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Classification of ADAS datasets
All of ADAS data can be grouped into one of 3 types:

I Fundamental data are core atomic data necessary for modelling:
A-values, cross sections, effective collision strengths etc.,

• Many sources: collaborators, literature, data centres etc.
• Many resolutions: from simplistic to the forefront of computational

physics.

I Derived data are data tailored for modelling: electron temperature
and density dependent effective emission coefficients, effective
ionisation/recombination rates, radiated power, spectral emissivities etc.,

• Fundamental data processed via population models.
• Most of these data are not catalogued in data centres.

I Driver data allow complete regeneration of all ADAS derived data (and
some fundamental data) in conjunction with the various ADAS codes,are
core atomic data necessary for modelling:

• unique to ADAS and of no use/interest to non-ADAS users.
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The goal
A measure of uncertainty or confidence should be available for each dataset
in the first two classes

I Fundamental data

• Bespoke methods for most types.
• A degree of automation possible by data producer.
• Expert scrutiny required.
• Impacts on ADAS atomic data production codes, eg adas801,

adas211.

I Derived data

• Full automation possible to generate these uncertainties.
• May require offline adas series but the code should be part of

ADAS proper.
• Of interest to modellers and plamsa analysts — provides a locked

parameter to a model.
• May need to provide demonstration codes on use of uncertainties.
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Example of the two types of error
Different methods and ways of linking them lead to a natural working
uncertainty.
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Ne10+ (11−10) : Zeff=2.0, 5x1013cm−3, 2.5keV
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Different fit and difference in derived emissivity.
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A more complex example
The error may vary over an energy range.

He0 : 1s 3d 1D → 1s 4s 1S
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Bray et al,  A&ASS, 146, 481 (2000) − 89 state CCC
Beigman et al,  ADNDT 74, 123 (2000) − Normalised Born

Ralchenko et al, NIFS Report, NIFS−DATA−59 (2000)
ADAS assessment

Ionisation threshold

Zones of difference and propagated Monte-Carlo error.
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How to store uncertainty data
The simplest way is to archive a parallel database such that every .dat file has
a corresponding .err (or .err+ and .err-) file.

I ADAS dataset names are unique.

I adf specification gather all relevant information for a procedure/process
in one place.

I The simplest way to handle uncertainty in all quantities is to have an
error structure/object identical to the data structure.

I .err in same directory or .../error/adf04/copaw#f/?

I OPEN-ADAS should give the option to provide the data and error file(s).

A listing of each ADAS dataset with a comment — an enhanced datastatus
document — would also be of great benefit in assessing the relative quality of
an individual ADAS file.
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