Introduction	Theory	Results	Conclusions
0000000	0000	0000000	000

Developments in beam models Motion Stark Effect

L. Fernández-Menchero

ADAS, University of Strathclyde. United Kingdom. Institut Max Plank für Plasmaphysik. Garching, Germany.

ADAS Workshop 2013, Bad Honnef, Germany. September 2nd, 2013

ADAS Workshop 2013, Bad Honnef, German

Introduction	Theory	Results	Conclusions
0000000	0000	0000000	000

Contents

Introduction	Theory 0000	Results 0000000	Conclusions 000
-			

Contents

- The Motion Stark Effect
- MSE diagnostic
- Stark effect

Theory

Results

Introduction	Theory	Results	Conclusions
000000	0000	0000000	000
The Motion Stark Effect			
The Motion S	tark Effect (MSE)	

The Motion Stark Effect (MSE)

In fusion devices, like tokamaks, Neutral Beam Injectors (NBI) insert high-energy neutral atoms inside the magnetic confined plasma.

As the atoms are neutrals, they do not react as a hole system to these magnetic fields, being able to penetrate deeply into the plasma until they are ionised.

- Internally, the neutrals can fell simultaneous electric and magnetic fields, which disturb their electronic structure.
- The atom is moving rapidly under an intense magnetic field, what causes a Lorentz electric field.
- The atom is under the influence of simultaneous electric and magnetic fields.

Introduction	Theory	Results	Conclusions
•••••••	0000	0000000	000
MSE diagnostic			

MSE spectrum diagnostic

MSE spectroscopy to determine magnetic and electric fields in ASDEX-Upgrade Tokamak.

29

L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

Introduction	Theory	Results	Conclusions
	0000	0000000	000
MSE diagnostic			

Diagnostic setup overview

Figure: Schematic overview of MSE diagnostic in ASDEX-Upgrade Tokamak

Introduction	Theory	Results	Conclusions
000000	0000	0000000	000
MSE diagnostic			

MSE lines of sight

Figure: Poloidal overview of MSE sight lines

Strathc

Introduction	Theory	Results	Conclusions
0000000	0000	0000000	000
MSE diagnostic			
MSE lines of sight			

Introduction	Theory	Results	Conclusions
0000000	0000	0000000	000
Stark effect			

1914. M 7. ANNALEN DER PHYSIK. VIERTE FOLGE. BAND 43.

 Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien. 1. Quereffekt;¹) von J. Stark.

ADAS Workshop 2013, Bad Honnef, German

29

L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

Introduction	Theory	Results	Conclusions
000000	0000	0000000	000
Stark effect			

PHYSICAL REVIEW A 88, 022509 (2013)

Stark effect in neutral hydrogen by direct integration of the Hamiltonian in parabolic coordinates

L. Fernández-Menchero1,2 and H. P. Summers1

¹Atomic Data and Analysis Structure, Department of Physics, University of Strathclyde, 107 Rotnerrow East, Glasgow G4 0NG, United Kingdom ²Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany (Received 18 June 2013; published 19 August 2013)

We present a theoretical study to determine the energies, widths, and wave functions of the neutral hydrogen atom under a constant electric field by the direct integration of the Hamiltonian in parabolic coordinates. We work in terms of the complex coordinate rotation to distinguish the resonances from the continuum sea, and the wave functions are expanded in a basis set of Laguerre-mesh polynomials. We obtain *ab initio* results for the first five atomic shells of neutral hydrogen for a field intensity up to $10^{\circ} V/m$.

