

Impurity Densities from CXRS and Beam Emission Spectroscopy

R. Dux¹, B. Geiger¹, R. McDermott¹ and ASDEX Upgrade team¹

Experimental Validation of Ar CX Cross Sections

F. Guzman^{2,3}, M. Sertoli¹, R. McDermott¹, R. Guirlet³, L. Menchero^{1,3}, G. Modet⁴ and ASDEX Upgrade team¹

MPI für Plasmaphysik, EURATOM Assoziation, Garching bei München
ADAS-EU, University of Strathclyde
IRFM-CEA, Cadarache
Laboratoire Aimé Cotton, Université Paris XI

17th ADAS Workshop, 23-25 September 2012, Chateau de Cadarache

Impurity densities from CXRS

- CX cross sections σ
- effective CX emission rate coefficients q
- D-density distribution in n=1 and n=2
 - depends on beam geometry, attenuation, excitation, distribution of species with full, half and third energy

$$\langle n_{Z+1} \rangle = \frac{4\pi}{h\nu} \frac{L_{CX}}{\sum_{j,k} \int n_{D,j,k} dl}$$

j=energy component, k=main quantum number

- Hα beam emission yields line-integrated densities in n=3
- thermal beam halo neutrals are produced by CX from beam neutrals onto thermal deuterons and produce a considerable fraction of the active impurity emission

$$\overline{\mathbf{A}^{+Z+1}} + \mathbf{D}(n = 1, 2..) \Longrightarrow \mathbf{A}^{+Z}(n, l) + \mathbf{D}^{+Z}(n, l) + \mathbf{D}^{+Z}(n, l) + \mathbf{D}^{+Z}(n, l)$$

Experimental Validation of Ar CX cross sections

- Ar used for radiation control and impurity transport experiments in fusion plasmas
- Ar charge exchange cross-sections from ORNL, ADAS scaling formula, and University Madrid differ by order of magnitude!
- Obtain experimental verification of correct calculation through comparison to X-ray data

Cross-sections differ by order of magnitude

- UAM (Madrid) data and ADAS universal formula cross-section order of magnitude larger than ORNL
- Differences are energy dependent
- AUG NBI can sample significant portion of energy spectrum

R. Dux, 17th ADAS Workshop, Cadarache, 25.9.2012

Summary of Shots

Discharge	Line CER (NBI 1)	Line CHR (NBI 2)	Line CFR (NBI 1)	NBI 1/NBI 2 (KeV)
28263	522.4nm (ArXVIII)	522.4nm (ArXVIII)	661.2nm (ArXVI)	90/60KeV
28265	585.7nm (ArXVII))	585.7nm (ArXVII))	479.4nm (ArXVII)	90/60KeV
28268	541.2nm (ArXVI)	541.2nm (ArXVI)	522.4nm (ArXVIII)	75/50KeV
28269	427.6nm (ArXVIII)	427.6nm (ArXVIII)	541.2nm (ArXVI)	75/50KeV
28270	479.4nm (ArXVII)	479.4nm (ArXVII)	630.3nm (ArXVIII)	75/50KeV
28271	541.2nm (ArXVI)	541.2nm (ArXVI)	522.4nm (ArXVIII)	90/60KeV

 Almost complete energy scans for best Ar line per charge state

lon	Line	90KeV	75KeV	60KeV	50KeV
Ar XVIII	630.3nm n=17-16				Yes
Ar XVIII	522.4nm n=16-15	Yes		Yes	Yes
Ar XVIII	427.6nm n=15-14		No Sig		No Sig
Ar XVII	585.7nm n=16-15	Un Rel		Un Rel	
Ar XVII	479.4nm n=15-14		Yes	Yes	Yes
Ar XVI	661.2nm n=16-15			Yes	
Ar XVI	541.2nm n=15-14	Yes	Yes	Yes	Yes

- SXR density measurement:
 - Local experimental SXR emissivity (background subtracted & Abelinverted)
 - Electron density
 - Fractional abundance f_z
 - SXR filtered photon emissivity rate coefficients k_z

