

The impact of charge exchange and transport on K_{α} -spectra of He-like argon

25. September 2012

T. Schlummer¹, O. Marchuk¹, G. Bertschinger¹, W. Biel¹, R. Burhenn², D. Reiter¹ and the TEXTOR-Team

 Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, Jülich, Germany
 Max Planet Institute for Plasma physical Craitswald, Dautachland

²⁾ Max Planck Institute for Plasma physics, Greifswald, Deutschland

Outline

- Multi channel Bragg-spectrometer for W7–X at TEXTOR
- K_{α} spectrum of He-like Argon
 - The spectral lines
 - Discussion/Contradictions in literature
 - Radial scan of the K_{α} spectrum
- K_α spectroscopy as diagnostic for the neutral gas density in the plasma and for the radial transport.
- Experimental neutral gas density profiles and transport profiles from TEXTOR
- Conclusion / Outlook

Multi channel Bragg-spectrometer for W7–X at TEXTOR

- Optimized for the K_α spectrum (n=2 → n=1) of He-like Argon (ca. 4 Å)
- 6 Channels vertically distributed over the minor radius
- Radial profiles of
 - Ion temperature
 - Electron temperature
 - Toroidal plasma rotation
 - Argon ion ratios
 (H-like : He-like, Li-like : He-like)

Lines of sight

Lines of sight

The K_{α} – spectrum of He-like Argon

Atomic processes:

- Collisional excitation
- Radiative recombination
- Charge exchange
- Inner shell excitation
- **Dielectronic recombination**

$$\begin{split} \frac{I_q}{I_w} &\approx \frac{\langle \sigma \cdot v \rangle_{iexc(T_e)} \cdot Ar^{15+} \cdot ne}{\langle \sigma \cdot v \rangle_{exc}(T_e)} = \frac{\langle \sigma \cdot v \rangle_{iexc}(Te)}{\langle \sigma \cdot v \rangle_{exc}(Te)} \begin{pmatrix} Ar^{15+} \\ Ar^{16+} \end{pmatrix} \\ \frac{I_z}{I_w} &\approx \frac{\langle \sigma \cdot v \rangle_{exc}(T_e) + \begin{pmatrix} Ar^{17+} \\ Ar^{16+} \end{pmatrix} \cdot \left(\langle \sigma \cdot v \rangle_{rr}(T_e) + \langle \sigma \cdot v \rangle_{cx}(T_e) \cdot \frac{n_0}{n_e} \right)}{\langle \sigma \cdot v \rangle_{exc}(T_e)} \end{split}$$

K_{α} – spectrum of He-like Argon

- Imaging X-ray spectrometry reveals increasing z-line towards the edge.
- Reason unresolved !
- Today two possible mechanisms are considered:
 - Charge exchange with neutral hydrogen
 Ar¹⁷⁺ + H⁰ → Ar¹⁶⁺ + H⁺

At lower $T_e Ar^{17+}$ should not be abundant.

Transport

K_{α} – spectra from ALCATOR-C

- [Rice Phys. Rev. A, Vol. 35, No. 7, 1987]
- Rice could approximately describe the spectra with increased radiative recombination rates by factor of **five**.

Former measurements at TEXTOR

X-ray spectroscopy (1-dimensional, plasma center)

Rosmej et al.:

Deviations from corona values:

- mainly charge exchange with neutral hydrogen
- Iow transport coefficients needed

[Rosmej et al. - Plasma Phys. Control. Fusion, 41 (1999)]

VUV – spectroscopy (1-dimensional, plasma center)

- Biel et al. could not describe VUV-spectra without high transport despite respecting charge exchange. [Biel, ECA Vol.23 J (1999)]
- High transport zone with very high diffusion coefficients was needed.
- Similar findings at Jet (L-mode) by Mattioli et al. [Mattioli et al. - Nucl. Fusion 38 (1998)]
- \rightarrow Contradicting results!

JÜLICH FORSCHUNGSZENTRUM

Fitting the K_{α} – spectrum

- For the interpretation of the K_{α} spectra only the H-, He-, and Li-like argon states are considered.
- For the intensity of each line the following general equation applies:

$$I(\lambda) \propto \int_0^1 n_e \cdot ArH_e \cdot \left(\alpha_{He}(\varrho) + \left(\alpha_{H(\varrho)} + \alpha_{cx(\varrho)} \cdot \frac{n_0}{n_e} \right) \cdot \frac{Ar_H}{Ar_{He}} + \alpha_{Li}(\varrho) \cdot \frac{Ar_{Li}}{Ar_{He}} \right) d\varrho$$

- Theoretical description of the spectra is based on the theoretical cross sections for the atomic processes.
- Fit parameter: T_e , T_i , n_0 , Ar_H : Ar_{He} and Ar_{Li} : Ar_{He}
- To respect the line integrated signals, the fit routine integrates over the radial profiles for plasma density, temperature and neutral gas density given as input data. (→ Emission profiles)

25. September 2012

Distinguishing between transport and CX UICH

- Transport only affects the ground states of the argon ions.
- The z-line is affected by CX in two ways:
 - Cascade contributions
 - Ground state
- The q-satellite is affected by CX only via the ground state. (low density limit)
- Transport and charge exchange are discriminable !

