Atomic Data for Ti Ions

Kanti M. Aggarwal

Astrophysics Research Centre Queen's University Belfast BELFAST BT7 1NN Northern Ireland, UK

24 September 2012

イロト イポト イヨト イヨト

Kanti M. Aggarwal Atomic Data for Ti Ions

- Astrophysical Plasmas
- Ø Solar Plasmas
- Lasing Plasmas
- Fusion Plasmas

Atomic Parameters

Energy Levels $E_i - E_i = h\nu_{ii} = hc/\lambda_{ii}$ Radiative Rates (A, s⁻¹), Oscillator Strengths (f, dimensionless), Line Strengths (S. a.u.) $f_{i,j} = \frac{mc}{8\pi^2 e^2} \lambda_{ii}^2 \frac{\omega_j}{\omega_i} A_{ji} = 1.49 \times 10^{-16} \lambda_{ii}^2 (\omega_j / \omega_i) A_{ji}$ E1: $A_{ji} = \frac{2.0261 \times 10^{18}}{\omega_i \lambda_{ii}^3} \text{ S} \text{ and } f_{ij} = \frac{303.75}{\lambda_{ij}\omega_i} \text{ S},$ $A_{ji} = \frac{1.1199 \times 10^{18}}{\omega_i \lambda_{ii}^5} S$ and $f_{ij} = \frac{167.89}{\lambda_{ii}^3 \omega_i} S$, E2: $\mathsf{A}_{ji} = \frac{2.6974 \times 10^{13}}{\omega_i \lambda_{ii}^3} \mathsf{S} \quad \text{and} \quad \mathsf{f}_{ij} = \frac{4.044 \times 10^{-3}}{\lambda_{ji} \omega_i} \mathsf{S},$ M1: $A_{jj} = \frac{1.4910 \times 10^{13}}{(0.5)^5} \text{ S}$ and $f_{ij} = \frac{2.236 \times 10^{-3}}{\lambda_{i}^3(0)} \text{ S}.$ M2:

 λ is in Å.

・ 同 ト ・ ヨ ト ・ ヨ ト

Atomic Parameters

• Life-Time
$$\tau_j = \frac{1}{\sum_i A_{ji}}$$

- Collision Strengths (Cross Sections) $\Omega_{ij}(E) = k_i^2 \omega_i \sigma_{ij}(\pi a_0^2)$
- Effective Collision Strengths (Rate Coefficients)

$$\begin{split} &\Upsilon(T_e) = \int_0^\infty \Omega e^{-E_j/kT_e} d(E_j/kT_e) \\ &q_{ij} = \frac{8.63 \times 10^{-6}}{\omega_i T_e^{1/2}} e^{-E_{ij}/kT_e} \Upsilon_{ij} \qquad \text{cm}^3/\text{s} \\ &q_{ji} = \frac{8.63 \times 10^{-6}}{\omega_j T_e^{1/2}} \Upsilon_{ij} \qquad \text{cm}^3/\text{s} \end{split}$$

Line Intensity Ratio

$$I_{ji} = A_{ji} N_j N_{A,Z} N_A h \nu_{ji} \frac{n}{1 + N_{He}} \frac{l}{4\pi} \qquad \text{ergs cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$
$$R = \frac{I(\lambda_{ij})}{I(\lambda_{mn})} = \frac{A_{ji}}{A_{nm}} \frac{\lambda_{mn}}{\lambda_{ij}} \frac{N_j}{N_n}$$

э

CI-LIKE Ti VI

Energy levels, A-values and Lifetimes 568 levels among the $n \le 4$ configurations

<u>AI-LIKE Ti X</u>

Energy levels, A-values and Lifetimes 628 levels among the $n \le 4$ configurations

Be-LIKE Ti XIX

Energy levels, A-values and Lifetimes, Collision Strengths (Ω) and Excitation Rates (Υ) 98 levels among the $n \le 4$ configurations

Phys Scr 86 (2012) 000000

э

lons

Li-LIKE Ti XX

Energy levels, A-values and Lifetimes, Collision Strengths (Ω) and Excitation Rates (Υ) 24 levels among the $n \le 5$ configurations

ADNDT 98 (2012) 000

He-LIKE Ti XXI

Energy levels, A-values and Lifetimes, Collision Strengths (Ω) and Excitation Rates (Υ) 49 levels among the $n \leq 5$ configurations

