Energy levels, radiative rates, and lifetimes for Br-like ions with $Z \ge 38$

Kanti M. Aggarwal

Astrophysics Research Centre Queen's University Belfast BELFAST BT7 1NN Northern Ireland, UK

30 September 2014

-< ∃ >

Kanti M. Aggarwal Atomic Data for Br-like lons

Atomic Parameters

• ENERGY LEVELS $E_j - E_i = h\nu_{ij} = hc/\lambda_{ij}$ • RADIATIVE RATES (A, s⁻¹), OSCILLATOR STRENGTHS (f, dimensionless), LINE STRENGTHS (S, a.u.)

 λ is in Å.

・同ト ・ヨト ・ヨト

Э

lons

Sr IV (Z=38) Y V (Z=39) Zr VI (Z=40) Nb VII (Z=41)Mo VII (Z=42) **39 configurations**, i.e. 4s²4p⁵, 4s²4p⁴4d, 4s4p⁶, 4p⁶4d/4f, 4s²4p⁴4f, 4s4p⁵4d/4f, 4s²4p³4f²/4d²/4d4f, 4s²4p²4d³, 4s²4p4d⁴, 4s²4p²4d²4f, $4s4p^{3}4d^{3}, 4p^{5}4d^{2}, 3d^{9}4s^{2}4p^{5}4d/4f, 3d^{9}4s^{2}4p^{6}, 4s4p^{5}5\ell, 4p^{6}5\ell,$ $4s^{2}4p^{4}5\ell$, and $3d^{9}4s^{2}4p^{5}5\ell$ total 3990 levels W XL (Z=74) **46 configurations**, i.e. 4s²4p⁵, 4s²4p⁴4d, 4s²4p⁴4f, 4s4p⁶, $3d^{9}4s^{2}4p^{6}$, $4p^{6}4d/4f$, $4s4p^{5}4d/4f$, $4p^{3}4d^{2}/4f^{2}/4d4f$, $4s^{2}4p^{2}4d^{3}$, 4s²4p4d⁴, 4s²4p²4d²4f, 4s4p³4d³, 4p⁵4d², 3d⁹4s²4p⁵4d/4f,

э

<ロト < 四ト < 巨ト < 巨ト

GRASP0

PH Norrington

http://web.am.qub.ac.uk/DARC/

PAC

MF Gu, Can J. Phys. 86 (2008) 675

http://sprg.ssl.berkeley.edu/~mfgu/fac/

→ E → < E →</p>

Configurations for W XL

Index	Configuration	No. of Levels	Energy Range (Ryd)	GRASP1	GRASP2	RELAC
1	4s ² 4p ⁵	2 ⁰	0-7	Y	Y	Y
2	4s ² 4p ⁴ 4d	28	11–27	Y	Y	Y
3	4s ² 4p ⁴ 4f	30 ⁰	25-42	Y	Y	Y
4	4s4p ⁶	1	15	Y	Y	Y
5	4p ⁶ 4d	2	43-45	Y	Y	
6	4p ⁶ 4f	2 ⁰	58–59	Y	Y	
7	4s4p ⁵ 4d	23 ⁰	25-36	Y	Y	Y
8	4s4p ⁵ 4f	24	41–50	Y	Y	Y
9	4s ² 4p ³ 4d ²	141 ⁰	22-42	Y	Y	
10	4s ² 4p ³ 4f ²	221 <i>°</i>	52-71	Y	Y	
11	4s ² 4p ³ 4d4f	363	37–58	Y	Y	
12	4s ² 4p ² 4d ³	261	34–57	Y	Y	
13	4s ² 4p4d ⁴	180 ⁰	54-73	Y	Y	
14	4s ² 4p ² 4d ² 4f	1140 ⁰	49-73	Y	Y	
15	4s4p ³ 4d ³	678 ⁰	47-73	Y	Y	
16	4p ⁵ 4d ²	45 ⁰	53-64	Y	Y	
17	3d ⁹ 4s ² 4p ⁵ 4d	96 ⁰	131–147	Y	Y	Y
18	3d ⁹ 4s ² 4p ⁵ 4f	113	147-161	Y	Y	Y
19	3d ⁹ 4s ² 4p ⁶	2	120-126	Y	Y	Y
20	3p ⁵ 3d ¹⁰ 4s ² 4p ⁶	2 ⁰	155-178	Y	Y	Y
21	3p ⁵ 3d ¹⁰ 4s ² 4p ⁵ 4d	65	165-198	Y	Y	Y
22	3p ⁵ 3d ¹⁰ 4s ² 4p ⁵ 4f	36 ⁰	180-212	Y	Y	Y

æ

→ 三 → < 三 →</p>

Configurations for W XL ... cont.

