

Atomic Data for Lowly-Charged Heavy Ions

Patrick Palmeri patrick.palmeri@umons.ac.be

ADAS 2013 (Bad Honnef, Germany)

1

Outline

- Introduction
- HFR+CPOL Method
- Results: Te II-III, Rh III, Pd III, Ag III, Pr IV
- Conclusions & Perspectives

Introduction

	IA																	VIIIA
1	1.008 1H	IIA											IIIA	IVA	VA	VIA	VIIA	4.003 ₂He
2	6.941 ₃Li	^{9.012} ₄Be											10.81 ₅ B	12.011 ₆ C	14.007 ₇ N	15.999 ₈ O	18.998 9 F	20.179 10 Ne
3	22.990 11 Na	24.305 12 Mg	IIIB	IVB	VB	VIB	VIIB	_	VIIIB	_	IB	IIB	26.98 ₁₃ AI	28.09 14 <mark>Si</mark>	30.974 15	32.06 16	35.453 17 CI	^{39.948} 18 Ar
4	^{39.098} 19 К	^{40.08} 20 Ca	44.96 21 Sc	^{47.88} ₂₂ Ti	50.94 23	^{52.00} 24	54.94 25 Mn	55.85 26 Fe	58.93 27 CO	^{58.69} 28 Ni	63.546 29 Cu	65.38 ₃₀Zn	^{69.72} ₃₁ Ga	72.59 32 Ge	74.92 33As	^{78.96} 34 Se	^{79.904} 35 Br	83.80 36 Kr
5	85.47 37 Rb	87.62 38 Sr	88.91 ₃₉ Y	91.22 ₄₀ Zr	92.91 41 Nb	95.94 42 MO	(98) 43 Tc	101.1 44 Ru	102.91 45 Rh	106.4 46 Pd	107.87 47 Ag	112.41 48 Cd	114.82 ₄₉ In	118.69 50 Sn	121.75 51 Sb	127.60 ₅₂ Te	126.90 53	131.29 54 Xe
6	132.91 55 CS	137.33 56 Ва	138.91 57 La	^{178.49} ₇₂ Hf	^{180.95} ₇₃ Та	183.85 ₇₄ W	186.2 75 Re	190.2 ₇₆ Os	192.2 ₇₇ lr	195.08 ₇₈ Pt	196.97 ₇₉ Au	200.59 80 Hg	204.38 ₈₁ TI	207.2 82 Pb	^{208.98} 83 Bi	(244) 84 PO	(210) 85At	(222) 85 Rn
7	(223) ₈₇ Fr	226.03 88 Rd	227.03 ₈₉ Ac															

Lanthanide Series	140.12	140,9077	144.24	(145)	150.36	^{151.96}	157.25	158.93	162.50	^{164.93}	167.26	^{168.93}	173.04	174.97
	58 Ce	59 Pr	60 Nd	61Pm	62 Sm	₆₃ Еи	64 Gd	65 Tb	66 Dy	₆₇ Но	68Er	⊛Tm	₇₀ Yb	₇₁ Lu
Actinide Series	232.04	^{231,0359}	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)
	₉₀ Th	91 Pa	92	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 ES	100 Fm	101 Md	102 NO	103 Lr

3

Introduction

- Astrophysics: nucleosynthesis, neutron capture elements (s- and r-processes)
- Fusion: plasma facing materials, contamination, radiative loss, influx ...
- Lightening technology: richness of lanthanide spectra
- Photonics, lasers: triply-ionized lanthanides

The HFR+CPOL Method

The Relativistic Hartree-Fock (HFR) method of R.D. Cowan: (The Theory of Atomic Structure and Spectra, Univ. of California Press, Berkeley, 1981)

Multiconfiguration approach through superpositions of configurations

Most important relativistic effects included (spin-orbit, mass-velocity correction, Darwin term, kappa-averaged orbitals)

Good agreement with fully relativistic methods

Convergence problems do occur very rarely

Can be used both in *ab initio* or semi-empirically

The HFR+CPOL Method

The Semi-Empirical Optimization: (R.D. Cowan, The Theory of Atomic Structure and Spectra, Univ. of California Press, Berkeley, 1981)

Radial parameters (average energies, electrostatic integrals, spinorbit parameters) adjusted to minimize the discrepancies between the Hamiltonian eigenvalues and the experimental level energies

