
Report on OPEN-ADAS

Martin O'Mullane

The ADAS view of atomic data

- ADAS has focused its efforts in providing atomic data to model and interpret emission from hot, confined plasmas.
- Historical roots are in fusion (JET) and so are the bulk of the users.
- Has also been extensively applied to astrophysics.
- ► This background lead to the ADAS Project becoming a self-funding consortium of mostly fusion laboratories and its governance is by a steering committee of these members.
- ▶ OPEN-ADAS was championed (and funded) by IAEA to make the data more widely available.
- ► The delivery of this data is via the web but the data is returned as ADAS datasets rather than the more traditional individual cross sections.

ADAS data formats — adf — are precisely defined

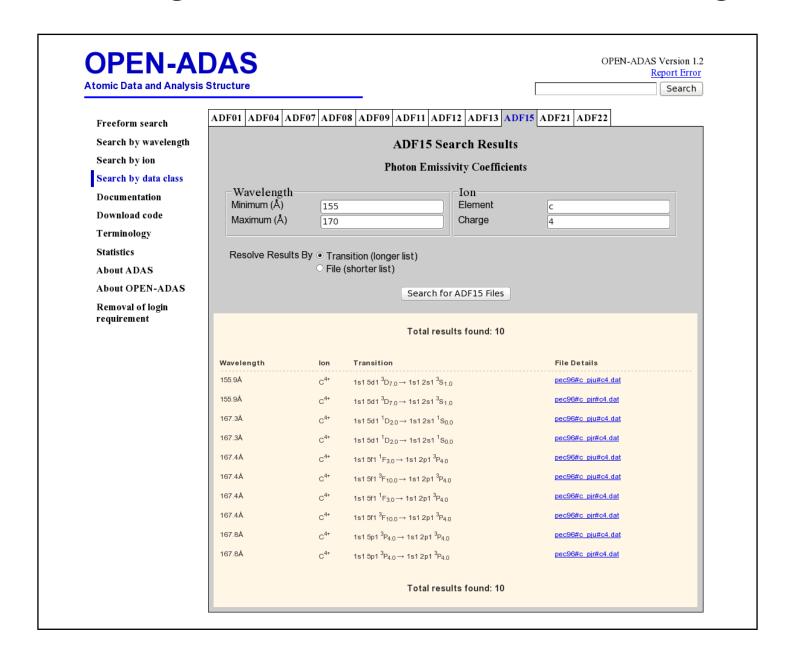
See http://www.adas.ac.uk/man/appxa-04.pdf

Reading ADAS for interactive manipulation

IDL is widely used in the fusion and astrophysics communities

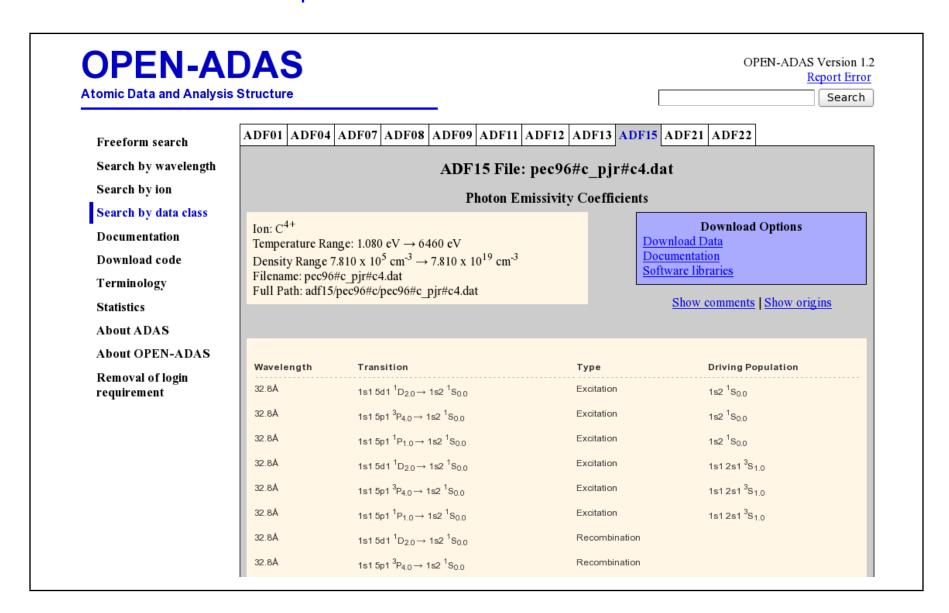
```
IDL> read_adf40, file='adf40_ca_sn13.dat', fulldata=all
IDL> help, all, /st
   ESYM
                              'Sn'
                    STRING
   IZO
                   LONG
                                         50
   IS
                   LONG
                                         13
   IS1
                   LONG
                                         14
   NBLOCK
                   LONG
                              Array[2]
   NPIX
                   LONG
                              Array[2]
   WAVE\_MIN
                   DOUBLE
                              Array[2]
   WAVE\_MAX
                   DOUBLE
                              Array[2]
   NTE
                   LONG
                              Array[8, 2]
   TE
                   DOUBLE
                              Array[2]
   NDENS
                   LONG
                              Array[4, 2]
   DENS
                   DOUBLE
                              Array[256, 8, 4, 2]
   FPEC
                   DOUBLE
                              Array[2]
   TYPE
                    STRING
```

