EUV spectra from the NIST EBIT

D. Kilbane and G. O'Sullivan

Atomic and Molecular Plasma Physics group, UCD, Ireland

J. D. Gillaspy, Yu. Ralchenko and J. Reader National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

The 17th ADAS WORKSHOP 23 – 25 September 2012 Château de Cadarache

Outline

Motivation

EBIT

- Experimental set up
- Collisional-radiative modeling of plasma

EUV Spectra

- Gadolinium
- Dysprosium
- Tungsten

'Potential lowering' of 4fn ions

Summary

Motivation

Atomic and Plasma Theory

 Hf, Ta, W, Au ions advance atomic / plasma codes predict trends in atomic structure

Next-Generation

Lithography

 Modeling of sources at 6.x nm

ITER

 Diagnostics of hot plasmas in fusion devices

NIST Electron Beam Ion Trap (EBIT)

EBIT creates, traps and excites **HCI**

Electron beam

- collides with, ionizes and excites atoms
- monoenergetic, width ~60 eV
- tuneable, 1 30 keV
- radius ~30 µm
- density ~10¹¹ cm⁻³

lons are trapped

- radially by space charge
- axially by electrodes and magnetic field

EUV radiation

 from the ions is observed with a flat field grazing incidence spectrometer

http://physics.nist.gov/ebit

Collisional-Radiative Modeling

All important physical processes in the EBIT plasma

- Atomic Data Flexible Atomic Code (FAC)
- Relativistic potential to solve the Dirac eqn (CI and QED):

energy levels, radiative decay rates, radiative recombination cross sections

 e⁻ ion collisions are treated with distorted wave/Coulomb Bornexchange approx:

electron impact excitation, de-excitation, ionization cross sections

CR model – NOMAD

- non-Maxwellian timedependent CR plasma code
- ~10³ levels/ion typically 6-8 ions several million transitions runs in minutes
- one free parameter charge exchange CX between ions and neutrals

EBIT Spectra of Gd

Rb-like to Cu-like gadolinium ion spectra

lon	IP (eV)		
Rb-like	936		
Kr-like	1100		
Br-like	1142		
Se-like	1189		
As-like	1233		
Ge-like	1320		
Ga-like	1369		
Zn-like	1481		
Cu-like	1531		

Kilbane *et al.* accepted *Phys. Rev. A* (2012) Rodrigues *et al. At. Data Nucl. Data Tables* **86** 117 (2004)

EBIT Spectra of Gd

Ge-like Gd ion

<u>CR database</u> of singly + doubly excited $4s^24p^2$, $4p^4$, $4s^24d^2$, $4s4p^3$, $4s^24p4d$, $4s^24p4f$, $4s4p^24d$, $4s4p^24f$, $4s^24p5l$, $4s4p^25l$, $4s^24p6l$, $4s4p^26l$

<u>Energy levels</u> of all singly, doubly, triply and quadruply excited n=4 complex 4s4d³, 4s4f³, 4d⁴, 4f⁴ 4p²4d², 4p²4f² and 4p²4d4f

CR database is updated with new energies of the lowest levels

Excellent agreement between measured and simulated spectra e.g. Se, As, Ge-like

Kilbane et al. accepted Phys. Rev. A (2012)

Gadolinium Data Tables

Ion

Lower level

 $(4p_+)_{3/2}$

State

Conf.

 $\overline{\text{Gd}^{33+} \text{[Ga]}} 4\text{s}^2 4\text{p} [1] (4\text{p}_{-})_{1/2}$

 Gd^{34+} [As] $4s^24p^3$ [1] $(4p_+)_{3/2}$

 Gd^{28+} [Kr] $4\mathrm{p}^{6}$ [1] $(4\mathrm{p}^{4}_{+})_{0}$

 Gd^{30+} [Se] $4s^24p^4$ [1] $(4p_{\perp}^2)_2$

 Gd^{30+} [Se] $4s^24p^4$ [1] $(4p_{\perp}^2)_2$

 Gd^{35+} [Cu] 4d [5] (4d_+)_{5/2}

Gd³⁵⁺ [Cu] 4p [3]

59 new lines: **4s-4p**, **4p-4d** and **4d-4f** transitions ranging from 6.630 nm to 17.279 nm (mostly E1)

'Forbidden lines'

 $\frac{\text{Kr-like}}{4p^{6}(4p^{4}_{+})_{0} - 4p^{5}4d(4p^{3}_{+},4d_{+})_{2}}$

<u>Se-like</u> (9.684 nm) (M2) $4s^{2}4p^{4}(4p^{2}_{+})_{2} - 4p^{3}4d(4p_{+},4d_{+})_{4}$

<u>Se-like</u> (7.826 nm) (M2) $4s^{2}4p^{4}(4p^{2}_{+})_{2}$ $-4p^{3}4d((4p_{-},4p^{2}_{+})_{3/2},4d_{-})_{0}$