- Optimization of the wavefunctions
- Optimization of the wavelengths
- Optimization of the transition rates
- \rightarrow Depends on the availability of experimental level energies! ⁶

The HFR+CPOL Method

The Core-Polarization Effects (HFR+CPOL): (see e.g. Quinet et al 1999, MNRAS 307,934 & 2002, J. Alloys Comp. 344, 255)

Intravalence correlation: explicit multiconfiguration expansions

Core-valence correlation: core-polarization model potential depending upon two parameters: (Migdalek & Baylis 1978, J Phys B 11, L497)

1-electric dipole polarizability of the ionic core, α_d 2-cut-off radius (size of the ionic core), r_c

Penetration of the core by valence electrons: core penetration correction (Hameed et al 1968, J Phys B 1, 822; Hameed 1972, J Phys B 5, 746)

Tellurium is seen in stars (Te I)

Roederer et al 2012 ApJ 747, L8:

Te I λ 2385 in HST spectra of metal-poor stars

Tellurium: no radiative data available for Te II-III

	IA				/			1 -										VIIIA
1	1.008 1H	IIA	Z	=52	(5t	h Pe	erio	d, C	rou	ıp \	/IA)		IIIA	IVA	VA	VIA	VIIA	4.003 ₂He
2	6.941 ₃Li	^{9.012} ₄Be											10.81 •B	12.011 ₆ C	14.007 ₇ N	15.999 ₈ 0	18.998 9F	^{20.179} 10 Ne
3	22.990 11 Na	24.305 12 Mg	IIIB	IVB	VB	VIB	VIIB	_	VIIIB	-	IB	IIB	26.98 13 AI	28.09 14 Si	30.974 15 P	32.06 16	35.453 17CI	^{39.948} ₁₈ Ar
4	^{39.098} 19 К	40.08 20 Ca	44.96 21 SC	^{47.88} 22 Ti	50.94 23 V	52.00 24 Cr	54.94 25 Mn	55.85 26 Fe	58.93 27 CO	58.69 28 Ni	63.546 29 Cu	65.38 ₃₀Zn	^{69.72} ₃₁ Ga	72.59 32 Ge	74.92 33 AS	^{78.96} ₃₄Se	79.904 35 Br	83.80 36 Kr
5	85.47 37 Rb	87.62 38 Sr	88.91 ₃₉ Y	91.22 40 Zr	92.91 41 Nb	95.94 42 MO	(98) 43 Tc	101.1 44 Ru	102.91 45 Rh	106.4 46 Pd	107.87 47 Ag	112.41 ₄₈ Cd	114.82 49	118.69 50 Sn	121.75 51 St	127.60 52Te	126.90 53	^{131.29} 54 Xe
6	132.91 55 CS	137.33 56 Ba	138.91 57 La	178.49 ₇₂ Hf	^{180.95} ₇₃ Та	183.85 ₇₄ W	186.2 75 Re	190.2 76 Os	192.2 ₇₇ lr	195.08 ₇₈ Pt	196.97 ₇₉ Au	200.59 80 Hg	204.38 81 TI	207.2 82 Pb	^{208.98} 83 Bi	(244) 84 Po	(210) 85At	(222) 85 Rn
7	(223) ₈₇ Fr	226.03 88 Rd	227.03 ₈₉ Ac															

Lanthanide Series	^{140.12}	140,9077	144.24	(145)	150.36	151.96	157.25	158.93	162.50	^{164.93}	167.26	^{168.93}	173.04	174.97
	₅₈ Ce	59 Pr	60 Nd	61Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	₆₇ Но	68 Er	₀ Tm	₇₀ Yb	₇₁ Lu
Actinide Series	232.04	231.0399	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)
	90 Th	91 Pa	₉₂ U	₉₃ Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	₉₉ Es	100 Fm	101 Md	102 NO	103 Lr

9

HFR+CPOL model:

Intravalence Correlation (43 configurations):

 $\begin{array}{l} 5p^3+5p^26p+5p^27p+5p^24f+5p^25f+5p^26f+5d^26p+5d^26f+6s^27p+5d^27p+4f^25p+4f^26p+5s5p^36s+5s5p^35d+5s5p^36d+5s5p^26p5d+5s5p^26p6d+5s5p^24f5d+5s5p^24f6d+5p^5 \ (odd\ parity) \end{array}$