Index	Configuration	No. of Levels	Energy Range (Ryd)	GRASP1	GRASP2	RELAC
23	4s4p ⁵ 5s	7 ⁰	65–74	Y	Y	
24	4s4p ⁵ 5p	18	68–80	Y	Y	
25	4s4p ⁵ 5d	23 ⁰	77–86	Y	Y	
26	4s4p ⁵ 5f	24	84–92	Y	Y	
27	4s4p ⁵ 5g	24 ⁰	87–96	Y	Y	
28	4p ⁶ 5s	1	82	Y	Y	
29	4p ⁶ 5p	2 ⁰	86-89	Y	Y	
30	4p ⁶ 5d	2	94–95	Y	Y	
31	4p ⁶ 5f	2 ⁰	100-101	Y	Y	
32	4p ⁶ 5g	2	104-105	Y	Y	
33	4s ² 4p ⁴ 5s	8	50-65	Y	Y	Y
34	4s ² 4p ⁴ 5p	21 <i>°</i>	54–72	Y	Y	Y
35	4s ² 4p ⁴ 5d	28	62-78	Y	Y	Y
36	4s ² 4p ⁴ 5f	30 ⁰	69–84	Y	Y	Y
37	4s ² 4p ⁴ 5g	30	73–88	Y	Y	
38	3d ⁹ 4s ² 4p ⁵ 5s	23 ⁰	172-185	Y	Y	Y
39	3d ⁹ 4s ² 4p ⁵ 5p	65	175-191	Y	Y	Y
40	3d ⁹ 4s ² 4p ⁵ 5d	96 ⁰	183-197	Y	Y	Y
41	3d ⁹ 4s ² 4p ⁵ 5f	113	190-203	Y	Y	Y
42	3d ⁹ 4s ² 4p ⁵ 5g	119 ⁰	194-207	Y	Y	
43	4s ² 4p ⁴ 6s	8	81–96		Y	
44	4s ² 4p ⁴ 6p	21 ⁰	81–99		Y	
45	4s ² 4p ⁴ 6d	28	87-102		Y	
46	4s ² 4p ⁴ 6f	30 <i>°</i>	91-106		Y	

GRASP1 and GRASP2: Calculations with 4128 levels and 4215 levels, respectively RELAC: Fournier, ADNDT 68 (1998) 1 only 10 even and 10 odd configurations

в

・ロト ・ 同ト ・ ヨト ・ ヨト

Mixing coefficients for levels of W XL

Index	Configuration	Level	Mixing coefficients
1	4s ² 4p ⁵	² P ⁰ _{3/2}	0.99(1)
2	4s ² 4p ⁵	² P ⁰ _{1/2}	0.99(2)
3	4s ² 4p ⁴ (³ P)4d	⁴ D _{3/2}	-0.61(3)+0.43(12)-0.29(28)+0.44(16)-0.26(20)-0.23(7)
4	4s ² 4p ⁴ (³ P)4d	⁴ P _{1/2}	0.37(15)-0.68(4)-0.24(9)+0.45(29)-0.32(23)
5	4s ² 4p ⁴ (³ P)4d	⁴ D _{5/2}	-0.35(17) 0.66(5) - 0.26(11) + 0.26(21) + 0.40(13) - 0.33(26)
6	4s ² 4p ⁴ (³ P)4d	${}^{4}F_{7/2}$	0.56(6)-0.31(19)+0.52(8)+0.52(18)-0.20(27)
7	4s ² 4p ⁴ (¹ S)4d	$^{2}D_{3/2}$	0.44(60)+0.33(12)+0.23(28)+0.21(22)+0.74(7)
8	4s ² 4p ⁴ (³ P)4d	${}^{2}F_{7/2}$	0.65(19)+0.51(8)+0.25(18)+0.47(27)
9	4s ² 4p ⁴ (³ P)4d	${}^{2}P_{1/2}$	0.25(15)+0.27(4)-0.60(9)+0.36(29)+0.48(23)-0.38(14)
10	4s ² 4p ⁴ (³ P)4d	${}^{4}F_{9/2}$	0.83(10)+0.55(24)
11	4s ² 4p ⁴ (³ P)4d	⁴ P _{5/2}	0.25(17)+0.46(11)-0.39(25)+0.71(66)
12	4s ² 4p ⁴ (³ P)4d	${}^{4}P_{3/2}$	0.26(60)-0.49(12)-0.42(28)+0.42(22)+0.40(16)+0.38(20)
13	4s ² 4p ⁴ (¹ D)4d	${}^{2}F_{5/2}$	-0.35(17)-0.39(5)+0.26(11)-0.22(25)+0.48(21)+0.43(13)+0.30(26)-0.32(66)
14	4s4p ⁶	${}^{2}S_{1/2}$	0.45(4)-0.28(9)+0.82(14)
15	4s ² 4p ⁴ (³ P)4d	⁴ D _{1/2}	-0.89(15)-0.31(9)+0.27(29)
16	4s ² 4p ⁴ (¹ D)4d	$^{2}D_{3/2}$	-0.53(60)+0.58(3)+0.21(12)+0.35(22)+0.31(16)-0.30(20)
17	4s ² 4p ⁴ (³ P)4d	${}^{4}F_{5/2}$	0.68(17)+0.35(25)+0.27(21)+0.50(13)-0.26(26)
18	4s ² 4p ⁴ (¹ D)4d	${}^{2}G_{7/2}$	0.37(6)+0.40(8)-0.77(18)+0.29(27)
19	4s ² 4p ⁴ (³ P)4d	$^{4}D_{7/2}$	0.62(6)+0.65(19)-0.33(8)-0.27(27)
20	4s ² 4p ⁴ (¹ D)4d	$^{2}P_{2/2}$	-0.61(12)-0.74(20)
21	4s ² 4p ⁴ (³ P)4d	$^{2}D_{5/2}$	0.27(17)+0.28(5)-0.29(11)+0.60(21)-0.43(13)+0.44(26)
22	4s ² 4p ⁴ (³ P)4d	² P _{3/2}	-0.32(60)-0.37(3)+0.69(22)-0.50(16)
	,	5/2	