1 al `			Spe	ectra v	were calib	orate	ed with know	wn I	ines o
Gd^{27+}	[Rb]	$4p^{6}4d$ [1]	$(4d_{-})_{3/2}$	$4p^54d^2$ [23]	$((4p_+^3,\!4d)_2,\!4d_+)_{5/2}$	9.105		9.0503	
Gd^{30+}	[Se]	$4s^24p^4$ [2]	$(4p_{+}^{2})_{0}$	$4p^{3}4d$ [15]	$(4p_+, 4d_+)_1$	9.146		9.1050	
Gd^{29+}	[Br]	$4p^{5}$ [1]	$(4p_{+}^{3})_{3/2}$	4p ⁴ 4d [11]	$(4p_{\pm}^2, 4d_{\pm})_{1/2}$	9.172		9.1315	
Gd^{31+}	[As]	$4s^24p^3$ [1]	$(4p_+)_{3/2}$	$4p^24d$ [10]	$(4d_{+})_{5/2}$	9.262		9.2345	
Gd^{32+}	[Ge]	$4s^24p^2$ [3]	$(4p_{-}, 4p_{+})_{2}$	4p4d [15]	$(4p_{-}, 4d_{+})_{3}$	9.300		9.2711	
Gd^{32+}	[Ge]	$4s4p^{3}$ [7]	$(4s_+, 4p_+)_1$	$4s4p^24d$ [33]	$(4s_+, 4d_+)_2$	9.352		9.3317	
Gd^{33+}	[Ga]	$4s^24p$ [2]	$(4p_+)_{3/2}$	$4s4p^2$ [11]	$(4s_+, 4p_+^2)_{3/2}$	9.376		9.3183	
Gd^{34+}	[Zn]	4s4p [5]	$(4s_+, 4p_+)_1$	4s4d [14]	$(4s_+, 4d_+)_2$	9.409	$9.4085(20)^e$	9.3897	9.3651^{e}

Upper level

 $(4s_+, 4p_+^2)_{3/2}$

 $(4p_{\perp}^3, 4d_{\perp})_2$

 $(4d_{+})_{5/2}$

 $(4f_{+})_{7/2}$

 $4p^{3}4d [11] (4p_{+},4d_{+})_{4}$

 $4s4p^5 [12] (4s_+, 4p_+^3)_1$

 $((4s_+,4p_-)_1,4p_+)_{1/2}$ 9.807

State

Conf.

 $4s4p^2$ [7]

 $4s4p^4$ [9]

 $4p^54d$ [7]

4d [5]

4f [7]

Spectra were calibrated with known lines of Ba, Xe, C and O ions – accuracy 0.003 nm

Experiment

 $9.7026(15)^d$, $9.7074(15)^c$

 $9.6349(15)^d$, $9.6398(15)^c$

 $9.811(20)^{f}$

Current Previous

9.732

9.726

9.704

9.684

9.636

9.609

Cu-like lines				
<u>NIST EBIT</u>	<u>NIFS</u>			
9.086 nm	9.091(2) nm			
7.527 nm	7.524(2) nm			

Kilbane *et al.* accepted *Phys. Rev. A* (2012) Suzuki *et al. J. Phys. B* **45** 135002 (2012)

Theory

 9.6962^d , 9.6958^n

 9.6419^n , 9.6426^d

Current Previous

9.7664

9.6954

9.6932

9.6999

9.6719

9.6598

9.5688

 9.655^{f}

Next-Generation EUV Lithography at 6.x nm

Churilov identified **Gd and Tb** in LPPs and spark discharges

4d-4f + 4p-4d UTAs

Intense emission due to overlap of many open 4d and 4f subshell ions

Kilbane and O'Sullivan Phys. Rev. A 82 062504 (2010)

Churilov et al. Phys. Scr. 80 045303 (2009)

Spectra of Gd and Dy at 6.x nm

Gadolinium

Dysprosium

Note: Very low current ~5 mA at 0.609 keV Absence of strong resonant transitions

Sugar *et al. J. Opt. Soc. Am. B* **10** 799, 1321, 1977 (1993) Rodrigues *et al. At. Data Nucl. Data Tables* **86** 117 (2004)

Spectra of W

<u>Ag-like</u> 4d¹⁰4f – 4d⁹4f² 5.1457, 5.0895, 4.8729, 4.9403 nm

<u>Pd-like</u> 4d¹⁰ – 4d⁹4f 4.8948, 5.9852 nm

<u>Rh-like</u> 4d⁹ – 4d⁸4f 4.9856, 4.9785, 4.9938, 5.0265 nm

Strong resonant transitions observed at lower beam energies in Pd-like ions

W lon

Ag-like

Pd-like

Rh-like

Note: Feature observed at ~4.5 nm at 1.03 and 1.15 keV at the Berlin EBIT is absent

Sugar *et al. J. Opt. Soc. Am. B* **10** 799, 1321, 1977 (1993) Kramida and Shirai *At. Data Nucl. Data Tables* **95** 305 (2009)

Biedermann et al. Phys. Scr. T 92 85 (2001)

'Potential Lowering' of 4fn ions

Metastable states

- Many low lying excited states of Ag-like ions are populated by collisions
- These metastable states remain well populated
- Beam energy required to generate excited states of Pdlike ions is reduced

Summary

EUV spectra of Gd, Dy and W ions from the NIST EBIT

- 59 new lines identified in Rb-like to Cu-like gadolinium
- 'Potential lowering' observed in 4fⁿ ions
- Uses:
 - validate atomic / plasma codes predict trends in atomic structure
 - model EUV sources for next-generation lithography
 - diagnostics of hot plasmas in fusion devices such as ITER

Thanks

The Atomic Spectroscopy Group at NIST

Acknowledgement:

This work was supported by Science Foundation Ireland under grant number 07/IN.1/I1771 and in part by the Office of Fusion Energy Sciences of the U.S. Department of Energy.

The 17th ADAS WORKSHOP 23 – 25 September 2012 Château de Cadarache

