CR models
- Foundation for CR modeling of fusion relevant diatomic molecules
- Additional effort necessary (e.g. replace Gryzinski cross sections)