DOI: 10.1103/PhysRevA.88.022509

PACS number(s): 31.15.ac, 32.60.+i, 52.70.Ds

Introduction 0000000	Theory 0000	Results 00000000	Conclusions 000

Contents

Theory

2

- Inconsistencies of perturbation theory for Stark effect
- The complex coordinate rotation
- Basis set ٩

Results

Introduction	Theory	Results	Conclusions
0000000	0000	0000000	000

The Stark hydrogen atom

$$\begin{array}{rcl} x & = & \sqrt{\xi\eta}\cos\phi & , & y & = & \sqrt{\xi\eta}\sin\phi \\ z & = & \frac{\xi-\eta}{2} & , & r & = & \frac{\xi+\eta}{2} \end{array}$$

- RHA Rydberg hydrogen atom: Solution to the Schrödinger equation for the unperturbed hydrogen atom. Usual wave functions in spherical coordinates and labeled by quantum numbers *n*, *l* and *m*.
- SHA Stark hydrogen atom: Solution to the Schrödinger equation for the hydrogen atom under a constant electric field, which can tend to zero. Wave functions described in parabolic coordinates and labeled by quantum numbers *n*, *k* and *m*.

Bethe, H. A. and Salpeter, E. E., 1957, Quantum Mechanics of One- and Two-Electron Systems, New York: Academic Press

Introduction	Theory	Results	Conclusions		
0000000	0000	0000000	000		
Inconsistencies of perturbation theory for Stark effect					
Potential					

29

Introduction 0000000	Theory ●○○○	Results 0000000	Conclusions
Inconsistencies of perturbation	on theory for Stark effect		
Potential			

29

Introduction	Theory	Results	Conclusions
Inconsistencies of perturbation	theory for Stark effect		
Potential			

29

Introduction	Theory	Results	Conclusions
Inconsistencies of perturbation	theory for Stark effect		
Potential			

29

Introduction	Theory	Results	Conclusions		
0000000	0000	0000000	000		
Inconsistencies of perturbation theory for Stark effect					
Potential					

Hydrogen atom under a constant electric field must be determined by any exact method beyond perturbation theory.

Figure: Diagram showing the behavior of a root in the Hydrogen atom under a constant electric field

ADAS Workshop 2013, Bad Honnef, German

29

L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

Introduction	Theory	Results	Conclusions
0000000	○●○○	0000000	000
The complex coordinate rotation			

SHA Hamiltonian. The complex coordinate method.

$$\begin{aligned} H_0 &= -\frac{1}{2\mu} \nabla^2 - \frac{1}{r} + Fr \cos\theta \\ &= \frac{2}{\xi + \eta} \frac{\partial}{\partial \xi} \left(\xi \frac{\partial}{\partial \xi} \right) - \frac{2}{\xi + \eta} \frac{\partial}{\partial \eta} \left(\eta \frac{\partial}{\partial \eta} \right) - \frac{1}{2\xi \eta} \frac{\partial^2}{\partial \varphi^2} \\ &- \frac{2}{\xi + \eta} + \frac{1}{2} F(\xi - \eta) \end{aligned}$$

L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark (29, 2013, Bad Honnef, Germany (29, 29)

Introduction	Theory	Results	Conclusions
0000000	○●○○	0000000	000
The complex coordinate rotation			

SHA Hamiltonian. The complex coordinate method.

$$H_{0} = -\frac{1}{2\mu}\nabla^{2} - \frac{1}{r} + Fr\cos\theta$$

$$= \frac{2}{\xi + \eta}\frac{\partial}{\partial\xi}\left(\xi\frac{\partial}{\partial\xi}\right) - \frac{2}{\xi + \eta}\frac{\partial}{\partial\eta}\left(\eta\frac{\partial}{\partial\eta}\right) - \frac{1}{2\xi\eta}\frac{\partial^{2}}{\partial\varphi^{2}}$$

$$- \frac{2}{\xi + \eta} + \frac{1}{2}F(\xi - \eta)$$

Complex coordinate rotation.

$$r' = r e^{it}$$

Introduction	Theory	Results	Conclusions
0000000	○●○○	0000000	000
The complex coordinate rotation			

SHA Hamiltonian. The complex coordinate method.

