

ADAS data and models for visible tungsten emission

Martin O'Mullane H P summers, N Badnell, A Giunta, A Foster, P Palmeri, P Quinet, P Bogdanovich

18th ADAS Workshop, Bad Honnef, 3-September-2013

Tungsten emission in visible region of the spectrum

- Passive emission from the edge plasma.
 - arises from low stages, W I-VI
 - requires excellent atomic structure
 - primary data in *adf04* datasets
- Active (CX) emission driven by neutral beams.
 - arises from highly charged stages across the plasma
 - requires charge exchange cross section data
 - *adf01* is required
- Fine structure M1 from $W^{+2?}$ stages.
 - *not* considered yet.

Source of data in ADAS

Passive emission from the edge plasma.

- baseline generation with ADAS8#1 (Cowan) and ADAS7#1 (AUTOSTRUCTURE).
- U mons optimization via optional input to ADAS8#1.
- Vilnius group modified RO with large CI method (data only).
- Photon emissivity coefficients (and feature PECs) from ADAS810.
- Active (CX) emission driven by neutral beams.
 - universal CX cross section from ADAS315.
 - Active emissivity coefficients from ADAS316.
- Fine structure M1 from $W^{+2?}$ stages.
 - Possibly ADAS7#1 (AS) or adf04 archiving.
 - Emissivity calculated with ADAS810.

W^{+2} (W III) structure

Optimized Cowan (U Mons), modified RO (Vilnius) and NIST:

								Mons	Villnius	NIST
1	4f14	5s2	5p6	5d4		(5)2(0.0)	Θ.Θ	0.0000	0.00
2	4f14	5s2	5p6	5d4		(5)2(1.0)	2291.8	2369.8870	2256.20
3	4f14	5s2	5p6	5d4		(5)2(2.0)	4505.3	4690.3922	4461.19
4	4f14	5s2	5p6	5d4		(5)2(3.0)	6280.7	6555.7070	6277.81
5	4f14	5s2	5p6	5d4		(5)2(4.0)	7615.0	7941.9088	7686.68
6	4f14	5s2	5p6	5d4		(3)1(0.0)	10037.4	10538.7325	9904.30
7	4f14	5s2	5p6	5d3	6s1	(5)3(1.0)	10918.1	11536.0252	10968.54
8	4f14	5s2	5p6	5d3	6s1	(5)3(2.0)	12439.1	13020.1126	12427.09
9	4f14	5s2	5p6	5d4		(3)1(1.0)	12949.8	13525.3432	12881.03
10	4f14	5s2	5p6	5d4		(3)5(4.0)	13803.7	14496.7379	13700.95
11	4f14	5s2	5p6	5d4		(3)3(2.0)	14036.1	14751.9869	13992.14
12	4f14	5s2	5p6	5d3	6s1	(5)3(3.0)	14848.0	15332.0583	14899.80
74	4F14	5S2	5P6	5D3	6P1	(5)4(2.0)	57350.5	59663.7379	57231.04

- Optimized Cowan: 463 retained levels.
- Modified RO: 293 levels.

W III spectral emission

- ▶ For spectral analysis we need collision data.
- Use Born cross sections.

W III spectral emission

- Agree on strongest line: $5d^3 6s {}^5F_1 5d^3 6p {}^5G_2$.
- Disagree on wavelength: 215nm vs 208nm

W I neutral

- Important for influx measurement.
- But it has a quite complex structure.

O Laporte and J E Mack, Phys. Rev, 1943

WI energy levels and the most accessible line

					baseline	Mons	NIST
1	$4 \mathrm{FE}$	5D4	6S2	(5)2(0.0)	0.0	0.0	0.00
2	$4\mathrm{FE}$	5D4	6S2	(5)2(1.0)	1467.9	1785.2	1670.29
3	$4\mathrm{FE}$	5D5	6S1	(7)0(3.0)	-	2981.7	2951.29
4	$4\mathrm{FE}$	5D4	682	(5)2(2.0)	3189.4	3469.8	3325.53
5	$4\mathrm{FE}$	5D4	6S2	(5)2(3.0)	4863.1	4927.4	4830.00
6	$4\mathrm{FE}$	5D4	6S2	(5)2(4.0)	6404.8	6207.7	6219.33
7	$4\mathrm{FE}$	5D4	682	(3)1(0.0)	12950.2	9612.9	9528.06
8	$4\mathrm{FE}$	5D4	6S2	(3)5(4.0)	14044.2	12249.8	12161.96
9	$4\mathrm{FE}$	5D4	6S2	(3)1(1.0)	17084.9	13500.8	13307.10
10	$4 \mathrm{FE}$	5D4	6S2	(3)4(3.0)	16981.1	13506.3	13348.56

	NIST	U Mons	adf04	
E _{ground}	0.00	-88.0 2803 0	0.0	$5d^4 6s^{2} {}^5D_0$ $5d^5 6s {}^7S_1$
${f E}_{ m lower} \ {f E}_{ m upper}$	2951.29 27889.68	27815.7	27905.5	$5d^{4} 6s 6p^{-7} P_{4}$

Wavelength: 4009.8Å \leftarrow 4012.4Å

6 ph m⁻² s⁻¹ sr⁻¹ ph m⁻² s⁻¹ sr⁻¹ number LOS : 71 UP UP number LOS: 71 2.28e+23 2.34e+19 Div outer 40 Div outer 40 Div inner 40 2.54e+22 Div inner 40 5.01e+18 EP 71 EP 71 4 Δ 2.82e+21 1.07e+18 Side Up 71 71 Side Up Side low 71 3.13e+20 Side low 71 2.30e+17 3.48e+19 4.92e+16 3.87e+18 1.05e+16 2 2 4.30e+17 2.26e+15 4.78e+16 4.84e+14 1.04e+14 z (m) 5.31e+15 z (m) 0 0 5.90e+14 2.22e+13 6.56e+13 4.75e+12 7.29e+12 1.02e+12 8.10e+11 -2 2.18e+11 9.00e+10 4.67e+10 -4 : Be⁰ 2348Å : W⁰ 4009Å -6 6 8 10 6 8 10 2 2 4 4 R (m) R (m) Be^0 2348Å, $2s 2p P - 2s^2 S$ W^0 4009Å, $5d^4 6s 6p {}^7P_4 - 5d^5 6s {}^7S_3$

Visible emission from beryllium and tungsten

Ionisation from neutral W

A few to choose from with no great agreement — use range as uncertainty estimate.

Deutsch et al, Int. J. Mass Spect., 2008

S/XB

If we take Mons adf04 and CADW adf07 we get....

Active emission — fundamental data input

Active emission — applied to ITER-like situation

- 50 keV/amu D beam (diagnostic NB), JNBI=300A/m2, INBI=60A
- Using ITER scenario 2 (Te=24keV core, Ne=1x1014cm-3)
- No transport steady state ionisation balance
- Assume looking vertically down on the beam at the core.
- No beam attenuation effects taken into account.