Phys Scr 85 (2012) 065301

GRASP0

PH Norrington

http://web.am.qub.ac.uk/DARC/

OARC

PH Norrington & IP Grant

http://web.am.qub.ac.uk/DARC/

6 FAC

MF Gu, Can J. Phys. 86 (2008) 675 http://sprg.ssl.berkeley.edu/~mfgu/fac/

- ⊒ - ≻

Table 1. Target levels of Ti VI and their thresholdenergies (in Ryd). – Part 1

Index	Configuration	Level	NIST	GRASP1	GRASP5	GRASP7	FAC	MCHF	CIV3
1	3s ² 3p ⁵	² P ⁰ _{3/2}	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
2	3s ² 3p ⁵	² P ⁰ _{1/2}	0.05312	0.05349	0.05253	0.05246	0.05190	0.04614	0.05312
3	3s3p ⁶	$^{2}S_{1/2}$	1.79181	1.70921	1.80736	1.77319	1.78286	1.77535	1.79133
4	3s ² 3p ⁴ (³ P)3d	⁴ D _{7/2}		2.34891	2.50467	2.43448	2.41939		2.41651
5	3s ² 3p ⁴ (³ P)3d	⁴ D _{5/2}		2.35198	2.50761	2.43741	2.42232	2.42631	2.41925
6	3s ² 3p ⁴ (³ P)3d	⁴ D _{3/2}		2.35665	2.51215	2.44195	2.42684	2.42994	2.42359
7	3s ² 3p ⁴ (³ P)3d	⁴ D _{1/2}		2.36066	2.51607	2.44587	2.43074	2.43319	2.42740
8	3s ² 3p ⁴ (³ P)3d	⁴ F _{9/2}		2.55963	2.73200	2.66201	2.64284		2.63250
9	3s ² 3p ⁴ (¹ D)3d	² P _{1/2}	*	2.61445	2.73481	2.68027	2.65491	2.64166	3.67866*
10	3s ² 3p ⁴ (³ P)3d	⁴ F _{7/2}		2.57776	2.74964	2.67976	2.66045		2.65034
11	3s ² 3p ⁴ (³ P)3d	⁴ F _{5/2}		2.59048	2.76228	2.69224	2.67287	2.65636	2.66286
12	3s ² 3p ⁴ (³ P)3d	⁴ F _{3/2}		2.59837	2.76649	2.69988	2.68048	2.66283	2.67046
13	3s ² 3p ⁴ (¹ D)3d	² P _{3/2}	*	2.64550	2.77021	2.71180	2.68615	2.66997	3.65922*
14	3s ² 3p ⁴ (³ P)3d	⁴ P _{1/2}		2.68638	2.81951	2.77456	2.74822	2.73440	2.73731
15	3s ² 3p ⁴ (¹ D)3d	² D _{3/2}	*	2.69733	2.83078	2.77650	2.75251	2.73788	3.79308*
16	3s ² 3p ⁴ (³ P)3d	⁴ P _{3/2}		2.70483	2.84128	2.78719	2.76091	2.74586	2.75149
17	3s ² 3p ⁴ (³ P)3d	⁴ P _{5/2}		2.71212	2.84537	2.79907	2.77285	2.75765	2.76331
18	3s ² 3p ⁴ (¹ D)3d	² D _{5/2}	*	2.73284	2.86894	2.80799	2.78320	2.76541	3.748

Table 1. Target levels of Ti VI and their thresholdenergies (in Ryd). – Part 2

Index	Configuration	Level	NIST	GRASP1	GRASP5	GRASP7	FAC	MCHF	CIV3
19	3s ² 3p ⁴ (³ P)3d	² F _{7/2}		2.74745	2.89542	2.83627	2.81121		2.79674
20	3s ² 3p ⁴ (¹ D)3d	$^{2}G_{9/2}$		2.77937	2.95585	2.87315	2.84997		2.83908
21	3s ² 3p ⁴ (¹ D)3d	${}^{2}G_{7/2}$		2.78624	2.95562	2.87741	2.85348		2.84163
22	3s ² 3p ⁴ (³ P)3d	² F _{5/2}		2.79677	2.93693	2.88213	2.85591	2.82840	2.84143
23	3s ² 3p ⁴ (¹ D)3d	${}^{2}F_{5/2}$		3.03169	3.16197	3.10934	3.07466	3.04348	3.05835
24	3s ² 3p ⁴ (¹ D)3d	² F _{7/2}		3.04294	3.17318	3.12061	3.08583		3.07002
25	3s ² 3p ⁴ (¹ S)3d	² D _{3/2}		3.27911	3.40778	3.29467	3.26967	3.23478	3.25926
26	3s ² 3p ⁴ (¹ S)3d	² D _{5/2}		3.28966	3.41901	3.30421	3.27953	3.24467	3.27015
27	3s ² 3p ⁴ (¹ D)3d	$^{2}S_{1/2}$		3.70763	3.63458	3.54068	3.51941	3.53341	3.58151
28	3s ² 3p ⁴ (³ P)3d	² P _{3/2}	2.65990*	3.69560	3.88504	3.69879	3.66809	3.62499	2.67311*
29	3s ² 3p ⁴ (³ P)3d	² P _{1/2}	2.62820*	3.73072	3.90475	3.71755	3.68665	3.64205	2.64098*
30	3s ² 3p ⁴ (³ P)3d	² D _{5/2}	2.75554*	3.83147	3.93068	3.75162	3.72195	3.70361	2.77788*
31	3s ² 3p ⁴ (³ P)3d	² D _{3/2}	2.72461*	3.87593	3.97650	3.79587	3.76592	3.74244	2.74597*

NIST (http://www.physics.nist/gov/PhysRefData) GRASP1: Present results from 3 configurations and **60** levels GRASP5: Present results from 16 configurations and **568** levels GRASP7: Present results from 37 configurations and **4032** levels FAC: Present results with **5821** levels MCHF: Results of Forese-Fischer et al, ADNDT **92** (2006) 607 CIV3: Results of Mohan et al, ADNDT **93** (2007) 105

イロト イポト イヨト イヨト

Table 3: Comparison of oscillator strengths for some transitions of Ti VI. ($a\pm b \equiv a \times 10^{\pm b}$). – Part 1

i	j	f (GRASP1)	f (GRASP5)	f (GRASP7)	A (FAC)	MCHF	CIV3
1	3	2.4157-02	3.3264-02	2.5418-02	2.523-02	2.581-2	2.060-2
1	5	5.1087-05	3.4947-05	4.1045-05	3.978-05	2.392 - 5	3.013-5
1	6	1.5708-05	1.4265-05	1.7708-05	1.691 - 05	1.260 - 5	1.477-5
1	7	2.2003-06	2.5338-06	3.2395-06	3.770 - 06	2.662 - 6	2.741-6
1	9	2.6142-04	1.6344-04	3.2000-04	2.973-04	2.672 - 4	2.241-4
1	11	1.6798-04	1.3220-04	1.6249-04	1.686-04	1.104 - 4	1.311-4
1	12	3.1549-05	1.8518-03*	1.4570-05	5.069 - 06	7.934-6	3.996-7*
1	13	2.7064-03	6.8688-05*	3.1356-03	2.954 - 03	2.450 - 3	2.324-3
1	14	3.0295-04	3.3459-04*	3.5759-04	3.606-04	2.520 - 4	2.870-4
1	15	4.9097-04	2.4324-04*	1.4166-03	1.357 - 03	1.104-3	1.018-3
1	16	9.9916-04	9.1854-04*	9.3892-06	2.695 - 05	1.071 - 5	2.495-4
1	17	2.4504-04	1.5016-04	9.0254-04	5.835-04	4.455 - 4	2.806-4
1	18	3.5888-03	2.9121-03	2.8958 - 03	2.983 - 03	2.633 - 3	3.023-3
1	22	8.2587-05	3.7032-05	8.0851-05	6.810-05	5.276 - 5	6.677-5
1	23	6.3453-04	5.8361-04	6.9690-04	7.158-04	4.749-4	5.675-4
1	25	8.0809-04	5.7437-05*	1.0724 - 03	8.816-04	6.673-4	5.677-4
1	26	3.7004-05	1.6588-03*	3.1199-04	7.989-05	3.075 - 5	5.217-5
1	27	5.8702-01*	4.1355-01	4.1759-01	4.169-01	4.577-1	4.652-1
1	28	1.1790+00*	1.0599+00	1.0153+00	1.017 + 00	1.014+0	9.944-1
1	29	2.4254-01*	1.6675-01	1.5285-01	1.527-01	1.397-1	1.285-1
1	30	2.4577+00*	1.8944+00	1.8339+00	1.829+00	1.910+0	1.878+0
1	31	1.7962-01*	7.2171-02	8.0342-02	8.079-02	1.124 - 1	1.108-1