Atomic Data for Br-like lons

<ロト < 四ト < 回ト < 回ト -

E

Kanti M. Aggarwal

Energy levels of W XL (in Ryd)

Index	Configuration	Level	NIST	GRASP1	GRASP2	FAC1	FAC2	RELAC
1	4s ² 4p ⁵	² P ⁰ _{3/2}	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	4s ² 4p ⁵	² P ⁰ _{1/2}	6.7632	6.8419	6.7980	6.8104	6.8102	6.8213
3	4s ² 4p ⁴ (³ P)4d	⁴ D _{3/2}		11.0344	11.2569	11.2699	11.2780	11.0971
4	4s ² 4p ⁴ (³ P)4d	⁴ D _{5/2}		11.2042	11.4241	11.4371	11.4450	11.2652
5	4s ² 4p ⁴ (³ P)4d	⁴ P _{1/2}	11.2290	11.2068	11.4280	11.4398	11.4475	11.2788
6	4s ² 4p ⁴ (³ P)4d	⁴ F _{7/2}	11.4100	11.4084	11.6105	11.6220	11.6296	11.4609
7	4s ² 4p ⁴ (¹ S)4d	² D _{3/2}		12.0304	12.1503	12.1597	12.1673	12.0890
8	4s ² 4p ⁴ (³ P)4d	$^{2}F_{7/2}$	12.5338	12.5350	12.7466	12.7644	12.7724	12.5901
9	4s ² 4p ⁴ (³ P)4d	² P _{1/2}	12.5852	12.5745	12.8145	12.8296	12.8367	12.6535
10	4s ² 4p ⁴ (³ P)4d	⁴ F _{9/2}		12.6163	12.8113	12.8290	12.8369	12.6604
11	4s ² 4p ⁴ (³ P)4d	⁴ P _{5/2}		13.6091	13.7413	13.7548	13.7621	13.6743
12	4s ² 4p ⁴ (³ P)4d	⁴ P _{3/2}	13.8791	13.9843	14.0922	14.1067	14.1136	14.0390
13	4s ² 4p ⁴ (¹ D)4d	² F _{5/2}	14.0930	14.2332	14.3243	14.3387	14.3457	14.2659
14	4s4p ⁶	² S _{1/2}	14.9266	15.0298	15.3667	15.3781	15.3795	15.0905

GRASP1: present calculations from the GRASP code with 63 levels GRASP2: present calculations from the GRASP code with 4128 levels FAC1: present calculations from the FAC code with 4128 levels FAC2: present calculations from the FAC code with 11,525 levels RELAC: Fournier, ADNDT 68 (1998) 1

> NIST energies are uncertain by up to 0.05 Ryd but additional CI makes the comparison worse Aggarwal & Keenan, Can. J. Phys. **92** (2014) 545

Э

イロト イボト イヨト イヨト

Comparison of f- values for some transitions of W XL.

