

Beam Emission Analysis on MAST

Absolute impurity density measurements

Stuart Henderson

L. Garzotti, M. O'Mullane, A. Patel and H. P. Summers

Diagnostic

VGA / 200 Hz / 6 Colours Simultaneously

	Channel 1			Channel 2		
	Red	Green	Blue	Red	Green	Blue
Emission	D_{α}	C ⁵⁺	He⁺	BE	Brem	Brem
Wavelength / nm	656.1	529.5	468.9	660	561.9	457.2

A. Patel et al, RSI, in preparation

Diagnostic

Beam Model: Shape

- Zoomed in view of SW beam
- Model multiplied by filter function and scaling factor

- Two horizontal (down-stream) comparisons
- Shape determined largely by stopping coefficient
 - ADAS adf21 '09

- Zoomed in view of SW beam
- Model multiplied by filter function and scaling factor

- Two vertical (Z) comparisons
- Shape determined mainly by beam focussing and divergence
 - astigmatic focus, 1/e ~ 0.6°

Model Scaling Parameter

• Experiment is ~75% less model

- Small trend of scaling observed as a function of density
- Unclear if scaling due to atomic cross-sections or beam model
- Possibly both?

Systematic Errors

- Non-local emission from plume ions Will cause an increase in density within r/a < 0.3
- CX emission from beam halo small error (< 15 %) due to dominant E/1 beam energy

Density Measurements

- Helium measurements suggest impurity densities under-dense by < x1.5
- Effective CX emission coefficients or beam model?

Impurity Transport

- Initial analysis suggests TEMs dominate an inward pinch in L-mode (1.25 < R < 1.4)
- Switching to H-mode reduces the anomalous pinch causing density 'ears' to form
- Scans of safety factor (q) imply more impurities reach the core at high-q

Conclusions

- 2D camera imaging 6 channels simultaneously on MAST
 - Matches D_{α} with different diagnostic
- Beam model used reproduces the experimentally measured beam shape both horizontally and vertically
 - Accurate beam focus and divergence and beam stopping coefficients
- Scaling factor to match absolute beam emission
 - Unclear if cross-section or beam model error
- Accurate picture of the low-Z impurity transport on MAST

Thank you for listening

Appendix: ΔZ_{eff} Profiles

Appendix: Beam Halo

- The halo population are neutrals at thermal energy created by CX between beam neutrals and plasma ions
 - halo population \approx beam population
 - cross section for CX into excited states drops rapidly with energy