э

・ 同 ト ・ ヨ ト ・ ヨ ト …

Table 3: Comparison of oscillator strengths for some transitions of Ti VI. ($a\pm b \equiv a \times 10^{\pm b}$). – Part 2

i	j	f (GRASP1)	f (GRASP5)	f (GRASP7)	A (FAC)	MCHF	CIV3
2	3	2.3909-02	3.2605-02	2.5036-02	2.491-02	2.665 - 2	2.066-2
2	6	1.0501-05	4.5799-06	5.1811-06	4.803-06	2.162-6	2.620-6
2	7	7.3214-06	9.0097-06	1.1639-05	1.169-05	9.259-6	1.069-5
2	9	1.9734-03	1.5570-03	2.4547-03	2.316-03	1.918-3	1.773-3
2	12	2.7412-04	1.4367-03*	2.6902-04	3.246-04	1.988 - 4	3.258-4
2	13	1.8906-03	1.2168-04*	2.0645-03	1.896-03	1.564-3	1.418-3
2	14	9.4429-05	1.0954-04*	1.0524-04	9.586-05	7.407-5	7.121-5
2	15	9.1736-04	2.2825-04*	3.5330-03	3.074-03	2.723-3	1.915-3
2	16	2.7189-03	2.8189-03*	3.0878-04	4.637-04	2.797-4	1.332-3
2	25	4.2760-03	7.7370-03	1.7263-03	2.521 - 03	2.070-3	3.771-3
2	27	2.3707-01*	3.5330-01	3.3195-01	3.290-01	3.192-1	3.035-1
2	28	2.5081-01*	1.0220-01	1.1833-01	1.205-01	1.713-1	1.674-1
2	29	1.2313+00*	7.7024-01	7.6450-01	7.670-01	8.183-1	8.186-1
2	31	2.9086+00*	2.3609+00	2.2700+00	2.261+00	2.312+0	2.273+0

GRASP1: Present results from 3 configurations and **60** levels GRASP5: Present results from 16 configurations and **568** levels GRASP7: Present results from 37 configurations and **4032** levels FAC: Present results with **5821** levels MCHF: Results of Forese-Fischer et al, ADNDT **92** (2006) 607

CIV3: Results of Mohan et al, ADNDT 93 (2007) 105

CI is very important even for strong transitions and results are highly variable for weak transitions

Table 1. Energies (Ryd) for the lowest 40 levels of Ti X. – Part 1

Index	Configuratio	on/Level	NIST		GR		FAC1	FAC2	MCHF	
				n≤3	n≤4	n≤5	n≤6			
1	3s ² 3p	² P ⁰ 1/2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
2	3s ² 3p	² P ⁰ 3/2	0.06875	0.06813	0.06799	0.06803	0.06803	0.06775	0.06781	0.06652
3	3s3p ²	⁴ P _{1/2}	1.46175	1.44049	1.44131	1.44240	1.44287	1.44622	1.44797	1.44781
4	3s3p ²	⁴ P _{3/2}	1.48771	1.46615	1.46689	1.46800	1.46847	1.47171	1.47348	1.47324
5	3s3p ²	⁴ P _{5/2}	1.52463	1.50302	1.50361	1.50472	1.50519	1.50823	1.51000	1.50870
6	3s3p ²	² D _{3/2}	1.93237	1.93826	1.93670	1.93568	1.93604	1.93510	1.93613	1.92770
7	3s3p ²	² D _{5/2}	1.93743	1.94327	1.94166	1.94064	1.94100	1.93997	1.94100	1.93237
8	3s3p ²	² S _{1/2}	2.40990	2.45532	2.45313	2.45107	2.45146	2.44592	2.44402	2.41723
9	3s3p ²	² P _{1/2}	2.56113	2.61311	2.61457	2.61268	2.61318	2.60584	2.60515	2.58795
10	3s3p ²	² P _{3/2}	2.59912	2.65121	2.65282	2.65096	2.65146	2.64394	2.64336	2.62591
11	3s ² 3d	² D _{3/2}	3.14674	3.22157	3.20450	3.19742	3.19736	3.18670	3.18453	
12	3s ² 3d	² D _{5/2}	3.15170	3.22581	3.20878	3.20174	3.20167	3.19080	3.18865	
13	3p ³	² D ⁰ 3/2	3.76715	3.76133	3.76590	3.76688	3.76910	3.76499	3.76612	3.77601
14	3p ³	² D ⁰ 5/2	3.77597	3.76965	3.77416	3.77516	3.77737	3.77324	3.77440	3.78481
15	3p ³	⁴ S ^o _{3/2}	3.86116	3.87430	3.88360	3.88542	3.88867	3.88185	3.88365	3.87755
16	3s3p(³ P)3d	4F°3/2		4.23096	4.23422	4.23471	4.23503	4.22902	4.22242	4.22677
17	3s3p(³ P)3d	4F°5/2	4.24568	4.24533	4.24850	4.24900	4.24930	4.24323	4.23662	4.24080
18	3p ³	² P ⁰ 1/2	4.21135	4.24673	4.25390	4.25388	4.25703	4.24483	4.24205	4.22627
19	3p ³	² P ⁰ 3/2	4.21651	4.25128	4.25801	4.25794	4.26101	4.24920	4.24638	4.21328
20	3s3p(³ P)3d	4F07/2	4.26659	4.26602	4.26910	4.26960	4.26990	4.26371	4.25709	4.2612