1	J	GRASP1	GRASP3	FAC1	FAC2	GRASP4	RELAC	R3	R4
1	3	2.724-3	3.047-3	3.071-3	3.073-3	2.780-3	2.903-3	7.3-1	9.2-1
1	4	1.929-3	2.255-3	2.302-3	2.315-3	1.830-3	2.377-3	7.4-1	9.3-1
1	5	6.938-3	6.545-3	6.453-3	6.450-3	5.600-3	7.760-3	8.0-1	9.5-1
1	7	2.236-4	3.027-4	3.161-4	3.166-4	2.130-4	1.148-4	8.7-1	1.1-0
1	9	3.192-3	3.178-3	2.786-3	2.748-3	1.690-3	3.865-3	1.0-0	1.1-0
1	11	5.333-6	3.228-3	3.169-3	3.105-3	1.440-3	3.798-5	9.0-1	1.0-0
1	12	2.891-1	2.652-1	2.670-1	2.673-1	2.590-1	3.018-1	7.9-1	9.5-1
1	13	5.990-1	5.187-1	5.225-1	5.232-1	5.130-1	5.633-1	8.0-1	9.6-1
1	14	1.887-1	1.523-1	1.563-1	1.567-1	1.620-1	1.585-1	7.2-1	9.2-1
1	15	1.365-3	1.289-3	1.272-3	1.269-3	1.240-3		7.5-1	9.1-1
1	16	1.757-4	1.340-4	1.358-4	1.380-4	1.010-4		9.3-1	1.1-0
1	17	2.684-2	2.683-2	2.657-2	2.662-2	2.510-2	2.885-2	8.4-1	9.7-1
1	20	7.276-2	2.461-1	2.617-1	2.639-1	6.630-2	9.385-2	8.4-1	9.5-1
1	22	2.747-3	9.173-1	9.251-1	9.262-1	2.860-3	1.018-0	8.4-1	9.7-1
1	23	1.063-0	2.784-2	2.029-2	1.993-2	9.350-1	1.210-2	8.6-1	9.7-1
1	24	5.970-1	3.158-1	3.011-1	2.993-1	5.380-1	5.843-1	8.4-1	9.6-1
1	25	5.270-1	4.261-1	4.232-1	4.231-1	4.430-1	4.730-1	8.1-1	9.5-1
1	26	1.511-1	2.747-2	2.646-2	2.613-2	1.130-1	9.165-2	8.3-1	9.7-1
1	28	4.291-2	3.220-2	3.171-2	3.168-2	3.540-2		8.5-1	9.7-1
1	29	6.720-5	2.096-4	1.350-4	1.268-4	1.680-4		1.8-1	1.6-0
1	30	8.904-5	1.945-6			2.020-6		9.7-1	1.1-0
1	31	3.429-4	5.839-4	5.745-4	5.716-4	5.860-4		7.7-1	9.8-1

GRASP1: present calculations from the GRASP code with 63 levels GRASP3: present calculations from the GRASP code with 4128 levels FAC1: present calculations from the FAC code with 4128 levels FAC2: present calculations from the FAC code with 11,525 levels GRASP4: 638 level calculation of S. Aggarwal et al, Can J. Phys. 91 (2013) 394 R4 RELAC: Fournier, ADNDT 68 (1998) 1

> Calculations with large CI are consistent but differ considerably with others Aggarwal & Keenan, Can. J. Phys. **92** (2014) 545

Kanti M. Aggarwal Atomic Data for Br-like Ions

Comparison of W XL lifetimes (τ , s).

Index	Configuration	Level	GRASP3	GRASP4a	GRASP4b	GRASP4a (Dominant A- values, s ⁻¹)
2	4s ² 4p ⁵	² P ⁰ _{1/2}	1.314-07	1.312-07	1.37-07	1–2 M1=7.29+06
3	4s ² 4p ⁴ (³ P)4d	⁴ D _{3/2}	3.218-10	3.422-10	3.43-10	1-3 E1=2.92+09
6	4s ² 4p ⁴ (³ P)4d	⁴ F _{7/2}	4.765-03	4.119-03	6.07-03	1-6 M2=1.64+02, 4-6 M1=7.84+01
7	4s ² 4p ⁴ (¹ S)4d	² D _{3/2}	2.692-09	3.595-09	3.82-09	1-7 E1=2.62+08
8	4s ² 4p ⁴ (³ P)4d	² F _{7/2}	2.238-05	2.209-05	8.00-05	1-8 M2=1.25+04, 4-8 M1=2.44+04
9	4s ² 4p ⁴ (³ P)4d	² P _{1/2}	1.046-10	1.633-10	2.18-10	1-9 E1=4.56+09, 2-9 E1=1.56+09
10	4s ² 4p ⁴ (³ P)4d	⁴ F _{9/2}	3.703-05	3.731-05	1.27-01	6-10 M1=2.68+04
16	4s ² 4p ⁴ (³ P)4d	⁴ F _{3/2}	5.133-10	5.615-10	3.73-09	2-16 E1=1.51+09
17	4s ² 4p ⁴ (³ P)4d	⁴ F _{5/2}	2.070-11	2.165-11	2.16-11	1-17 E1= 4.62+10
18	4s ² 4p ⁴ (¹ D)4d	² G _{7/2}	2.604-07	2.554-07	4.74-04	6-18 M1=3.03+6
19	4s ² 4p ⁴ (³ P)4d	⁴ D _{7/2}	1.356-07	1.349-07	7.91-05	8-19 M1=2.09+06, 10-19 M1=2.99+06
20	4s ² 4p ⁴ (¹ D)4d	² P _{3/2}	1.317-12	4.736-12	4.77-12	1-20 E1=2.11+11
21	4s ² 4p ⁴ (¹ D)4d	² G _{9/2}	2.445-07	2.404-07	8.39-05	10-21 M1=3.10+06
27	4s ² 4p ⁴ (¹ D)4d	² F _{7/2}	2.046-07	2.018-07	6.41-04	10-27 M1=2.69+06
29	4s ² 4p ⁴ (¹ D)4d	² P _{1/2}	7.449-13	6.751-13	7.47-10	2-29 E1=1.48+12
30	4s ² 4p ⁴ (³ P)4d	² D _{3/2}	6.228-13	5.512-13	8.66-08	2-30 E1=1.81+12

