Spectroscopic Experiments and Diagnostics on Alcator C-Mod

ADAS Workshop

October 6th, 2009 at Ringberg Castle, Germany

M. L. Reinke

on behalf of The Alcator C-Mod Team

 Description of the Alcator C-Mod tokamak and its capabilities

Spectroscopy tools and sample data

The Alcator C-Mod Tokamak

Alcator C-Mod¹ is a compact,

high field tokamak capable of running

at high density and temperature.

 $R_o \sim 0.68 \text{ [m]}, a \sim 0.21 \text{ [m]}$ $n_e < 6x 10^{20} \text{ [m^{-3}]}$ $B_T \sim 5.4 \text{ [T]}, V_p \sim 1.0 \text{ [m^3]}$ $T_e < 5.6 \text{ [keV]}$

Alcator

C-Mod

- External heating via ICRF (6 MW)
 - heats hydrogen minority
 - effective in both D_2 and He plasmas
- Cryopump for particle control
- Impurity input via gas puffing and
 (NEW) laser blow-off injection

Well Characterized Electrons²

Alcator C-Mod scanning probes: T, n 2 mm Thomson scattering: T_e, n_e 1 mm, .03-1.0 keV, 0.3-5e20 m⁻³ **Thomson scattering:** T, n 1 cm, < 10 keV, 3e21 m⁻³, 60 Hz 10 ch interferometer: n

e⁻ cyclotron emission: T_e

32 ch, 4 mm, 1 MHz

Noble Gas Infused Plasmas

- Alcator C-Mod
- Continuous gas puff sets up puff/cryopump/plasma equilibrium
- Adjust input power/puff pressure to set T_e and absolute radiation level
- <ε> ~ 3 MW/m³ achieved (Kr)
- Advantages over puffs or LBO
 - steady-state impurity transport
 - estimate n_z from $P_{RAD}/SXR/Z_{eff}$
 - typically weak transitions are easily observable

Broadband Radiation Measurement

Resistive "foil" bolometers^{3,4} for absolute P_{RAD}

- 20 midplane channels for core
- 16 channels in divertor/x-point region

Absolute eXtreme UltraViolet (AXUV) diodes⁴

- 22-channel midplane arrays for core
- 20 channels for divertor

Soft X-Ray (SXR) diodes²

- x2 38-channel arrays for core
- X2 38-channel arrays for edge

1D emissivity profiles during Ar seeded L-mode

Alcator

C-Mod

X-Ray Crystal Imaging Spectrometer

Alcator

VUV Spectroscopy for Operations

Alcator C-Mod

2.2 m Rowland circle spec for impurity monitoring

- 90 Å < λ < 1050 Å w/ 40-100 Å observation window
- single chord, scanning shot-to-shot poloidally for radial transport⁷
- generally sits at 110 Å -140 Å for Mo XXXI, XXXII

Plasma Fueling from Deuterium Ly- α Alcator

20-ch AXUV array w/ 10 nm bandpass filter @ 121.5 nm⁸

C-Mod

Balmer-α emission from molecules much greater than Lyman-α and comparison will provide a good check for codes like Yacora Collaboration with D. Wüderlich at IPP using Yacora.

Alcator C-Mod

B V n=6-7 transition for v_{ϕ} , v_{θ} , T_z and n_z

Large array of LFS and HFS fiber views, both poloidal and toroidal^{10,11}

- 50 kV, 7 A DNB for edge -> core
- thermal D₂ puff for LFS/HFS edge

Working with Loch & Ballance at Auburn to look at e⁻ impact excitation of high-n and Guzman w/ ADAS to understand thermal C-X

Visible Spectroscopy for Impurity Influx

- Over 50 fiber views of the divertor and limiter
- Sub-set coupled to an imaging spectrograph

Use Mo I (386.4 nm) emission for erosion studies using S/XB¹²

Alcator

C-Mod

Conclusions

Alcator C-Mod's high density, high-temperature plasmas, combined with an excellent set of diagnostics make it a unique facility to challenge and extend the understanding of atomic processes in plasmas

Open to discussions/collaborations on:

- SXR/VUV spectroscopy and radiation modeling
- charge exchange spectroscopy (beam-based & thermal)

- impurity transport
- impurity influx (S/XB)
- neutral and molecular emission

Alcator

C-Moo

References

Alcator C-Mod

[1] Marmar, E. S. Fusion Science and Techology. **51** 261 (2007) [2] Basse, N. P. et al. Fusion Science and Techology. 51 476 (2007) [3] Mast, K. F. *et al.* Rev. Sci. Instrum. **62** 744 (1991) [4] Reinke, M. L. *et al.* Rev. Sci. Instrum. **79** 10F306 (2008) [5] Ince-Cushman, A. et al. Rev. Sci. Instrum. **79** 10E302 (2008) [6] Ince-Cushman, A. PhD Thesis. Department of Nuclear Science and Engineering, Massachusetts Institute of Techology (2008) [7] Rice, J. E. et al. J. Phys. B: At. Mol. Opt. Phys. 29 2191 (1996) [8] Boivin, R. L. *et al.* Rev. Sci. Instrum. **72** 961 (2001) [9] LaBombard, B. PSFC Research Report, **PSFC/RR-01-03** (2001) [10] McDermott, R. M. *et al.* Phys. Plasmas. **16** 056103 (2009) [11] Rowan, W. L. *et al.* Rev. Sci. Instrum. **70** 882 (1999) [12] Lipschultz, B. et al. Nucl. Fusion. 41 585 (2001).