Table 1. Energies (Ryd) for the lowest 40 levels of Ti X. – Part 2

Index	Configuratio	on/Level	NIST		GR	ASP		FAC1	FAC2	MCHF
	-			n≤3	n≤4	n≤5	n≤6			
01	2020/ ³ D)2d	400	4 20466	4 20280	4 20688	4 20741	4 20770	4 20126	4 09 4 7 9	
21	353p(F)30	F 9/2 4n0	4.29400	4.29309	4.29000	4.29/41	4.29/70	4.29130	4.20473	4 57000
22	3S3p(P)30	1-2	4.56977	4.58711	4.38314	4.58325	4.58357	4.57605	4.5/61/	4.57983
23	3s3p(³ P)3d	[†] P ⁰ 3/2	4.58313	4.60234	4.60023	4.59837	4.59868	4.59119	4.59057	4.59266
24	3s3p(³ P)3d	⁴ P ⁰ 1/2	4.59427	4.61600	4.61382	4.61202	4.61233	4.60481	4.60319	4.62599
25	3s3p(³ P)3d	$^{4}D^{0}_{1/2}$	4.61875	4.63873	4.63650	4.63477	4.63507	4.62744	4.62590	4.60410
26	3s3p(³ P)3d	⁴ D ⁰ 3/2	4.62461	4.64701	4.64472	4.64307	4.64338	4.63564	4.63305	4.63337
27	3s3p(³ P)3d	⁴ D ⁰ 5/2	4.62795	4.65241	4.65007	4.64849	4.64879	4.64094	4.63748	4.63842
28	3s3p(³ P)3d	⁴ D ⁰ 7/2	4.62755	4.65370	4.65128	4.64977	4.65007	4.64209	4.63777	4.63994
29	3s3p(³ P)3d	² D ⁰ 3/2	4.72979	4.77302	4.77836	4.77853	4.77962	4.76812	4.75674	4.74696
30	3s3p(³ P)3d	² D ⁰ 5/2	4.73051	4.77340	4.77857	4.77872	4.77978	4.76834	4.75705	4.74756
31	3s3p(³ P)3d	² F ⁰ 5/2	4.94969	5.02720	5.02800	5.02646	5.02665	5.01582	4.98724	4.96233
32	3s3p(³ P)3d	² F ⁰ 7/2	5.00420	5.08155	5.08226	5.08075	5.08093	5.06991	5.04120	5.01488
33	3s3p(³ P)3d	² P ⁰ 3/2	5.38048	5.49384	5.48253	5.47596	5.47706	5.46107	5.44869	5.40594
34	3s3p(³ P)3d	² P ⁰ 1/2	5.40519	5.51960	5.50549	5.49813	5.49911	5.48354	5.47274	5.42944
35	3s3p(¹ P)3d	² F ⁰ 7/2	5.42225	5.55885	5.52829	5.51699	5.51441	5.50347	5.49264	5.45541
36	3s3p(¹ P)3d	² F ⁰ 5/2	5.43543	5.57223	5.54160	5.53031	5.52771	5.51681	5.50590	5.46729
37	3s3p(¹ P)3d	² P ⁰ 1/2	5.58268	5.72223	5.70877	5.70324	5.70363	5.69039	5.65982	5.62072
38	3s3p(¹ P)3d	² P ⁰ 3/2	5.58836	5.72839	5.71301	5.70679	5.70711	5.69396	5.66493	5.62813
39	3s3p(¹ P)3d	² D ⁰ 3/2	5.61581	5.74640	5.74873	5.74677	5.74787	5.73028	5.69535	5.65955
40	3s3p(¹ P)3d	² D ⁰ 5/2	5.62423	5.75402	5.75697	5.75507	5.75616	5.73843	5.70343	5.6691

Kanti M. Aggarwal Atc

NIST: http://physics.nist.gov/PhysRefData GRASP: present calculations from the GRASP code FAC1: present calculations from the FAC code with **1304** levels FAC2: present calculations from the FAC code with **12139** levels MCHF: Froese-Fischer et al, ADNDT **92** (2006) 607 CIV3: Singh et al, ADNDT **96** (2010) 759

CI is not very important for Ti X

Table 2. Comparison of lifetimes (τ , ps) for the lowest 40 levels of Ti X. $a \pm b \equiv a \times 10^{\pm b}$.