GRASP3: present calculations from the GRASP code with 4128 levels GRASP4a: present calculations from the GRASP code with 638 levels GRASP4b: 638 level calculation of S. Aggarwal et al, Can. J. Phys. 91 (2013) 394

GRASP4b τ differ by over 5 orders of magnitude Aggarwal & Keenan, Can. J. Phys. **92** (2014) 545

э

イロト イポト イヨト イヨト

Configurations for Br-like ions

Index	Configuration	No. of Level	Sr IV	ΥV	Zr VI	Nb VII	Mo VIII
1	4s ² 4p ⁵	2 ^o	0.0 - 0.1	0.0 - 0.1	0.0 - 0.1	0.0 - 0.2	0.0 - 0.2
2	4s ² 4p ⁴ 4d	28	1.8 – 2.6	2.1 - 3.0	2.4 – 3.5	2.7 – 3.9	3.0 - 4.3
3	4s ² 4p ⁴ 4f	30°	3.1 – 3.5	3.8 - 4.3	4.6 - 5.2	5.2 - 5.9	5.8 - 6.9
4	4s4p ⁶	1	1.5 – 1.5	1.7 – 1.7	1.9 – 1.9	2.1 – 2.1	2.3 - 2.3
5	4p ⁶ 4d	2	5.5 – 5.5	6.4 - 6.4	6.9 - 7.2	7.5 - 8.2	8.2 - 9.1
6	4p ⁶ 4f	2º	6.9 - 7.0	8.1 – 8.4	9.3 – 9.6	10.3 – 10.8	11.8 – 12.1
7	4s4p ⁵ 4d	23°	3.1 – 3.6	3.6 - 4.3	4.0 - 5.1	4.5 - 5.7	5.1 – 5.9
8	4s4p ⁵ 4f	24	4.6 - 5.7	5.5 – 6.9	6.5 - 8.0	7.4 – 8.1	8.3 - 9.0
9	4s ² 4p ³ 4d ²	141 ^o	3.6 - 5.0	4.1 – 5.7	4.7 - 6.6	5.2 - 7.4	5.8 - 8.1
10	4s ² 4p ³ 4f ²	221°	6.5 – 7.2	8.0 - 8.6	9.4 – 10.3	10.7 – 11.8	12.0 - 13.6
11	4s ² 4p ³ 4d4f	363	4.9 - 6.1	6.0 - 7.3	7.0 - 8.6	8.0 - 9.9	8.9 – 11.4
12	4s ² 4p ² 4d ³	261	5.7 – 7.3	6.5 - 8.6	7.4 – 9.8	8.1 – 11.0	9.0 - 12.2
13	4s ² 4p4d ⁴	180 ^o	8.2 - 9.7	9.5 – 11.3	10.8 – 12.9	11.8 – 14.4	13.1 – 16.0
14	4s ² 4p ² 4d ² 4f	1140 ^o	7.0 - 8.5	8.3 – 10.2	9.5 – 11.6	10.7 – 13.4	11.9 – 15.2
15	4s4p ³ 4d ³	678 ^o	6.5 – 9.2	7.4 – 10.7	8.4 – 12.2	9.3 – 13.7	10.3 – 15.1
16	4p ⁵ 4d ²	45°	6.8 - 7.5	7.7 – 8.4	8.7 – 9.6	9.6 - 10.8	10.6 - 11.8
17	3d ⁹ 4s ² 4p ⁵ 4d	96°	10.3 – 11.4	12.1 – 13.4	13.9 – 15.5	15.9 – 17.7	17.9 – 19.9
18	3d ⁹ 4s ² 4p ⁵ 4f	113	11.8 – 12.1	14.1 – 14.5	16.4 – 16.9	18.8 – 19.5	21.2 – 22.1
19	3d ⁹ 4s ² 4p ⁶	2	8.4 - 8.6	9.9 – 10.1	11.5 – 11.7	13.2 – 13.4	15.0 – 15.2
20	4s4p ⁵ 5s	7 ^o	3.8 - 4.4	4.6 - 5.3	5.3 - 6.2	6.3 – 7.2	7.3 – 8.2
21	4s4p ⁵ 5p	18	4.1 – 4.8	5.0 - 5.8	5.9 - 6.8	6.9 - 7.8	7.9 – 9.0
22	4s4p ⁵ 5d	23°	4.6 - 5.3	5.7 – 6.4	6.8 - 7.6	7.9 – 8.8	9.1 - 10.1
23	4s4p ⁵ 5f	24	5.1 – 5.7	6.3 - 7.0	7.5 – 8.3	8.8 - 9.7	10.2 – 11.1
24	4s4p ⁵ 5g	24 ^o	5.1 – 5.7	6.4 - 7.0	7.7 – 8.4	9.1 – 9.9	10.5 – 11.4