 $\begin{array}{l} 5s5p^4 + 5p^25d + 5p^26d + 5p^27d + 5p^26s + 5p^27s + 5p^28s + 5p^25g + \\ 5p^26g + 5d^25g + 5d^26g + 5f^25g + 5f^26g + 5s5p^36p + 5s5p^34f + \\ 5s5p^35f + 5s5p^36f + 5s5p^26s5d + 5s5p^26s6d + 5s5p^25d6d + \\ 5s5p^26s^2 + 5s5p^25d^2 \ (even \ parity) \end{array}$

HFR+CPOL model:

Core-Polarization Potential:

Pd-like Te⁶⁺ [Kr]4d¹⁰ ionic core with $\alpha_d = 1.295 a_0^3$ (Fraga et al 1976, Handbook of Atomic Data, Amsterdam: Elsevier) and $r_c = \langle r \rangle_{4d} = 0.964 a_0$.

Semi-Empirical Optimization:

Odd parity: 45 experimental levels belonging to the configurations $5p^3+5p^2nl$ (nl=6p,7p,4f) (NIST database). Average deviation = 87 cm⁻¹.

Even parity: 81 experimental levels belonging to the configurations $5s5p^4+5p^2nl$ (nl=6s,7s,8s,5d,6d,7d)(NIST database). Average deviation = 217 cm⁻¹.

The transition probabilities and oscillator strengths for 439 strong (log gf > -1) E1 transitions in the spectral range 77-997 nm.

No lifetime measurements are available for comparison!

→ f-values have been compared with an independent model to assess the reliability: the MCDHF method has been used.

Multiconfiguration Dirac-Hartree-Fock (MCDHF) model:

Fully relativistic method that takes into account the QED effects

The GRASP2K package has been used (Jonsson et al 2007, CPC 177, 597)

Configuration space: generated from the multireference $5s^25p^3+5s5p^4+5s^25p^2nl$ (nl=5d,6s,6p) by single & double electron excitations involving the orbitals 4f,ns,np,nd (n=5,6,7,8) (102,359 CSFs).

Orbital optimization: EOL on the 70 levels of the multireference.

 \rightarrow No core-valence effets due to the opening of the n \leq 4 shells !

HFR+CPOL model:

Intravalence Correlation (48 configurations):

 $5p^{2}+5p6p+5p7p+5p4f+5p5f+5p6f+5d6p+5d6d+6s^{2}+5d^{2}+4f^{2}+5f^{2}+5s5p^{2}6s+5s5p^{2}5d+5s5p^{2}6d+5s5p6p5d+5s5p6p6d+5s5p4f5d+5s5p4f6d+5p^{4}+5p^{3}4f+5p^{3}5f+5p^{3}6f$ (odd parity)

 $5s5p^3+5p5d+5p6d+5p7d+5p6s+5p7s+5p8s+5p5g+$ $5p6g+5d^25g+5d6p+5d4f+5d5f+5d6f+5s5p^26p+5s5p^24f+$ $5s5p^25f+5s5p^26f+5s5p6s5d+5s5p6s6d+5s5p5d6d+$ $5s5p6s^2+5s5p5d^2+5p^36s+5p^35d+5p^36d$ (even parity)

HFR+CPOL model:

Core-Polarization Potential:

Pd-like Te⁶⁺ [Kr]4d¹⁰ ionic core with $\alpha_d = 1.295 a_0^3$ (Fraga et al 1976, Handbook of Atomic Data, Amsterdam: Elsevier) and $r_c = \langle r \rangle_{4d} = 0.964 a_0$.

Semi-Empirical Optimization:

Even parity: 14 experimental levels belonging to the configurations 5p²+5p6p (NIST database; Tauheed & Naz 2011, J. Korean Phys. Soc. 59, 2910). Average deviation = 100 cm⁻¹.

Odd parity: 55 experimental levels belonging to the configurations 5s5p³+5pnl (nl=6s,7s,8s,5d,6d,7d) (Tauheed & Naz 2011, J. Korean Phys. Soc. 59, 2910). Average deviation = 126 cm⁻¹.

The transition probabilities and oscillator strengths for 284 E1 transitions in the spectral range 52-901 nm.