Index	Configuratio	n/Level	n<3	GR/ n<4	ASP n<5	n<6	FAC1	FAC2	CIV3	MCHF	MBPT	Experimental a	Experimental b
												-	
1	3s ² 3p	² P ⁰ _{1/2}											
2	3s ² 3p	² P ^o _{3/2}	2.663+11	2.679+11	2.675+11	2.675+11	2.708+11	2.701+11					
3	3s3p ²	⁴ P _{1/2}	1.966+05	1.890+05	1.857+05	1.855+05	1.817+05	1.791 + 05		1.680+05	2.12+05		
4	3s3p ²	"P _{3/2}	9.567+05	9.435+05	9.273+05	9.265+05	9.151+05	8.992+05		8.895+05	1.09 + 05		
5	3s3p2	*P _{5/2}	3.171+05	3.043+05	2.973+05	2.973+05	2.941+05	2.891+05		2.840+05	3.75+05		
6	383p*	*D _{3/2}	8.329+02	8.070+02	8.004+02	8.019+02	8.085+02	7.965+02	9.399+02*	7.624+02	9.21+02	[8.20±0.30]+02	[8.90±0.40,9.20±0.50,8.40±0.30,8.50±0.60]+02
	383p-	20	9.396+02	9.094+02	9.020+02	9.037+02	9.116+02	0.905+02	1.025+03	1.012+02	1.05+03	[8.70±0.40]+02	[9.70±0.30,9.80±0.50,8.50±0.60,9.50±0.50]+02 [1.15±0.90.0.40±0.50.1.20±0.50.1.00±0.10]±01
9	3e3n ²	² P.	3 731+01	3 728+01	3 721+01	3 719+01	3 772+01	3.766+01	3 785+01	3.809+01	4 22+01	[6.00±0.15]±01	[6 00+0 40 6 60+0 50 6 70+0 30 4 30+0 50]+01
10	3e3n ²	2P	3.550+01	3.556+01	3.550+01	3.548+01	3.596+01	3.593+01	3748+01	3.652+01	4.22+01	[5.00±0.15]+01	[5.60±0.40,0.00±0.30,0.70±0.30,4.30±0.50]+01
11	3s ² 3d	² Do.m	3.048+01	3.087+01	3.087+01	3.084+01	3 123+01	3 126+01	3 135+01	0.002 01	3.52+01	[3.80+0.60]+01	[5 00+0 20 4 90+0 30 5 20+0 20 3 70+0 50]+01
12	3s ² 3d	2Dc.m	3.208+01	3.251+01	3.251+01	3.248+01	3.291+01	3.293+01	3.311+01		3.72+01	[3.60±0.50]+01	[5.90±0.20.5.80±0.30.5.90±0.20.4.40±0.60]+01
13	3n ³	² D ⁰ 2/2	4 557+02	4 806+02	4.818+02	4 840+02	4 644+02	4 661+02	4 492+02	4349+02		[4 70+0 50]+02	[].
14	3p ³	2D°5/2	4.566+02	4.813+02	4.826+02	4.847+02	4.652+02	4.673+02	4.486+02	4.380+02		[4.90±0.40]+02	
15	3p ³	4S ⁰ 3/2	4.067+01	4.136+01	4.132+01	4.125+01	4.092+01	4.124+01	4.283+01	4.146+01			
16	3s3p(3P)3d	4F°3/2	1.200+04	1.347+04	1.321+04	1.400+04	1.148+04	1.285+04		8.226+03	1.77+04		[1.60±0.15]+04 ^c
17	3s3p(3P)3d	4F°5/2	1.619+04	1.618+04	1.596+04	1.597+04	1.599+04	1.612+04		1.740+04	1.88+04		[1.30±0.15]+04 ^c
18	3p ³	2P01/2	9.564+01	9.716+01	9.728+01	9.715+01	9.655+01	9.683+01	1.030+02	9.750+01		[1.10±0.10]+02	
19	3p ³	² P ^o _{3/2}	9.714+01	9.886+01	9.903+01	9.887+01	9.828+01	9.852+01	1.057+02	1.039+02			
20	3s3p(3P)3d	4F°7/2	1.873+04	1.853+04	1.823+04	1.823+04	1.830+04	1.861+04		2.089+04	2.20+04		[1.85±0.20]+04 ^c
21	3s3p(3P)3d	4F°9/2	7.060+10	7.155+10	7.119+10	7.122+10	7.230+10	7.319+10					
22	3s3p(3P)3d	4P°5/2	4.974+01	5.038+01	5.036+01	5.037+01	5.097+01	5.017+01	5.718+01*	5.004+01	5.45+01		
23	3s3p(3P)3d	"P"3/2	4.431+01	4.494+01	4.497+01	4.499+01	4.548+01	4.407+01	5.528+01*	4.393+01	4.76+01		
24	3s3p(3P)3d	"P"1/2	3.992+01	4.051+01	4.065+01	4.066+01	4.100+01	3.857+01	5.426+01*	4.127+01	4.18+01		
25	3s3p(°P)3d	*D°1/2	3.748+01	3.824+01	3.800+01	3.802+01	3.863+01	4.118+01	3.132+01*	3.840+01	4.51+01		
26	3s3p(*P)3d	4D°3/2	3.500+01	3.5/2+01	3.560+01	3.562+01	3.609+01	3.712+01	3.153+01*	3.707+01	4.05+01		
27	3s3p(*P)3d	4D ⁰ 5/2	3.314+01	3.386+01	3.379+01	3.380+01	3.421+01	3.464+01	3.175+01	3.449+01	3.80+01		
20	3s3p(*P)3d	202	3.157+01	3.228+01	3.223+01	3.225+01	3.202+01	3.2/2+01	3.220+01	3.250+01	3.59+01	(E 00+0.201+01	
20	353p(F)30	202	2 960 - 01	3.830+01	3.032+01	3.827+01	3.833+01	3.000+01	4.050+01	4.002+01		[5.00±0.30]+01	
31	3c3n(3P)3d	2 5/2	7.873±01	7.912+01	7.879±01	7 898+01	7 978+01	8.036±01	8.537+01	4.003+01 8.911±01		[8 20±0.60]±01	
32	3s3n(3P)3d	2E0 2/2	7.605+01	7.656+01	7.626+01	7.648+01	7 726+01	7 774+01	8 157+01	8.682+01		[8 80+0 80]+01	
33	3s3n(³ P)3d	2po	2 685+01	2 665+01	2 665+01	2 662+01	2 690+01	2 671+01	2 695+01	2 765+01		[3 40+1 00]+01	
34	3s3n(³ P)3d	2P01/2	2 813+01	2 796+01	2 798+01	2 795+01	2 825+01	2 806+01	2 706+01	2 902+01		[4 70+0 40]+01	
35	3s3p(1P)3d	2F07/2	2.465+01	2.540+01	2.546+01	2.553+01	2.570+01	2.580+01	2.638+01	4.200+01	3.03+01	[3.70±0.30]+01	
36	3s3p(1P)3d	2F°5/2	2.438+01	2.515+01	2.522+01	2.529+01	2.547+01	2.556+01	2.616+01	4.210+01	3.00+01		
37	3s3p(1P)3d	2P01/2	2.115+01	2.144+01	2.147+01	2.145+01	2.166+01	2.226+01	2.273+01	4.045+01	3.57+01	[4.90±1.30]+01	
38	3s3p(1P)3d	2P°3/2	2.124+01	2.202+01	2.209+01	2.208+01	2.224+01	2.286+01	2.311+01	4.267+01	5.56+01	[4.90±1.30]+01	
39	3s3p(1P)3d	2D°3/2	1.703+01	1.680+01	1.670+01	1.669+01	1.684+01	1.720+01	1.670+01	2.315+01	2.11+01	[2.70±0.70]+01	
40	3s3p(1P)3d	² D ^o _{5/2}	1.675+01	1.679+01	1.671+01	1.670+01	1.683+01	1.716+01	1.699+01	2.279+01	1.94+01	[2.70±0.70]+01	
GRAS	P present c;	alculation	is from the G	BASP code		FAC1:	present c	alculations fr	om the FAC O	de with 130	1 levels		
CIV3:	Singh et a	al, J. Phys	B 43 (201	0) 11505		FAC2:	calculation	ns with 1213	9 levels				
MCHF	Froese-F	ischer et	al, ADNDT	92 (2006) 60	07	MBPT	Safronova	et al, ADND	T 84 (2003)	1			
a:	Pinningto	n et al , Z	Phys. D 6	(1987) 241		b:	Pinningto	n et al, Z. Ph	ys. D 17 (199	0) 5, the first	entry is for	Free M-E Fit, the	second for Constrained M-E Fit, the 3rd
	-						for VNET,	and the 4th	for ANDC				
C:	Träbert et	al, Phys	Scr. 48 (19	93) 593			CIV3 lifet	imee differ l	by up to 30%			• • • •	[[] > 《 문 > 《 문 > _ 문 _ 《
							on o liter	mes diller i	oy ap 10 30 /8				