$$\begin{aligned} H_{0}(\vartheta) &= -\frac{\mathrm{e}^{-2i\vartheta}}{2\mu} \nabla^{2} - \frac{\mathrm{e}^{-i\vartheta}}{r} + \mathrm{e}^{i\vartheta} F r \cos\theta \\ &= \frac{2 \,\mathrm{e}^{-2i\vartheta}}{\xi + \eta} \frac{\partial}{\partial \xi} \left(\xi \frac{\partial}{\partial \xi}\right) - \frac{2 \,\mathrm{e}^{-2i\vartheta}}{\xi + \eta} \frac{\partial}{\partial \eta} \left(\eta \frac{\partial}{\partial \eta}\right) - \frac{\mathrm{e}^{-2i\vartheta}}{2\xi \eta} \frac{\partial^{2}}{\partial \varphi^{2}} \\ &- \frac{2 \,\mathrm{e}^{-i\vartheta}}{\xi + \eta} + \frac{\mathrm{e}^{i\vartheta}}{2} F \left(\xi - \eta\right) \end{aligned}$$

Complex coordinate rotation.

$$r' = r e^{i\vartheta}$$

Introduction	Theory	Results	Conclusions
0000000	○○●○	00000000	000
Basis set			

Variational method: basis set

$$\Psi(\xi,\eta,\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi} \left(\xi\eta\right)^{\frac{|m|}{2}} e^{-\frac{\xi+\eta}{2}} \sum_{k=1}^{N} \sum_{l=1}^{N} c_{klm} \Lambda_{Nk}(\xi) \Lambda_{Nl}(\eta)$$

Lagrange-Laguerre-mesh polynomials:

$$\Lambda_{Ni}(x) = (-1)^i \sqrt{x_i} \frac{\mathrm{L}_N(x)}{x - x_i}$$

 x_i : zeros of the Laguerre polynomial $L_N(x)$.

Introduction 0000000	Theory ○○○●	Results 0000000	Conclusions 000
Basis set			

Secular equation

$$S_{klk'l'm} = \left\langle (\xi\eta)^{\frac{|m|}{2}} e^{-\frac{\xi+\eta}{2}} \Lambda_{Nk} \Lambda_{Nl} \right| \left(\xi\eta \right)^{\frac{|m|}{2}} e^{-\frac{\xi+\eta}{2}} \Lambda_{Nk} \Lambda_{Nl} \right\rangle$$

$$H_{klk'l'm}(\vartheta) = \left\langle (\xi\eta)^{\frac{|m|}{2}} e^{-\frac{\xi+\eta}{2}} \Lambda_{Nk} \Lambda_{Nl} \right| \hat{H}(\vartheta) \left| (\xi\eta)^{\frac{|m|}{2}} e^{-\frac{\xi+\eta}{2}} \Lambda_{Nk} \Lambda_{Nl} \right\rangle$$

Secular equation

$(\mathbf{H} - \mathbf{E}\mathbf{S})\mathbf{C} = \mathbf{0}$

ADAS Workshop 2013, Bad Honnef, German

For further detail:

L. F. Menchero and H. P. Summers, Max Planck Institute for Plasma Physics, Report No. IPP-10/49, 2013, internal report, http://edoc.mpg.de/display.epl?mode=doc&id=656145.

L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

Introduction	Theory	Results	Conclusions
0000000	0000		000

Contents

Theory

Results 3

- Energies and widths
- Wave functions
- Derived quantities

Conclusions

Introduction 0000000	Theory 0000	Results ●0000000	Conclusions
Energies and widths			
Found eigenval	ues		

Figure: Obtained eigenvalues for a basis set N = 30 for m = 0 and a field intensity F = 0.0020 a.u. Marked some found resonances.

Introduction 0000000	Theory 0000	Results •••••	Conclusions 000
Energies and widths			
Found eigenvalu	Jes		

Figure: Obtained eigenvalues for a basis set N = 30 for m = 0 and a field intensity F = 0.0020 a.u. Marked some found resonances.