→ The denominator is evaluated using experimental n_e and T_e and calculating the ionization equilibrium assuming a standard set of transport coefficients

Ar Density from Soft X-Ray (SXR)

- SXR normalized emissivity (dashed = using local ionization eq.)
- Total Ar density (point with error bar = passive spectroscopic measurement of Ar¹⁶⁺ resonance lines)

 Ar density of 16+ → 18+ (fractional abundance includes transport)

something is wrong with the ionisation balance $\dots \rightarrow$ work in progress

Impurity Densities from CXRS and Beam Emission Spectroscopy

- 60keV beams from NBI I
- 25 lines-of-sight (LOS) for CXRS and 14 LOS for BES
- LOS aligned to centre of beam 3
- vertical separation ≈1.6cm
- Boron: n=7-6 transition at 494.7 nm
- H-Mode discharge with P_{NBI}=5 MW, P_{ECRH}=0.7 MW, medium density 6x10¹⁹m⁻³
- beam blips (200ms) active beam off for 100ms and replaced by beam of NBI II to have constant power

Cross-section of beam density and lines-of-sight (+ = BES, * = CXRS)

Beam Emission Spectrum

Doppler effect

$$\Delta \lambda_{dop} = \lambda_0 \frac{v}{c} \cos \vartheta$$

 motional Stark splitting due to electric field F in the rest frame of the beam atoms

$$\Delta \lambda_{\text{MSE}} = 2.76 \times 10^{-2} \, k \left| \vec{v} \times \vec{B} \right| \left[\frac{\text{MV}}{\text{m}} \right]$$
$$k = -4, -3, \dots, 4$$

 beam emission spectrum on top of halo emission (shifted Gaussian) – here for a case with high T_i

R. Dux, 17th ADAS Workshop, Cadarache, 25.9.2012

IPP

setup CR models (cross-section data from Janev and ADAS) to calculate

- excited state population of D in beam
- beam stopping coefficients
- excited state population of D in halo
- halo production and stopping coefficients
- ratio of halo to beam particles

IPP

setup CR models (cross-section data from Janev and ADAS) to calculate

- excited state population of D in beam
- beam stopping coefficients
- excited state population of D in halo
- halo production and stopping coefficients
- ratio of halo to beam particles

D-densities along CXRS LOS from $D\alpha$

setup CR models (cross-section data from Janev and ADAS) to calculate

- excited state population of D in beam
- beam stopping coefficients
- excited state population of D in halo
- halo production and stopping coefficients
- ratio of halo to beam particles

D-densities along CXRS LOS from $\text{D}\alpha$

- halo radiance and density dominant
- good agreement with calculated beam and halo density distribution

R. Dux, 17th ADAS Workshop, Cadarache, 25.9.2012

Boron Concentrations

radiance of impurity line

$$L_{cx} = c_{imp} \left[\sum_{j} L_{\alpha,j} \frac{q_{cx,j}}{q_{\alpha,j}} + L^{h}_{\alpha} \frac{\sum_{j} f_{j} q^{h}_{cx,j}}{\sum_{j} f_{j} q^{h}_{\alpha,j}} \right]$$

- boron signal mainly produced by beam species with full energy and halo
- contribution per halo neutral small but halo neutrals by far dominant species
- halo charge transfer only from excited atoms

Halo contribution for other popular lines

ratio of photons induced by halo N_{halo} to photons induced by beam N_{beam}

- Iargest for low energy beams due to large halo production by CX
- at low T only excited halo neutrals contribute at large T also charge transfer from ground state (mainly for He, less for heavier elements)

- Atomic data for calculation of excited state population of D are sufficiently good to get extra information on the beam attenuation from beam emission spectroscopy.
- A combined treatment of BES data and beam attenuation calculations will be the optimum solution for future analysis tools.
- CX excited impurity radiation from halo neutrals is an important contribution to the *active* CXRS signal.