Figure 8: Collision strengths for the $2s^2 {}^{1}S_0 - 2s2p {}^{3}P_2^o$ (1 - 4) transition of Ti XIX.

Aggarwal & Keenan, Phys. Scr. 86 (2012) 000000

Kanti M. Aggarwal

Atomic Data for Ti lons

Comparison of Υ values for transitions of Ti XIX. ($a\pm b \equiv a \times 10^{\pm b}$). – Part 1

log	log T _e (K) 6.3					6.9	7.5			
i	j	DARC	FAC	ZS	DARC	FAC	ZS	DARC	FAC	ZS
1	2	3.550-3	1.693-3	1.7943-3	2.753-3	1.242-3	1.3135-3	1.240-3	6.553-4	6.9065-4
1	3	1.480-2	8.981-3	9.1369-3	1.326-2	8.517-3	8.6113-3	9.330-3	8.208-3	8.1786-3
1	4	2.041-2	8.224-3	8.7866-3	1.497-2	6.031-3	6.4270-3	6.568 - 3	3.180-3	3.3795-3
1	5	4.632-1	4.683-1	4.4407-1	5.414-1	5.558 - 1	5.4721-1	6.535-1	7.149-1	7.1229-1
1	6	2.607-4*	1.126 - 4	1.1731 - 4	2.678 - 4	8.760-5	8.9602-5	1.421 - 4	6.029-5	5.9662-5
1	7	$5.441 - 4 \star$	2.059 - 4	2.2788-4	5.371 - 4	1.369 - 4	1.5205 - 4	2.272 - 4	6.298-5	6.7922-5
1	8	1.003-3	5.224 - 4	4.8162-4	1.002-3	4.565 - 4	3.9854-4	6.263-4	4.007-4	3.2024-4
1	9	2.566 - 3	1.645-3	1.2143-3	2.660 - 3	1.826-3	1.3591 - 3	2.379 - 3	2.116-3	1.5968-3
1	10	1.537-3	6.803-4	5.7142-4	1.550 - 3	6.579 - 4	5.5271-4	1.102-3	6.290-4	5.3012-4
2	3	4.162-2*	1.801-2	1.9718-2	2.591 - 2	1.262-2	1.3622-2	1.118-2	6.353-3	6.8570-3
2	4	3.037-2*	1.380 - 2	1.3591 - 2	2.181-2	1.266-2	1.2352-2	1.490 - 2	1.192-2	1.1670-2
2	5	9.787-3	4.090-3	4.4369-3	8.125-3	2.829 - 3	3.0501-3	3.445-3	1.387-3	1.4701-3
2	6	2.106-3	1.079 - 3	1.1455-3	1.733-3	7.869-4	8.3760-4	7.891-4	4.119-4	4.3712-4
2	7	2.202-1	2.226 - 1	2.2221-1	2.571 - 1	2.651 - 1	2.7186 - 1	3.058 - 1	3.409-1	3.4776-1
2	8	5.388-3	2.428-3	2.5623-3	4.697-3	1.774-3	1.8632-3	2.101-3	9.312-4	9.7530-4
2	9	3.211-3	1.243-3	1.3231-3	2.916-3	9.069 - 4	9.6379-4	1.262-3	4.755-4	5.0398-4
2	10	5.646-4*	1.509 - 4	1.5738-4	4.844-4	1.072 - 4	1.1212-4	1.976 - 4	5.397 - 5	5.6180-5
3	4	$1.550 - 1 \star$	5.275-2	5.4204-2	9.090-2	4.364-2	4.4300-2	4.970-2	3.436-2	3.4175-2
3	5	3.741-2*	1.261 - 2	1.3622-2	2.691-2	8.896-3	9.5108-3	1.147-2	4.685-3	4.9728-3
3	6	2.262 - 1	2.282 - 1	2.2576-1	2.631 - 1	2.725 - 1	2.7867 - 1	3.112-1	3.505 - 1	3.5752-1
3	7	1.729 - 1	1.702 - 1	1.6936 - 1	1.991 - 1	2.011-1	2.0605 - 1	2.307 - 1	2.564 - 1	2.6172-1
3	8	2.864 - 1	2.836 - 1	2.8422 - 1	3.313-1	3.355 - 1	3.4509-1	3.849 - 1	4.288-1	4.3893-1
3	9	1.843-2	1.106 - 2	1.0630-2	1.805-2	1.082 - 2	1.0263-2	1.354-2	1.111-2	1.0400-2
3	10	$2.511 - 3 \star$	8.760-4	9.0560 - 4	2.237 - 3	7.512-4	7.8159-4	1.196 - 3	6.309 - 4	6.5237-4

DARC: Present calculations from the DARC code

FAC: Present calculations from the FAC code

ZS: Calculations of Zhang and Sampson (1992)