Here again no lifetime measurements are available for comparison!

→ f-values have been also compared with a similar MCDHF model using GRASP2K.

Multiconfiguration Dirac-Hartree-Fock (MCDHF) model:

Configuration space: generated from the multireference $5s^{2}5p^{2}+5s^{2}5p^{3}+5s^{2}5pnl$ (nl=5d,6s,6p) by single & double electron excitations involving the orbitals 4f,ns,np,nd (n=5,6,7,8) (32,724 CSFs).

Orbital optimization: EOL on the 41 levels of the multireference.

 \rightarrow Here also no core-valence effets due to the opening of the n \leq 4 shells.

60% agreement excluding 9 transitions with convergence problem in MCDHF.

Te III: MCDHF convergence

5p² ³P₁ - 5p6s ¹P°₁ : convergence problem! (circles: Babushkin ; squares: Coulomb)

5p² ³P₂ - 5p6s ³P°₁ : converged! (diamonds: Babushkin ; triangles: Coulomb)

Rh III, Pd III & Ag III: no radiative rates available!

Lanthanide Series	^{140.12}	140,9077	144.24	(145)	150.36	151.96	157.25	158.93	162.50	^{164.93}	167.26	^{168.93}	173.04	174.97
	₅₈ Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	₆₇ Но	68 Er	∞Tm	₇₀ Yb	₇₁ Lu
Actinide Series	232.04	^{231,0359}	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)
	₉₀ Th	₉₁ Pa	₉₂ U	₉₃ Np	94 Pu	95 Am	96 Cm	97 Bk	98Cf	₉₉ Es	100 Fm	101 Md	102 NO	₁₀₃ Lr

21

Rh III, Pd III & Ag III: Computational Strategy

- Rh III: similar model as in the isoelectronic ion Ru II (Palmeri et al 2009, J Phys B 42, 165005) → good agreement with the TR-LIF lifetime measurements (within a few percents).
- Pd III: similar model as in Rh II (Quinet et al 2012, A&A 537, A74) → also good agreement with the TR-LIF lifetime measurements (within a few percents).
- Ag III: similar model as in Pd III adding one electron to the 4d subshell
- → An accuracy of a few percents for the radiative rates is expected at least for the strongest lines

Rh III, Pd III & Ag III: HFR+CPOL Models (CI)

- $\begin{array}{rl} & \mbox{Rh III: } 4d^7 + 4d^65s + 4d^66s + 4d^65d + 4d^66d + 4d^55s^2 + 4d^55p^2 + 4d^55d^2 + \\ & \mbox{4d}^55s6s \ (even \ parity) \ \& \ 4d^65p + 4d^66p + 4d^64f + 4d^65f + 4d^55s5p + \\ & \mbox{4d}^55s6p + 4d^55p6s \ (odd \ parity); \ CPOL: \ Rh \ V \ 4d^5 \ core \ with \quad \alpha_d = 3.31 \ a_0^3 \\ & \mbox{(Fraga et al, 1976)} \ \& \ r_c = <r >_{4d} = 1.43 \ a_0; \ Fit: \end{array}$
- Pd III: $4d^8 + 4d^75s + 4d^76s + 4d^75d + 4d^76d + 4d^65s^2 + 4d^65p^2 + 4d^65d^2 + 4d^65s6s + 4d^65s5d + 4d^65s6d$ (even parity) & $4d^75p + 4d^76p + 4d^74f + 4d^75f + 4d^65s5p + 4d^65s6p + 4d^65p5d + 4d^65p6s$ (odd parity)
- Ag III: $4d^9 + 4d^85s + 4d^86s + 4d^85d + 4d^86d + 4d^75s^2 + 4d^75p^2 + 4d^75d^2 + 4d^75s6s + 4d^75s5d + 4d^75s6d$ (even parity) & $4d^85p + 4d^86p + 4d^84f + 4d^85f + 4d^75s5p + 4d^75s6p + 4d^75p5d + 4d^75p6s$ (odd parity)

Rh III, Pd III & Ag III: HFR+CPOL Models (CPOL)