æ

▶ < ≣ >

ъ

Index	Configuration	No. of Level	Sr IV	ΥV	Zr VI	Nb VII	Mo VIII
25	4p ⁶ 5s	1	6.0 - 6.0	7.1 – 7.1	8.2 - 8.2	9.3 – 9.3	10.5 – 10.5
26	4p ⁶ 5p	2 ^o	6.3 - 6.3	7.4 – 7.6	8.7 - 8.7	9.8 - 10.0	11.1 – 11.2
27	4p ⁶ 5d	2	6.9 - 6.9	8.1 – 8.1	9.5 – 9.5	10.9 – 10.9	12.3 – 12.3
28	4p ⁶ 5f	2 ^o	7.2 – 7.3	8.7 - 8.7	10.2 - 10.3	11.7 – 11.8	13.4 – 13.5
29	4p ⁶ 5g	2	7.3 – 7.3	8.8 - 8.8	10.4 - 10.4	12.0 - 12.0	13.7 – 13.7
30	4s ² 4p ⁴ 5s	8	2.2 – 2.6	2.8 – 3.3	3.5 - 4.0	4.2 - 4.8	4.9 - 5.6
31	4s ² 4p ⁴ 5p	21°	2.5 – 2.9	3.2 - 3.7	4.0 - 4.6	4.8 - 5.4	5.6 - 6.4
32	4s ² 4p ⁴ 5d	28	3.0 - 3.5	3.9 - 4.4	4.8 - 5.4	5.8 - 6.4	6.8 - 7.5
33	4s ² 4p ⁴ 5f	30°	3.5 – 3.9	4.5 – 4.9	5.4 - 6.2	6.7 - 7.4	7.8 - 8.6
34	4s ² 4p ⁴ 5g	30	3.5 – 3.9	4.6 - 5.0	5.7 – 6.2	6.9 - 7.5	8.1 – 8.8
35	3d ⁹ 4s ² 4p ⁵ 5s	23°	10.8 – 11.2	12.9 – 13.3	15.2 – 15.7	17.6 – 18.1	20.1 – 20.7
36	3d ⁹ 4s ² 4p ⁵ 5p	65	11.1 – 11.7	13.3 – 14.0	15.7 – 16.4	18.2 – 19.0	20.8 - 21.7
37	3d ⁹ 4s ² 4p ⁵ 5d	96 ^o	11.7 – 12.1	14.1 – 14.6	16.6 – 17.2	19.2 – 19.9	22.0 - 22.8
38	3d ⁹ 4s ² 4p ⁵ 5f	113	12.2 – 12.5	14.7 – 15.1	17.4 – 17.8	20.2 - 20.7	23.1 – 23.7
39	3d ⁹ 4s ² 4p ⁵ 5g	119 ⁰	12.2 – 12.5	14.8 – 15.2	17.5 – 18.0	20.4 - 20.9	23.4 - 24.0

æ

▶ < ≣ >

.

Energies (Ryd) for the levels of Mo VIII.