Comparison of Υ values for transitions of Ti XIX. ($a\pm b \equiv a \times 10^{\pm b}$). – Part 2

log T _e (K)			6.3			6.9		7.5			
i	j	DARC	FAC	ZS	DARC	FAC	ZS	DARC	FAC	ZS	
4	5	7.273-2*	2.146-2	2.3186-2	4.562-2	1.488-2	1.6003-2	1.844-2	7.398-3	7.8110-3	
4	6	3.254-3*	8.655-4	9.4764-4	2.512-3	6.355 - 4	6.9369-4	1.052 - 3	3.358 - 4	3.6439-4	
4	7	2.884 - 1	2.858 - 1	2.8227 - 1	3.333-1	3.407-1	3.4819-1	3.890 - 1	4.371-1	4.4551-1	
4	8	7.430-1	7.522 - 1	7.5185-1	8.635-1	8.957-1	9.2247-1	1.014 + 0	1.150 + 0	1.1785+0	
4	9	1.280 - 1	1.069 - 1	1.0317-1	1.393 - 1	1.202 - 1	1.1693-1	1.469 - 1	1.465-1	1.4356-1	
4	10	6.400-3*	1.849-3	1.9425-3	5.279-3	1.328-3	1.3970-3	2.164-3	6.808 - 4	7.1247-4	
5	6	9.319-3	6.618-3	7.2781-3	9.312-3	7.599-3	8.5691-3	8.387-3	9.108-3	1.0238-2	
5	7	1.407-2	5.982-3	6.2057-3	1.208 - 2	5.274-3	5.4767-3	6.677-3	4.463-3	4.6440-3	
5	8	1.270 - 1	1.116-1	1.1022 - 1	1.378 - 1	1.338 - 1	1.3584 - 1	1.462 - 1	1.687 - 1	1.7047-1	
5	9	1.074+0	1.094 + 0	1.0744+0	1.237 + 0	1.328 + 0	1.3820+0	1.422 + 0	1.717 + 0	1.7953+0	
5	10	3.799-1	3.868-1	3.9823-1	4.431-1	4.613-1	4.8814-1	5.268-1	5.939 - 1	6.2552-1	
6	7	3.074-2	1.923-2	2.0870 - 2	2.496-2	1.359 - 2	1.4672-2	1.144 - 2	6.908-3	7.3534-3	
6	8	2.441-2	1.730 - 2	1.7613-2	2.226-2	1.526 - 2	1.5500 - 2	1.620 - 2	1.347 - 2	1.3428-2	
6	9	1.137-2	6.189-3	6.9335-3	9.442-3	4.247-3	4.7452-3	4.080-3	2.062 - 3	2.2528-3	
6	10	3.660-3*	9.244-4	1.0278-3	3.010-3	6.115-4	6.7632-4	1.169-3	2.795 - 4	3.0982-4	
7	8	8.444-2	5.652 - 2	5.9629-2	7.490-2	4.555-2	4.7635-2	4.542-2	3.381-2	3.4716-2	
7	9	5.030-2	2.925 - 2	3.1902-2	4.358-2	2.095 - 2	2.2555 - 2	2.079-2	1.163-2	1.2341-2	
7	10	1.383-2*	3.944-3		1.088-2	2.632-3		4.220-3	1.221-3		
8	9	1.013-1	6.637-2	7.0516-2	8.985-2	5.088-2	5.3039-2	5.028-2	3.388-2	3.3996-2	
8	10	1.998-2	8.238-3	8.7911-3	1.620 - 2	6.240-3	6.4961-3	7.948-3	4.246-3	4.2710-3	
9	10	3.972-2	2.929-2	2.8800-2	4.004-2	3.092-2	3.0604-2	3.769-2	3.457-2	3.4692-2	

DARC: Present calculations from the DARC code

FAC: Present calculations from the FAC code

ZS: Calculations of Zhang and Sampson (1992)

FAC and ZS agree within \sim 20% but DARC Υ are higher by up to a factor of 4 Aggarwal & Keenan, Phys. Scr. **86** (2012) 000000 Q

э

イロト イポト イヨト イヨト

Table 1b. Experimental and theoretical energy levels (in Ryd) for Ti XX and their lifetimes (τ , s). $a\pm b \equiv a \times 10^{\pm b}$

Index	Configuration	Level	NIST	GRASP1	GRASP2	FAC	BPRM	τ (S)	
1	1s ² 2s	² S _{1/2}	0.00000	0.00000	0.00000	0.00000	0.00000		
2	1s-2p	² P ⁰ 1/2	2.94814	2.95843	2.96034	2.97295	2.90900	6.708-10	NIST:
3	1s-2p 1c ² 3c	2° 3/2	58 02244	3.34763	3.32349 58.01143	3.03097 58.01670	3.00000	3.930-10 7.270-13	http://www.nist.gov/pml/
4	1s 3s 1c ² 3p	2D0	50.92244	50.94397	50 7318/	50 738/7	50.90000	2 706-13	data/asd.cfm
6	1s ² 3n	² P ⁰ 0/0	59 90706	59 93739	59 89893	59 90476	59 94280	2.730-13	the CRASP and a without the Broit
7	1s ² 3d	² D _{2/2}	60.21762	60.24985	60.20592	60.20768	60.24240	9.412-14	and QED effects
8	1s ² 3d	² D _{5/2}	60.27047	60.30285	60.25860	60.26015	60.30120	9.490-14	GRASP2: Present results from
9	1s ² 4s	² S 1/2	79.16195	79.19708	79.15763	79.15313	78.84310	1.074-12	the GRASP code with the Breit
10	1s ² 4p	² P ⁰ 1/2	79.50504	79.53436	79.49532	79.48676	79.47540	4.732-13	and QED effects
11	1s ² 4p	² P ⁰ 3/2	70.57585	79.60766	79.56569	79.55669	79.55750	4.827-13	FAC: Present results from the
12	1s ² 4d	² D _{3/2}	79.70671	79.73733	79.69318	79.69778	79.75280	2.183-13	FAC code
13	1s ² 4d	² D _{5/2}	79.72894	79.75972	79.71540	79.71973	79.77760	2.203-13	BPRM: Nahar (2002)
14	1s ² 4f	² F ^o _{5/2}	79.73587	79.76650	79.72211	79.71511	79.78310	4.509-13	
15	1s ² 4f	2F ^o 7/2	79.74498	79.77762	79.73322	79.72622	79.79539	4.520-13	Relativistic effects are not
16	1s ² 5s	² S _{1/2}	88.44913	88.48424	88.44234	88.43439	88.33580	1.695-12	too important for Ti XX
17	1s ² 5p	² P ⁰ 1/2	88.62437	88.65482	88.61314	88.60387	88.63940	8.021-13	
18	1s ² 5p	² P ^o _{3/2}	88.66054	88.69228	88.64912	88.63941	88.68069	8.169-13	
19	1s ² 5d	² D _{3/2}	88.72752	88.75816	88.71390	88.71542	88.76910	4.190-13	Agganwal & Koonan
20	1s ² 5d	² D _{5/2}	88.73891	88.76962	88.72527	88.72663	88.78180	4.232-13	ADNDT 98 (2012) 000
21	1s ² 5f	2F°5/2		88.77345	88.72904	88.72179	88.78500	8.712-13	AD101 30 (2012) 000
22	1s ² 5f	2F ^o 7/2		88.77914	88.73473	88.72747	88.79120	8.736-13	
23	1s ² 5g	² G _{7/2}		88.77921	88.73480	88.72717	88.79090	1.465-12	
24	1s ² 5g	² G _{9/2}		88.78262	88.73821	88.73058	88.79460	1.467-12	