- Rh III: Rh V 4d⁵ core with α_d =3.31 a_0^3 (Fraga et al, 1976) & r_c =<r>_{4d}=1.43 a_0
- Pd III: Pd V 4d⁶ core with α_d =3.17 a_0^3 (Fraga et al, 1976) & r_c =<r>_{4d}=1.36 a_0
- Ag III: Ag V 4d⁷ core with α_d =3.04 a_0^3 (Fraga et al, 1976) & r_c =<r> $_{4d}$ =1.04 a_0

Rh III, Pd III & Ag III: HFR+CPOL Models (Fits)

- Rh III: 196 experimental levels belonging to 4d⁷, 4d⁶5s & 4d⁶5p (NIST database). Average deviations: 28 cm⁻¹ (even parity) & 84 cm⁻¹ (odd parity).
- Pd III: 177 experimental levels belonging to 4d⁸, 4d⁷5s, 4d⁷6s, 4d⁷5p & 4d⁶5s5p (NIST database). Average deviations: 80 cm⁻¹ (even parity) & 68 cm⁻¹ (odd parity).
- Ag III: 64 experimental levels belonging to 4d⁹, 4d⁸5s & 4d⁸5p (NIST database). Average deviations: 117 cm⁻¹ (even parity) & 66 cm⁻¹ (odd parity).

Experimental and Calculated Even-Parity Energy Levels in Ag III

E_{exp}^{a}	E_{calc}^{b}	ΔE	J	LS composition ^c
(cm^{-1})	(cm^{-1})	(cm^{-1})		(%)
				Even parity
0.0	0059	-59	5/2	99 4d ^{9 2} D
4609.2	4550	59	3/2	99 4d ^{9 2} D
63246.3	63269	-23	9/2	99 4d ⁸ (³ F)5s ⁴ F
65759.2	65714	46	7/2	90 $4d^8(^{3}F)5s {}^{4}F + 9 4d^8(^{3}F)5s {}^{2}F$
68139.1	68050	89	5/2	95 4d ⁸ (³ F)5s ⁴ F
69345.7	69268	77	3/2	$91 4d^8(^{3}\text{F})5s ^{4}\text{F} + 8 4d^8(^{1}\text{D})5s ^{2}\text{D}$
71686.4	71715	-29	7/2	$89 4d^8(^3\text{F})5s ^2\text{F} + 9 4d^8(^3\text{F})5s ^4\text{F}$
73928.9	74127	-198	5/2	$46 \ 4d^8(^{3}F)5s \ ^{2}F + 27 \ 4d^8(^{3}P)5s \ ^{4}P + 26 \ 4d^8(^{1}D)5s \ ^{2}D$
76402.3	76480	-78	5/2	$54 \ 4d^8(^{3}P)5s \ ^{4}P + 42 \ 4d^8(^{3}F)5s \ ^{2}F$
77408.7	77555	-147	3/2	$65 \ 4d^8(^{3}P)5s \ ^{4}P + 22 \ 4d^8(^{1}D)5s \ ^{2}D + 8 \ 4d^8(^{3}P)5s \ ^{2}P$
78893.2	78959	-66	1/2	98 4d ⁸ (³ P)5s ⁴ P
80127.4	80279	-151	3/2	$47 4d^8(^1\text{D})5s \ ^2\text{D} + 34 \ 4d^8(^3\text{P})5s \ ^4\text{P} + 14 \ 4d^8(^3\text{P})5s \ ^2\text{P}$
82228.4	82421	-193	5/2	70 $4d^{8}(^{1}D)5s ^{2}D + 17 4d^{8}(^{3}P)5s ^{4}P + 10 4d^{8}(^{3}F)5s ^{2}F$
85179.8	85157	23	3/2	76 4d ⁸ (³ P)5s ² P + 22 4d ⁸ (¹ D)5s ² D
85505.5	85421	84	1/2	97 4d ⁸ (³ P)5s ² P
85596.1	85293	303	9/2	$98 \text{ 4d}^8({}^{1}\text{G})5\text{s} {}^{2}\text{G}$
85724.1	85351	373	7/2	98 4d ⁸ (¹ G)5s ² G
111436.4	111551	-115	1/2	96 4d ⁸ (¹ S)5s ² S

Rh III, Pd III & Ag III: Radiative Rates

- Rh III: 2150 E1 transitions in the spectral region 76-519 nm
- Pd III: 2120 E1 transitions in the spectral region 61-975 nm
- Ag III: 440 E1 transitions in the spectral region 59-801 nm