Index	Configuration	Level	NIST	GRASP2a	GRASP2b	GRASP3	FAC1	FAC2	FAC3
1	4s ² 4p ⁵	² P ⁰ _{3/2}	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
2	4s ² 4p ⁵	² P ⁰ _{1/2}	0.21209	0.20770	0.20676	0.20776	0.21363	0.20913	0.20962
3	4s4p ⁶	² S _{1/2}	2.13082	2.12679	2.27306	2.25774	2.28111	2.31642	2.31460
4	4s ² 4p ⁴ (³ P)4d	⁴ D _{5/2}	2.81307	2.79438	2.94319	2.88062	2.95802	2.95864	2.95659
5	4s ² 4p ⁴ (³ P)4d	⁴ D _{7/2}		2.80088	2.94980	2.88823	2.96622	2.96738	2.96505
6	4s ² 4p ⁴ (³ P)4d	⁴ D _{3/2}	2.82436	2.80908	2.95788	2.89461	2.97206	2.97229	2.97051
7	4s ² 4p ⁴ (³ P)4d	⁴ D _{1/2}		2.83678	2.98561	2.92291	3.00109	3.00186	3.00021
8	4s ² 4p ⁴ (³ P)4d	⁴ F _{9/2}		2.94108	3.09038	3.02231	3.09862	3.09795	3.09621
9	4s ² 4p ⁴ (³ P)4d	${}^{4}F_{7/2}$		3.00278	3.15221	3.08273	3.15778	3.15727	3.15638
10	4s ² 4p ⁴ (¹ D)4d	² P _{1/2}	3.01450	3.04338	3.19233	3.12243	3.19970	3.19842	3.19928
12	4s ² 4p ⁴ (³ P)4d	⁴ F _{3/2}	3.05879	3.07138	3.22305	3.13829	3.22889	3.21173	3.21195
11	4s ² 4p ⁴ (³ P)4d	${}^{4}F_{5/2}$	3.07954	3.10018	3.22072	3.14797	3.23226	3.22651	3.22557
13	4s ² 4p ⁴ (³ P)4d	⁴ P _{1/2}	3.07039	3.07388	3.24975	3.17990	3.25085	3.25444	3.25614
14	4s ² 4p ⁴ (³ P)4d	⁴ P _{3/2}	3.09398	3.10968	3.25906	3.18700	3.26494	3.26378	3.26468
15	4s ² 4p ⁴ (¹ D)4d	² D _{3/2}	3.11072	3.13738	3.28654	3.21432	3.29200	3.29015	3.29142

GRASP2a: 470 level calculations of Singh et al [Phys. Scr. 88 (2013) 035301]

GRASP2b: present calculations from the GRASP code with 470 levels

GRASP3: present calculations from the GRASP code with 3990 levels

FAC1: present calculations from the FAC code with 470 levels

FAC2: present calculations from the FAC code with 3990 levels

FAC3: present calculations from the FAC code with 12,137 levels

With the same CI, FAC and GRASP agree, but results of Singh et al differ by up to 0.15 Ryd

э

イロト イポト イヨト イヨト

and cannot be reproduced

Tran	sition	GRA	SP2a		GRASP2b		GRAS	P3
	J	A	f	A	f	А	f	Ratio
1	3	5.30+08	1.11-02	1.2340+09	2.2440-02	1.0518+09	1.9249-02	4.4-1
1	4	1.17+07	4.44-04	1.5391+07	5.1968-04	2.0308+07	7.0217-04	9.4-1
1	6	7.76+06	1.94-04	9.2931+06	2.0713-04	1.1017+07	2.5149-04	9.8-1
1	7	4.75+06	5.83-05	5.3458+06	5.8707-05	5.6982+06	6.4052-05	9.8-1
1	10	1.28+07	1.35-04	1.4776+07	1.4070-04	2.1200+08	6.1728-03	9.6-1
1	11	1.41+08	4.42-03	1.4199+08	4.0235-03	1.0789+07	1.0527-04	1.4-0
1	12	3.35+05	6.96-06	1.0270+06	1.9240-05	5.1806+05	1.0018-05	9.2-1
1	13	4.67+08	4.76-03	4.7004+08	4.3119-03	5.9759+08	5.6133-03	8.0-1
1	14	5.50+08	1.12-02	4.8841+08	8.9413-03	7.0038+08	1.3157-02	9.8-1
1	15	3.37+08	6.71-03	2.5187+08	4.5310-03	2.5390+08	4.6958-03	9.1-1
1	17	1.60+08	4.66-03	1.1567+08	3.0399-03	1.5603+08	4.2219-03	8.3-1
1	18	6.97+07	1.34-03	6.2901+07	1.0945-03	1.7608+07	3.1416-04	1.3-0
1	19	3.82+08	1.08-02	2.5563+08	6.5103-03	2.6359+08	6.8923-03	9.8-1
1	22	1.96+08	5.33-03	1.4639+08	3.6141-03	3.0306+08	7.6802-03	1.0-0
1	23	3.24+08	7.92-03	3.1381+08	6.9890-03	3.9608+08	9.0568-03	8.2-1
1	25	1.68+09	2.36-02	1.4350+09	1.8453-02	4.0018+09	5.5609-02	9.9-1
1	26	3.16+02	6.43-09	2.1868+07	4.0909-04	2.1104+09	4.2754-02	1.1-0
1	27	1.56+11	1.85-00	1.3479+11	1.4662-00	1.2527+11	1.5107-00	9.3-1
1	28	1.63+11	9.52-01	1.5331+11	8.2221-01	9.7116+10	5.7290-01	9.0-1
1	29	1.91+11	3.25-00	1.0623+10	5.5136-02	6.3978+10	3.5747-01	8.0-1
1	30	1.29+10	7.24-02	1.7896+11	2.7997-00	1.6154+11	2.8075-00	9.1-1
1	31	7.17+09	7.55-02	7.6240+09	7.3961-02	7.1045+09	7.6658-02	8.8-1
2	3	2.40+08	1.18-02	5.3588+08	2.2736-02	4.7253+08	2.0219-02	4.1-1
2	6	3.21+05	1.82-05	1.0080+03	5.0645-08	1.2890-00	6.6505-11	1.2+3