ADAS data and discoverability


- ► ADAS data is highly structured and is routinely read into computer code structures and objects.
- Yet there is a perceived difficulty of finding stuff within ADAS.

OPEN-ADAS introduced ADAS *.tag* files. Consider the photon emissivity coefficient of CV or C^{+4} .

```
<adf15>
        <file>
                <type>ADF15</type>
                <filename>pec96#c_pju#c4.dat</filename>
                <directory>adf15/pec96#c</directory>
                 <filesize>1003454</filesize>
                <tagged_on>2011-09-02</tagged_on>
                <tagged_by>Martin O'Mullane</tagged_by>
                <md5sum>0c9903fb467e4fd5de16561cc02ba5c6</md5sum>
        </file>
        <ion>
                < z0 > 6 < / z0 >
                < z > 4 < /z >
        </ion>
        imits>
                 <density>
                         <min units="cm-3">7.81E+05</min>
                         \max units="cm-3">7.81E+19</max>
                </density>
```


```
<temperature>
                       <min units="eV">1.08E+00</min>
                       <max units="eV">6.46E+03</max>
               </temperature>
               <wavelength>
                       <min units="A">32.8</min>
                       <max units="A">2274.7</max>
               </wavelength>
       </limits>
        <contributors>
               <contributor>Martin O'Mullane
       </contributors>
       <transitions>
               <transition>
                       <z>4</z>
                       <lambda units="A">40.7</lambda>
                       <upper>
                               <level>3</level>
                               <cfg>1S1 2S1</cfg>
                               <m>1</m>
                               <1>0</1>
                               <j>.0</j>
                       </upper>
                       <lower>
                               <level>1</level>
                               <cfg>1S2</cfg>
                               <m>1</m>
                               <1>0</1>
                               <j>.0</j>
                       </lower>
                       <type>Excitation</type>
               </transition>
       </transitions>
</adf15>
```

The .tag files index OPEN-ADAS searching

OPEN-ADAS delivery

However it is the complete ADAS file that is returned when downloaded.

Data classes supplied in OPEN-ADAS

OPEN-ADAS is designed to appeal to both plasma modellers and those interested in the detailed atomic physics.

OPEN-ADAS

Atomic Data and Analysis Structure

OPEN-ADAS Version 1.2 <u>Report Error</u>

Search

Freeform search			
Search by wavelength			
Search by ion			
Search by data class			
Documentation			
Download code			
Terminology			
Statistics			
About ADAS			
About OPEN-ADAS			
Removal of login			
requirement			

Statistics				
Data class	Description	Number of files	Total Size	
ADF01	Charge Exchange Cross Sections	127	2 MB	
ADF04	Resolved Specific Ion Data Collections	1675	3 GB	
ADF07	Electron Impact Ionisation Coefficients	72	645.6 kB	
ADF08	Radiative Recombination Coefficients	100	482.5 kB	
ADF09	Resolved Dielectronic Recombination Coefficients	1622	1.1 GB	
ADF11	Iso-nuclear Master Files	796	111.2 MB	
ADF12	Charge Exchange Effective Emission Coefficients	167	4.5 MB	
ADF13	Ionisation Per Photon Coefficients	153	35.2 MB	
ADF15	Photon Emissivity Coefficients	551	102 MB	
ADF21	Effective Beam Stopping/excitation Coefficients	220	1.8 MB	
ADF22	Effective Beam Emission/population Coefficients	406	3.4 MB	