э

Kanti M. Aggarwal

b. Comparison of radiative rates (A- values, s⁻¹) for some transitions of Ti XX. ($a\pm b \equiv a \times 10^{\pm b}$).

i	j	A (GRASP)	A (FAC)	A (BPRM)	i	j	A (GRASP)	A (FAC)	A (BPRM)	
1	2	1.4907+09	1.4990+09	1.4030+09	7	21	6.8262+11	6.8360+11	6.8420+11	-
1	3	2.5447+09	2.5500 + 09	2.5930 + 09	8	14	1.4706+11	1.4680+11	1.4750+11	
1	5	3.5749+12	3.6310+12	3.6770+12	8	15	2.2079+12	2.2080+12	2.2150+12	
1	6	3.4911+12	3.5540+12	3.5830+12	8	21	4.8404+10	4.8380+10	4.8480+10	
1	10	1.5800+12	1.6500+12	1.3880+12	8	22	7.2830+11	7.2980+11	7.2960+11	
1	11	1.5542+12	1.6270+12	1.3630+12	9	10	4.5265+07		2.9160+08*	
1	17	8.1676+11	9.1200+11	7.4220+11	9	11	8.0239+07		4.2270+08*	CPASE: Procent results from
1	18	8.0541+11	9.0220+11	7.3070+11	9	17	1.0936+11	1.1230+11	1.0170+11	the CRASP code
2	7	8.8657+12	8.9040+12	8.8800+12	9	18	1.0607+11	1.0900+11	9.7840+10	EAC: Propert regults from the
2	12	2.8917+12	2.9410+12	2.8480+12	10	12	7.4663+06		$2.0560 + 07 \star$	FAC. Present results from the
2	19	1.3340+12	1.4250+12	1.3250+12	10	19	1.9329+11	1.9710+11	1.9160+11	PMPD: Nabar A&A 290 (2002)
3	8	1.0533+13	1.0590+13	1.0540+13	11	13	3.8843+06		1.2340+07*	716
3	13	3.4188+12	3.4810+12	3.3630+12	11	20	2.3314+11	2.3760+11	2.3150+11	/10
3	20	1.5731+12	1.6780+12	1.5610+12	12	14	1.6307+04		1.8750+04	
4	5	1.9328+08		1.6820+08	12	18	3.3472+09	3.4160+09	1.8630+11*	
4	6	3.3925+08		3.2530+08	12	21	3.8650+11	3.8550+11	3.8590+11	BPBM A-values differ by up to
4	10	4.6591+11	4.7240+11	4.3630+11	13	14	1.4472+01		7.7210+00*	3 orders of magnitude
4	11	4.5300+11	4.5970+11	4.2210+11	13	15	4.0837+03		3.9990 + 03	5 orders of magnitude
4	17	2.5631+11	2.7290+11	2.4470+11	13	21	2.7602+10	2.7510+10	2.7560+10	
4	18	2.5088+11	2.6730+11	2.3870+11	13	22	4.1369+11	4.1270+11	4.1310+11	Aggarwal & Koopan
5	7	2.4095+07		2.6690+07	14	23	6.5745+11	6.5750+11	6.5660+11	
5	12	9.3273+11	9.3960+11	9.2720+11	16	17	1.4704+07		8.2050+07	ADIND 1 30 (2012) 000
5	19	4.5946+11	4.7490+11	4.6000+11	16	18	2.6185+07		1.2070+08*	
6	8	1.2640+07		1.2510+07	17	19	2.6949+06		5.7560 + 06	
6	13	1.1192+12	1.1280+12	1.1130+12	18	20	1.3974+06		3.2770+06	
6	20	5.4834+11	5.6610+11	5.4910+11	19	21	8.3660+03		9.5790+03	
7	11	6.2633+09	6.3600 + 09	1.7550+12*	20	21	9.2274+00		5.0810+00	
7	14	2.0665+12	2.0650+12	2.0740+12	20	22	2.1866+03		2.1250+03	(
7	18	2.6896+09	2.9250 + 09	1.2150+06*	21	23	2.7721+02		3.0120+02	

э

Figure 10. Comparison of effective collision strengths for the 13–14, 14–16, and 24–26 transitions of Ti XXI.

Figure 11. Comparison of effective collision strengths for the 46–48, 47–48, and 48–49 transitions of Ti XXI.

Kanti M. Aggarwal Atomic Data for Ti Ions

- Ω and Υ need to be calculated for Ti VI and Ti X
- Scope remains for improvement in the collisional data for Ti XIX, Ti XX and Ti XXI