Introduction 0000000	Theory 0000	Results ○●○○○○○○	Conclusions 000
Energies and widths			

Figure: State energies of the H atom versus electric field intensity for m = 0 - 4. Strathclyde ADAS Workshop 2013, Bad Honnef, German 29

L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

Introduction 0000000	Theory 0000	Results	Conclusions 000
Energies and widths			
Widths			

Figure: State widths of the H atom versus electric field intensity for m = 0 - 4. ADAS Workshop 2013, Bad Honnef, German L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

Introduction	Theory	Results	Conclusions
000000	0000	000000	000
Wave functions			

Wave functions

Figure: Wave function of the Stark states $|100\rangle$ and $|201\rangle$ for a field intersective of F = 0.0020 a.u.. L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

 \mathbf{X}

Introduction	Theory	Results	Conclusions
0000000	0000		000
Wave functions			

Wave functions

Figure: Wave function of the Stark states $|2 - 10\rangle$ and $|210\rangle$ for a field intensity of F = 0.0020 a.u.. L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

Introduction	Theory	Results	Conclusions
0000000	0000		000
Derived quantities			

Einstein transition coefficients

Figure: Einstein spontaneous emission coefficients of neutral hydrogen versus the electric field intensity. Marked the values for the Rydberg Hydrogen Atom for zero field intensity.

ADAS Workshop 2013, Bad Honnef, German

29

L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

Introduction	Theory	Results	Conclusions
0000000	0000	○○○○○●○	000
Derived quantities			

Balmer D_{α} line splitting

Figure: Stark splitting of the D_{α} line of deuterium versus the electric field intensity.

29

Introduction	Theory	Results	Conclusions
0000000	0000	○○○○○○●	000
Derived quantities			

Balmer D_{α} line splitting

Figure: Emission profile of the Balmer D_{α} and H_{α} lines for two different field intensities in corona equilibrium.

29

Introduction	Theory	Results	Conclusions
0000000	0000	0000000	

Contents

- Conclusions
- Further work

ADAS Workshop 2013, Bad Honnef, German L. Fernández-Menchero (Univ. Strathclyde) Developments in beam models Motion Stark

29

Introduction 0000000	Theory 0000	Results 0000000	Conclusions ●○○
Conclusions			
Conclusions			

- A method to solve the hydrogen atom under a constant electric field has been developed beyond perturbation theory.
- Stark energies, widths and wave functions *nkm* have been determined up to *n* = 5.
- Wave functions can be used to get any physical observable.
- Further effects (fine structure, static magnetic field) can be added as perturbations of the Stark wave functions.

ADAS Workshop 2013, Bad Honnef, Ger

- A background has been prepared to develop a collision-radiative model for hydrogen atom under a constant electric field.
- Results are collected in adf50 format.

Introduction 0000000	Theory 0000	Results 0000000	Conclusions ○●○
Further work			
Further work			

- Use the obtained wave functions to calculate directional cross sections of collision with SHA: electron impact, ion impact, charge exchange.
- Include these cross sections and Einstein coefficients in the collision-radiative model for hydrogen atom under constant symultaneous electric and magnetic field.
- Collect all in a second version of ADAS305.

Introduction	Theory	Results	Conclusions
0000000	0000	00000000	○○●
Further work			

PHYSICAL REVIEW A 88, 022509 (2013)

Stark effect in neutral hydrogen by direct integration of the Hamiltonian in parabolic coordinates

L. Fernández-Menchero1,2 and H. P. Summers1

¹Atomic Data and Analysis Structure, Department of Physics, University of Strathclyde, 107 Rotnerrow East, Glasgow G4 0NG, United Kingdom ²Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany (Received 18 June 2013; published 19 August 2013)

We present a theoretical study to determine the energies, widths, and wave functions of the neutral hydrogen atom under a constant electric field by the direct integration of the Hamiltonian in parabolic coordinates. We work in terms of the complex coordinate rotation to distinguish the resonances from the continuum sea, and the wave functions are expanded in a basis set of Laguerre-mesh polynomials. We obtain *ab initio* results for the first five atomic shells of neutral hydrogen for a field intensity up to $10^{\circ} V/m$.

DOI: 10.1103/PhysRevA.88.022509

PACS number(s): 31.15.ac, 32.60.+i, 52.70.Ds