A- values of Singh et al differ by up to 5 orders of magnitude and cannot be reproduced

э

イロト イポト イヨト イヨト

Comparison of lifetimes (τ, s) for the levels of Zr VI

Index	Configuration	Level	GRASP2a	GRASP2b	GRASP3	GRASP2b (dominant A- values, s ⁻¹)
1	4s ² 4p ⁵	² P ^o _{3/2}				
2	4s ² 4p ⁵	² P ⁰ / _{1/2}	1.47-02	1.630-02	1.583-02	1 - 2 M1 = 6.126+01
3	4s4p ⁶	² S _{1/2}	6.31-10	5.650-10	6.560-10	1 - 3 E1 = 1.234+09, 2 - 3 E1 = 5.359+08
7	4s ² 4p ⁴ (³ P)4d	⁴ D _{1/2}	1.91-07	9.679-08	9.501-08	1 - 7 E1 = 5.346+06, 2 - 7 E1 = 4.986+06
8	4s ² 4p ⁴ (³ P)4d	⁴ F _{9/2}	9.02+01	2.876-01	3.117-01	5 - 8 M1 = 3.468+00
9	4s ² 4p ⁴ (³ P)4d	⁴ F _{7/2}	1.80-01	8.920-02	9.182-02	1 - 9 M2 = 3.848+00, 5 - 9 M1 = 3.250+00, 8 -
10	4s ² 4p ⁴ (¹ D)4d	² P _{1/2}	1.81-07	1.150-08	4.717-09	2 - 10 E1 = 7.218+07
11	4s ² 4p ⁴ (³ P)4d	⁴ F _{5/2}	5.83-09	7.043-09	1.401-08	1 - 11 E1 = 1.420+08
12	4s ² 4p ⁴ (³ P)4d	⁴ F _{3/2}	6.16-08	2.081-08	1.916-08	2 - 12 E1 = 4.704+07
15	4s ² 4p ⁴ (¹ D)4d	² D _{3/2}	3.16-09	1.882-09	1.529-09	1 - 15 E1 = 2.519+08, 2 - 15 E1 = 2.795+08
16	4s ² 4p ⁴ (³ P)4d	${}^{2}F_{7/2}$	4.11-01	2.171-02	2.241-02	5 - 16 M1 = 1.845+01, 8 - 16 M1 = 1.447+01
20	4s ² 4p ⁴ (¹ D)4d	² G _{7/2}	2.42-01	1.810-02	1.879-02	5 - 20 M1 = 1.393+01, 9 - 20 M1 = 2.029+01
21	4s ² 4p ⁴ (¹ D)4d	² G _{9/2}	9.88+00	1.609-02	1.686-02	8 - 21 M1 = 4.981+01
24	4s ² 4p ⁴ (¹ D)4d	² F _{7/2}	2.26-00	7.230-03	7.502-03	5 - 24 M1 = 4.515+01, 8 - 24 M1 = 5.213+01
25	4s ² 4p ⁴ (¹ S)4d	² D _{3/2}	6.89-10	3.240-10	2.128-10	1 - 25 E1 = 1.435+09, 2 - 25 E1 = 1.651+09
26	4s ² 4p ⁴ (¹ S)4d	² D _{5/2}	1.26-04	4.573-08	4.738-10	1 - 26 E1 = 2.187+07
		,				

$\tau\text{-}$ values of Singh et al differ by up to 4 orders of magnitude and cannot be reproduced

э

-< ∃ >

- Results of energy levels, radiative rates and lifetimes reported by Singh *et al* [Phys. Scr. **88** (2013) 035301] for Br-like ions cannot be reproduced. Although energies differ by only up to 0.15 Ryd, A and τ differ by up to 5 orders of magnitude.
- Improvements and extensions have been made over the available atomic data for Br-like ions,
- but scope remains for further improvements.
- Detailed results along with comparisons will soon be available in Phys. Scr. 89 (2014) 000000