Including transport and charge exchange

- The fit routine uses radial profiles of the argon ions given as input data.
- To include transport and charge exchange a simple transport code is used solving the system of steady state transport equations for Ar⁰ – Ar¹⁸⁺.

[Tokar – Plasma Phys. and Contr. Fusion, Vol. 36, No. 11, 1994] [Dux – STRAHL – Code user manual] 0.9 Relative ion abundancy 0.8 0.7 0.6 0.5 Corona distribution Diffusion 0.4 0.3 1 0.9 0.2 Relative ion abundancy decreases 0.8 0.1 gradients He-like 0.7 0 0 5 10 15 20 25 30 35 40 45 0.6 0.5 z [cm] 0.4 H-like 1 0.3 Li-like 0.9 Relative ion abundancy 0.2 $C\chi$ 0.8 0.1 0.7 shifts the ion balance 0 0.6 35 40 45 30 0 5 10 15 20 25 ^{towards} lower 0.5 ^{ioniza}tion stages z [cm] 0.4 0.3 0.2 0.1

25. September 2012

z [cm]

25

30

35 40 45

10 15 20

0

5

Self consistent approach

Atomic Data

Data fits:

•	Energies, wavelengths, oscillator strengths: WXYZ	– fully relativistic [Plante, Johnson, Sapierstein – Phys. Rev. A 49 3519 – 1994]
	Satellites	s – MZ
•	Radiative recombination	– ATOM-Code [urnov]
1	Collisional excitation	 ATOM-Code / R-Matrix incl. cascades up to n=4, extrapolated for n>4 [Whiteford et al. – J. Phys. B: At. Mol. Opt. Phys. 34 3179 – 2001]
•	Inner shell excitation	– ATOM-Code / R-Matrix
•	Ion excitation	– Impact parameter [Sampson, Proc. Phys. Soc. 79 1105 – 1962]
•	Dielectronic recombination	– Autostructure
•	Charge exchange	- CTMC, ACC [Schultz et al J. Phys. B: At. Mol. Opt. Phys. 43 144002 - 2010]
Tra	ansport code:	
•	Radiative recombination	- [Verner et al Astrophys. J. 456 487 - 1996] updated by Badnell, Ferland et al.
•	Ionization	- [Arnaud, Rothenflug - Astron. Astrophys. Suppl. 60, 425 - 1985]
•	Inner shell ionization	– ATOM Code
•	Dielectronic recombination	- Autostructure
•	Charge exchange	- CTMC, ACC [Schultz et al J. Phys. B: At. Mol. Opt. Phys. 43 144002 - 2010]

["Modeling of He-like spectra measured at the tokamaks TEXTOR and TORE SUPRA", Diss. O. Marchuk - 2004] [Marchuk, Bertschinger, Kunze, Badnell, Fritzsche - J. Phys. B: At. Mol. Opt. Phys. 37 1951 - 2004]

Experimental neutral gas density profiles from TEXTOR

 TEXTOR discharge #116926 (n_{e,la} = 2.5.10¹³cm⁻³, ohmic)

Results:

- No consistent description of all channels without a high transport region !
- Neutrals are needed to describe Li-like and H-like argon consistently !
- Transport is the dominant mechanism !

Errors:

- In the intermediate region the neutral gas density can be determined by a factor of 2.
- In the plasma center only a maximum neutral density can be obtained.
- Evaluation of the 2D information from the detectors chip gives gradients at each radial point.
 - \rightarrow significant increase of accuracy

Neutral gas density

[Marchuk et al. - Plasma Phys. Control. Fusion 48, 2006]

Diffusion coefficient

25. September 2012 [Biel et al. - 28. EPS Conf. on Contr. Fusion and Plasma Phys., Funchal, 2001] Folie 17

JÜLICH FORSCHUNGSZENTRUM

Conclusion

- Measurements of He-like argon spectra in TEXTOR using new imaging Xray-spectrometer.
- Study of influence of charge exchange and radial transport on the argon ionization balance in TEXTOR based on these spectra:
 - Clear distinction between impact of charge exchange and transport on the line intensities.
 - Diffusive transport is the most important mechanism.
 - Significant charge exchange contributions are needed towards the edge.
 - Radial profiles for the neutral gas density and the diffusion coefficient have been obtained, showing a high transport region.
- Imaging Xray spectroscopy is a suitable plasma diagnostic for neutral gas density and for radial transport.