Extension of data supplied via OPEN-ADAS

ADF23: state selective electron impact ionisation coefficients

ADF24: state selective charge transfer cross-sections

ADF25: driver data-sets for ADAS204 calculations

ADF26: bundle-n and bundle-nl populations of excited states in beams

ADF27: driver data-sets for ADAS701 calculations

ADF28: driver data-sets for ADAS702 calculations

ADF31: feature files for satellite line spectral simulation

ADF34: driver data-sets for ADAS801 calculations

ADF35: spectral filter data

ADF37: non-Maxwellian distribution function files

ADF38: Seaton - opacity photo-excitation

ADF39: Seaton - opacity - photo-ionisation

ADF40: Envelope feature photon emissivity coefficients

ADF42: driver data-sets for ADAS810 calculations

ADF43: GTN photon emissivity functions

ADF44: F GTN envelope feature emissivity functions

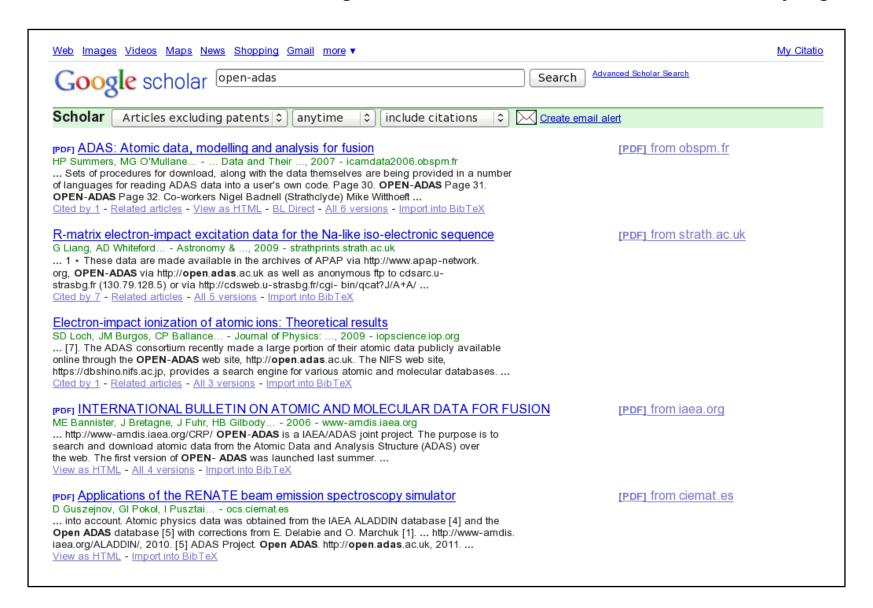
ADF46: Driver data sets for BBGP for dielectronic recombination

ADF48: State selective radiative recombination coefficients

ADF49: Universal z-scaled bundle-n and bundle-nl charge exchange cross-sections

OPEN-ADAS and the wider world

OPEN-ADAS is beginning to appear in citations It is seen as a Google Scholar resource and is appearing in citations.


- [30] Goto M 2003 J. Quant. Spectrosc. Radiat. Transfer 76 331
- [31] Nakano T, Kubo H, Asakura N, Shimizu K and Higashijima S 2004 J. Plasma Fusion Res. 80 500
- [32] Nakano T, Kubo H, Asakura N, Shimizu K, Kawashima H and Higashijima S 2009 J. Nucl. Mater. 390–391 255
- [33] OPEN-ADAS Version 1.0, http://open.adas.ac.uk
- [34] Terry J L, Lipschultz B, Pigarov A Yu, Krasheninnikov S I, LaBombard B, Lumma D, Ohkawa H, Pappas D and Umansky M 1998 Phys. Plasmas 5 1759
- [35] Meigs A G, Fundamenski W, Jupen C, Larsen A, Loch S, O'Mullane M and Summers H 2000 27th EPS Conf. on Controlled Fusion and Plasma Physics (Budapest, Hungary) P3 121, https://fusion.gat.com/conferences/ meetings/eps00/pdf/p3_121.pdf

A Iwamae et al, Plasma Phys. Control. Fusion, 53(2011), 045005

- ▶ It would be good if this is seen as a way to give greater recognition to the people who generated the data in ADAS.
- We will implement a URI to allow reference to a specific dataset.

OPEN-ADAS and the wider web

OPEN-ADAS is seen as a Google Scholar resource — without lobbying!

Loss of metrics

Until June 2011 OPEN-ADAS:

- Worked without problems except for minor power outages.
- A steady increase in new users with a wide geographic spread.
- Downloads and file views increased.

Just when one thinks that all is going well....

- On 2nd June the OPEN-ADAS website, but not the server, was hacked using a MySQL injection attack.
- Logs showed a large increase in such attacks for the following few weeks.
- June 16, 2011 hard disk failure on OPEN-ADAS server.

What now for OPEN-ADAS?

Our response to the intrusion:

- A new server was commissioned within a few days.
- Removed the requirement to register in order to download data.
- OPEN-ADAS was off the internet for 8 weeks.
- ▶ We have lost the ability to know who our users are but without more resources it the most pragmatic solution.

The future:

- We intend to keep OPEN-ADAS running.
- Investigate a mirroring arrangement with Auburn.
- Explore XSAMS as an optioanl, additional output option.
- Synchronize OPEN-ADAS with ADAS perhaps a 1–4 month lag.
- Add new, not necessarily fusion, data classes.