Sample of E1 Radiative Rates (log gf > -0.5) in Rh III

$Wavelength^a$	Low	er level ^b		Upp	er level ^b		$\log g f^c$	gA^{c}
(nm)	$E (cm^{-1})$	Parity	J	$E (cm^{-1})$	Parity	J		(s^{-1})
85.228	2148	(e)	7/2	119481	(o)	7/2	-0.48	3.01E + 09
85.477	0	(e)	9/2	116991	(o)	9/2	-0.36	3.98E+09
85.988	0	(e)	9/2	116296	(o)	9/2	0.02	9.55E+09
86.133	3486	(e)	5/2	119586	(o)	5/2	-0.34	4.15E+09
86.200	15130	(e)	7/2	131138	(o)	5/2	-0.42	3.40E + 09
86.211	3486	(e)	5/2	119481	(o)	7/2	-0.28	4.73E+09
86.376	2148	(e)	7/2	117921	(o)	7/2	-0.15	6.29E + 09
86.622	0	(e)	9/2	115445	(o)	11/2	-0.47	3.04E+09
86.758	4322	(e)	3/2	119586	(o)	5/2	-0.44	3.18E + 09
87.038	13030	(e)	9/2	127923	(o)	7/2	0.27	1.64E + 10
87.076	2148	(e)	7/2	116991	(o)	9/2	-0.11	6.85E + 09
87.425	3486	(e)	5/2	117870	(o)	5/2	-0.44	3.14E + 09
87.786	13030	(e)	9/2	126944	(o)	9/2	-0.20	5.51E + 09
87.839	2148	(e)	7/2	115992	(o)	5/2	-0.33	4.06E+09
89.432	0	(e)	9/2	111817	(o)	9/2	-0.25	4.65E+09
89.658	19576	(e)	9/2	131111	(o)	7/2	0.03	8.84E+09
89.755	0	(e)	9/2	111414	(o)	11/2	0.06	9.55E+09
89.765	15130	(e)	7/2	126532	(o)	7/2	-0.08	6.89E + 09

Praseodymium: radiative parameters are sparse in Pr IV

29

Pr IV: HFR+CPOL Model

Similar model as in the isoelectronic ion Ce III (Biémont et al 2002, MNRAS 336, 1155) which gave a good agreement (within 5%) with the TR-LIF lifetime measurements.

 \rightarrow Accuracy of ~5% is expected in Pr IV

Intravalence Correlation:

 $4f^2 + 4fnp (n=6-7) + 5d^2 + 5dns (n=6-7) + 6s^2 + 5d6d + 4fnf (n=5-7) + 6p^2 (even parity)$

4fnd (n=5-7) + 4fns (n=6-8) + 5d6p + 4fng (n=5-6) + 6s6p (odd parity)

Pr IV: HFR+CPOL Model

Core-Polarization Potential:

Xe-like $Pr^{5+} 5p^6$ ionic core: $\alpha_d = 5.40 a_0^{-3}$ (Fraga et al, 1976) $r_c = \langle r \rangle_{5p} = 1.60 a_0$

Semi-Empirical Optimization:

Even parity: $50 4f^2+5d^2+4f6p+4f5f$ experimental levels (NIST database). Average deviation = 34 cm^{-1} .

Odd parity: $36 4f^2+5d^2+4f6p+4f5f$ experimental levels (NIST database). Average deviation = 95 cm^{-1} .

Pr IV: Radiative Rates

The transition probabilities and oscillator strengths have been calculated for :

- 199 strong (log gf \ge -2) E1 transitions in the spectral region 118 302 nm.
- 30 forbidden (M1+E2) transitions (gA > 0.01 s⁻¹) within the 4f² configuration in the spectral region 450 22,800 nm.

