ADAS application to low-field motional Stark effect diagnostics

Jinseok Ko

with the contributions from

Daniel J. Den Hartog, Betsy A. Den Hartog Kyle J. Caspary, and Jonathan Klabacha

16th ADAS Workshop • Auburn University, Alabama, USA • Oct 6-8, 2011

Motional Stark effect: Doppler-shifted polarized light gives local field information

Balmer alpha emission from energetic neutrals

Outline

- •MSE diagnostic at MST and its spectra
- Outline of the fitting scheme
- Density dependence of the upper state populations
- •Summary and future/present work

 Madison Symmetric Torus (MST) generates reversed field pinch configuration with small applied field (10 X smaller than for a tokamak) and high beta, making unique contributions to fusion and plasma science.

R = 1.5 m, a = 0.5 m
Ip < 0.6 MA, B < 0.6 T, ne = 1 ~ 2e19 /m3
Te, Ti < 2 keV
Flattop = 20 ~ 30 msec

Low-field MSE spectra at MST is complex

- Unlike tokamaks, |B| on axis is unknown since the toroidal field in this region is largely generated by poloidal current flowing in the edge, not by external TF coils.
- Low magnetic fields (\leq 0.5 T) preclude selecting a particular Stark component in the signal.
- Linear polarizers are installed to exclude one of the components.
- Multiple views at each spatial location result in multiple groups of Stark multiplets within a CCD frame.

• In normal operations, some of the views need to be turned off.

Polarizers try to suppress one polarization component, but not perfectly

Stokes formulism for Stark multiplets relates geometric information with the intensities

 The formula to relate the intensity with the viewing angle (θ), polarizer transmission axis (α), and pitch angle (φ) [1]:

$$S_{p}(0) = \frac{1}{2} \left[I_{0} + I_{1} \cos(2\alpha) + I_{2} \sin(2\alpha) \right]$$

$$S_{p}(0) = \frac{1}{2} \left[I_{0} + I_{1} \cos(2\alpha) + I_{2} \sin(2\alpha) \right]$$

$$\begin{bmatrix} I_{0}^{\sigma} \\ I_{1}^{\sigma} \\ I_{2}^{\sigma} \\ I_{3}^{\sigma} \end{bmatrix} = \begin{bmatrix} I^{(\sigma)np} + I_{\perp}^{\sigma}(1 + \sin^{2}\theta \sin^{2}\phi) \\ I_{\perp}^{\sigma}\cos\theta\sin2\phi \\ I_{\perp}^{\sigma}\cos\theta\sin2\phi \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} I_{0}^{\pi} \\ I_{1}^{\pi} \\ I_{2}^{\pi} \\ I_{3}^{\pi} \end{bmatrix} = \begin{bmatrix} I^{(\pi)np} + I_{\perp}^{\pi}(1 - \sin^{2}\theta \sin^{2}\phi) \\ -I_{\perp}^{\pi}\cos\theta\sin2\phi \\ -I_{\perp}^{\pi}\cos\theta\sin2\phi \\ 0 \end{bmatrix}$$

• I _: Intensity of pure sigma & pi when viewed perpendicular to the Lorentz electric field E. ADAS comes in for this parameter.

[1] D. Voslamber, "Self-calibrating magnetic field diagnostics in beam emission spectroscopy", Rev. Sci. Instrum. 66:4 (1995) 2892-2903

z (v)

ADAS provides initial values for I_{\perp} 's

Measurements from multi chords for one time/space point improves the statistics

Both MSE and ADAS with low magnetic field implies 'near' statistical populations

ne (1e19/m3)

10

Deviations from statistical populations occur at lower densities

11

Sometimes, the density dependence is reversed

Summary

- The ADAS constraints with the Stokes formulism in the lowmagnetic-field MSE spectrum fits can provide both the direction and magnitude of internal magnetic fields.
- Measurements from multi chords for one time/space point put the upper bound of the uncertainty (5 \sim 15 % for 0.2 \sim 0.6 T).
- Comparison of various Stark intensity ratios between the MST MSE spectrum fit and ADAS calculation shows qualitative agreement.
 - The upper state populations are close to statistical.
 - The deviation occurs below ne \approx 0.5e19 /m3.
- This comparison implies that the density dependence of the upper state population with low fields is different from that with high fields.

Future / Present work

- Extend the analysis to the off-axis spectra.
 - We need to clarify some ambiguities in the MSE part of the ADAS module (geometry & polarizer effects etc)
- Compare / analyze the (low field) MSE data with other models (for example, NOMAD).
- Explore correlation of the uncertainty in |B| with other plasma / DNB parameters to further reduce the uncertainties.

