Empirical model of fast-ion charge exchange emission in MAST

ADAS Workshop 2014

Warsaw

O. M. Jones^[1,2], S. S. Henderson^[2,3] and C. A. Michael^[2,*]

[1] Durham University, Durham, UK

[2] Culham Centre for Fusion Energy, Abingdon, UK

[3] University of Strathclyde, Glasgow, UK

[*] Present address: Australian National University, Canberra

Introduction

- Fast-Ion Deuterium Alpha (FIDA) spectroscopy provides a spatially, spectrally and temporally-resolved measurement of the energetic-ion population in fusion plasmas.
- Based on CX reaction between fast ions and injected beam neutrals:

$$D_{f}^{+} + D_{b}^{0} \rightarrow D_{f}^{0*} + D_{f}^{+}$$

• System installed on the Mega-Amp Spherical Tokamak (MAST) has toroidal and vertical views, sensitive mostly to passing and trapped ions respectively.

• Useful for studies of energetic-particle transport by MHD instabilities (kink modes, Alfvén eigenmodes, magnetic reconnection).

Objective

• Map synthetic fast-ion distributions from the Monte Carlo NUBEAM module^[1] of the TRANSP code^[2] to synthetic FIDA spectra for comparison with measurements:

- The FIDAsim code^[3], developed by Heidbrink et al. at UC Irvine/GA:
 - Takes plasma profiles, equilibrium, beam power and fast-ion distribution from TRANSP output.
 - Maps profiles, beam geometry and FIDA sightlines onto grid.
 - Solves collisional-radiative model internally to determine FIDA radiance per marker particle.
 - Sums radiance over marker particles to generate spectra for each viewing chord.

[3] W.W. Heidbrink et al., Commun. Comp. Phys. 10 (2011), 716 – 741

Motivation

- FIDAsim has proven successful in modelling FIDA spectra from DIII-D^[4], ASDEX-Upgrade^[5] and MAST^[6].
- Using the Monte Carlo approach for ~10⁶ fast ions + ~10⁵ beam neutrals and solving the full collisional-radiative model for each marker is time consuming!
- …although a recent re-write of FIDAsim from IDL to FORTRAN-90 by Benedikt Geiger at IPP Garching has delivered an order of magnitude speed-up^[7].
- ADAS should provide the required *derived* rate coefficients in a usable format, obviating the need for an internal solver.
- Inspired by development of the NEBULA code for modelling of beam emission in MAST (S.H.).

Weight functions

- Sensitivity of FIDA measurements has a complicated dependence on velocity space coordinates of fast ions.
- In each view, the sensitivity is parametrised by LOS-beam angle, LOS-field angle and beam-field angle.
- Described most naturally in terms of *weight functions* in velocity space:

$$I_{\lambda} = \iint w_{\lambda}(v_{\parallel}, v_{\perp}; \bar{\theta}) f(v_{\parallel}, v_{\perp}) dv_{\parallel} dv_{\perp}$$

Atomic physics

- Neutral density along beam path obtained after mapping plasma profiles (n_e, T_e) onto path:
 - ADF21 files in /adas home directory interrogated directly by subroutine read_adf21.
 - Pure deuterium plasma (although inclusion of impurities should be straightforward, cf. NEBULA).
- Distribution of excited states (bundle-*n*) in beam determined from local plasma conditions:
 - ADF22 files, generated using ADAS312 and bundled with source code, interrogated directly by subroutine read_adf22.
 - Pure deuterium plasma (although inclusion of impurities should be straightforward).

- CX effective emission coefficient for Balmer alpha (656.1 nm) line:
 - ADF12 file interrogated using ADAS303 to provide look-up table.
 - n=2 donor coefficient approximated as 0.25*2s + 0.75*2p donor coefficients.
 - n=4 donor coefficient approximated as (0.25 * n=3 donor coefficient).
 - Truncated at n=4 due to negligible donor density above this level.

• Beam neutral – fast ion relative velocities averaged over narrow range of gyroangles contributing to signal at each point in velocity space, at each radius.

FIDA emission

Ongoing work

- Including halo neutral contribution to FIDA CX emission:
 - beam stopping × (CX rate/ionization rate) gives birth rate of halo neutrals at each point along beam.
 - Diffusion of halo neutrals from source taken to reach steady state with ionization.
 - Solution given by sum of Bessel functions convolved with Gaussian beam profile.
 - Easier calculation for CX, since relative velocity = fast-ion velocity.
- Investigating discrepancy of radial profile with respect to data:
 - Modelled profiles shifted inward by approximately 7 cm compared to measurements.
 - Suspect faulty correction for FLR effects (in TRANSP output?).
 - Need to triple-check spatial calibration via beam emission redshift (*in situ* alignment data to be analysed).