Outlook

- Evaluation of the 2D information from the CCD detector chips.
 - \rightarrow Gradients for each data point
 - \rightarrow Higher precision
- Further analysis of:
 - Density dependency for ohmic discharges
 - Ohmic discharges in He-plasma
 - Neutral beam heated discharges
- Modelling of VUV spectra with obtained D- and N₀-profiles
- Comparison of neutral density profiles with theoretical data.

Thank you for your attention !

Including transport and charge exchange

- The fit routine uses radial profiles of the argon ions given as input data.
- To include transport and charge exchange a simple transport code is used solving a system of steady state equations:

$$\frac{1}{r}\frac{\partial}{\partial r}(r\Gamma_{\perp}) = Sz \qquad \text{for } z = 1 \dots 19 \text{ (Ar}^{0} \dots \text{Ar}^{18+})$$

$$with$$

$$S_{z} = k_{ion}^{z-1} \cdot n_{e} \cdot Ar^{z-1}$$

$$+ \left(\left(k_{rr}^{z+1} + k_{dr}^{z+1} \right) \cdot n_{e} + k_{cx}^{z+1} \cdot n_{0} \right) \cdot Ar^{z+1}$$

$$-\left(\left(k_{ion}^{z}+k_{rr}^{z}+k_{dr}^{z}\right)\cdot n_{e}+k_{cx}^{z}\cdot n_{0}\right)\cdot Ar^{z}$$

$$\Gamma_{\perp} = -D \cdot \frac{\partial n_z}{\partial r} + V_{\perp} \cdot n_z$$

[Tokar – Plasma Phys. and Contr. Fusion, Vol. 36, No. 11, 1994] [Dux – STRAHL – Code user manual]

The argon ion ratios

 $Ar_{Li}: Ar_{He}$

q-satellite: 1s2s2p – 1s²2p (Li-like doubly excited state)

$$\frac{I_{q}}{I_{w}} \approx \frac{\langle \sigma \cdot \nu \rangle_{iexc(T_{e})} \cdot Ar^{15+} \cdot ne}{\langle \sigma \cdot \nu \rangle_{exc}(T_{e})} \cdot Ar^{16+} \cdot ne} = \frac{\langle \sigma \cdot \nu \rangle_{iexc}(Te)}{\langle \sigma \cdot \nu \rangle_{exc}(Te)} \cdot \frac{Ar^{15+}}{Ar^{16+}}$$

 $Ar_{H}: Ar_{He}$

 $\begin{array}{ll} \bullet \ \text{Z-line:} & 1s2s - 1s^2 & (\text{He-like singly excited state}) \\ \\ & \frac{I_z}{I_w} \approx \frac{\langle \sigma \cdot \nu \rangle_{exc}(T_e) + \underbrace{Ar^{17+}}_{Ar^{16+}} \cdot \left(\langle \sigma \cdot \nu \rangle_{rr}(T_e) + \langle \sigma \cdot \nu \rangle_{cx}(T_e) \cdot \frac{n_o}{n_e} \right)}{\langle \sigma \cdot \nu \rangle_{exc}(T_e)} \end{array}$

K_{α} – spectroscopy as diagnostic for the neutral gas density

Advantage of K_α - X-ray spectroscopy compared to other spectroscopic methods:

Two spectral lines: q-satellite and z-line one sees cx-contribution one does not! Liver for distinguishing between diffusion and CX via N0!!

q-satellite: ground state transition from double excited Li-like 1s...

$$I_q \propto \langle \sigma \cdot \nu \rangle_{iexc} \cdot Ar^{15+} \cdot n_e$$

Z-line: ground state transition from single excited He-like 1s...

$$I_{Z} \propto \langle \sigma \cdot \nu \rangle_{exc} \cdot Ar^{16+} \cdot ne + \left(\langle \sigma \cdot \nu \rangle_{rr} + \langle \sigma \cdot \nu \rangle_{cx} \cdot \frac{n_{0}}{n_{e}} \right) \cdot Ar^{16+} \cdot ne$$

Temperaturprofile von TEXTOR

Temperaturprofile von TEXTOR – T_e

$$\frac{I_k}{I_w} = \frac{\langle \sigma \cdot v \rangle_{dr(T_e)} \cdot Ar^{16} + n_e}{\langle \sigma \cdot v \rangle_{exc(T_e)} \cdot Ar^{16} + n_e} = \frac{\langle \sigma \cdot v \rangle_{dr(T_e)}}{\langle \sigma \cdot v \rangle_{exc(T_e)}} \approx \frac{const}{T_e}$$

Vermessung der Maxwellverteilung der Elektronen

→ Absolute Temperaturmessung

- Aufgrund der unterschiedlichen Wellenlängen lassen sich nicht alle Linien zugleich fokussieren!
- Gezielte Defokussierung von w- und z-Linie führt zu homogenen Linienbreiten und ermöglicht einen konsistenten Fit der Spektren

 \rightarrow T_i(w) und T_i(z) stimmen im Rahmen von 15% überein

Illumination from CCD's position