Pr IV: Forbidden transitions within 4f²

		L	1 (1 (0.1.)
Air wavelength ^a	Transition	$Type^{o}$	gA (This work)	gA (Other) ^c
(nm)			(s^{-1})	(s^{-1})
450.0902	${}^{3}H_{4} - {}^{1}I_{6}$	E2	1.63E-02	2.11E-02
498.3791	${}^{3}H_{5} - {}^{1}I_{6}$	M1	6.42E + 00	$6.29E{+}00$
550.3866	${}^{3}F_{2} - {}^{3}P_{2}$	M1+E2	6.84E-02	6.49E-02
560.9344	${}^{3}H_{6} - {}^{1}I_{6}$	M1	6.31E + 00	6.14E + 00
587.6972	${}^{3}F_{2} - {}^{3}P_{1}$	M1+E2	1.82E-01	9.11E-02
597.0146	${}^{3}F_{2} - {}^{3}P_{2}$	M1+E2	8.31E-01	8.00E-01
609.8402	${}^{3}F_{2} - {}^{3}P_{0}$	E2	1.10E-01	2.78E-03
613.1068	${}^{3}F_{4} - {}^{3}P_{2}$	E2	1.61E-01	3.06E-02
641.1683	${}^{3}F_{3} - {}^{3}P_{1}$	E2	1.67E-01	1.94E-02
650.9979	${}^{3}F_{4} - {}^{1}I_{6}$	E2	2.50E-02	2.87E-02
755.1150	${}^{1}G_{4} - {}^{3}P_{2}$	E2	8.68E-02	1.67E-02
810.2958	${}^{3}F_{2} - {}^{1}D_{2}$	M1	3.82E + 00	3.69E + 00
813.4261	${}^{1}G_{4} - {}^{1}I_{6}$	E2	2.28E-02	2.57E-02
915.5709	${}^{3}F_{3} - {}^{1}D_{2}$	M1	5.01E + 00	4.77E + 00
953.9696	${}^{3}F_{4} - {}^{1}D_{2}$	E2	2.31E-02	4.73E-03
1007.6623	${}^{3}H_{4} - {}^{1}G_{4}$	M1	1.56E + 00	$1.51E{+}00$
1286.7901	${}^{3}H_{5} - {}^{1}G_{4}$	M1	1.80E + 00	1.76E + 00
1458.4438	${}^{3}H_{4} - {}^{3}F_{4}$	M1	$1.39E{+}00$	1.37E + 00
1558.3623	${}^{3}H_{4} - {}^{3}F_{3}$	M1	4.27E-02	4.39E-02
1715.9100	${}^{1}D_{2} - {}^{3}P_{2}$	M1	3.09E + 00	
2125.8758	${}^{3}H_{5} - {}^{3}F_{4}$	M1	4.49E-01	
2139.3369	$^{1}D_{2} - ^{3}P_{1}$	M1	5.43E-01	
2851.4754	${}^{3}F_{3} - {}^{1}G_{4}$	M1	2.70E + 00	
3260.1682	${}^{3}F_{4} - {}^{1}G_{4}$	M1	1.97E + 00	
4469.0540	${}^{3}H_{5} - {}^{3}H_{6}$	M1	3.22E + 00	
4645.3791	${}^{3}H_{4} - {}^{3}H_{5}$	M1	2.72E + 00	2.60E + 00
7047.1330	${}^{3}F_{2} - {}^{3}F_{3}$	M1	2.72E + 00	
8669.5351	${}^{3}P_{1} - {}^{3}P_{2}$	M1	1.16E-01	
16185.9865	${}^{3}P_{0} - {}^{3}P_{1}$	M1	1.40E-02	
22746.4098	${}^{3}F_{3} - {}^{3}F_{4}$	M1	1.36E-02	

^a Deduced from experimental levels compiled by Martin et al. (1978)

^b Contributions larger than 1%

^c Dodson and Zia (2012)

Conclusions & Perspectives

- New radiative data have been calculated in Te II-III, Rh III, Pd III, Ag III & Pr IV using the HFR+CPOL method
- Accuracy of ~60% has been estimated through comparisons with independent MCDHF calculations in Te II-III
- Use of similar experimentally benchmarked models in isoelectronic ions for Rh III, Pd III, Ag III & Pr IV: expected accuracy of a few %
- Lifetime & branching fraction measurements are needed!
- Publications: Zhang et al (2013, A&A 551, A136); Zhang et al (2013, Phys Scr, to be published); Enzonga Yoca & Quinet (2013, in preparation)

Collaborations

• ASPECT group (UMONS, Belgium):

E. Biémont^{*}, V. Fivet, P. Quinet^{*}, P. Palmeri, W. Zhang (*also Université de Liège, Belgium)

• Université Marien Ngouabi (Congo-Brazzaville):

S. Enzonga Yoca

Thank you for your attention!