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Outline

e Brief update on SXBs
for Mo* and W**

 Brief review of excited
state ionization, progress
for light species.

— An interesting case
for neutral nitrogen

e Future plans
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Impurity influx diagnostics
using SXB coefficients

The intensity of a spectral line can be related to its influx rate [Behringer PPCF
31 2059 (1989)]. The number of 'ionizations per photon' (or SXB) is directly
proportional to the impurity influx (I').
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The atomic structure for our Mo* excitation
calculation

* Recently, SXB values for Mo’ target levels

neutral Mo were measured i | | | | | _
at PISCES-B [Nishijima et al. '

J. Phys. B 43 225701 i 1
(2010)]. 2

» Factors of 2-5 difference
in their measurements
compared with the
existing ADAS. data.

» We decided to start with I . |
Mo*, to develop a method for ~ ° [T i — i
non-perturbative calculations
for complex systems.

« Atomic structure from b
Dirac-Hartree-Fock —
program (GRASPO). it 4

* included 4d® , 4d*5s, and ] configurations

4d*5p.(280 levels)

e Strong mixing.
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The calculation of SXBs for Mo*

e Our Mo" calculation o
included. I S .
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calculations for the
excitation data.

e There were no strong lines
in the visible, but many in the
UV.

e The key lesson was the
value of shifting to NIST
energies during the R-
matrix calculation.
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Identifying the 'trusted' spectral lines
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Comparison with
ALCATOR C-Mod spectrum (at MIT)
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W3t SXBs

 We used our methodology from Mo", and calculated
data for W>".
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The GCR ionization rate coefficients for
light species

The GCR ionization coefficient
accounts for both direct ionization,
excitation-autoionization, and stepwise
ionization, including collisional
redistribution effects.
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GCR 1onization
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Loch et al. ADNDT 92 818 (2006) Allain et al., Nucl. Fusion,
44 655 (2004)
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The problem of ionization from excited states

e So one needs data for ionization
from the excited levels. However, T ] T

e Perturbative methods
overestimate the ionization cross
section for near neutral systems.
This gets worse for excited states.
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e Calculations using non- O 2 N F R N
perturbative methods (TDCC, g T T b=
RMPS, CCC) become increasingly y 1 i
difficult for higher n-shells. M I

e There is a need to calculate data up
to quite high n-shells.

Griffin et al., J. Phys. B, 38 L199 (2005)
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Excited states ionization of neutral Boron
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FIG. 1. {(Color online} Total electron-impact-lionization cross
sections for the 3! excited states of B. Circles. raw EMPS for
15%25% 35 squares, raw RMPS for 1522523 p: diamonds, raw RMPS
for 1525234, Solid line, fit to low-energy raw RMPS data for
15% 25 352 dashed line. fit to low-energy raw RMPS data for 15225°3 p;
dot-dashed line, fit to low-energy raw RMPS data for 15°25°3d
(1 Mb = 1071 cm?).

Lee et al., Phys. Rev. A 82 042721 (2010)

« Consider the ionization cross
sections (RMPS) for the n=3 shell in
neutral B.

« Excitation-autoionization starts to
contribute above about 10 eV and
becomes smaller for the higher n-
shells.

By fitting the direct ionization part
we can see if there is an n-scaling
in the cross sections.

« If it was a purely classical
calculation the scaling would go
as n‘,

*\We repeated the same study for B*,
and B#.
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n-scaling data for B, B: and B*

W DT |I|3| RN - For each of the ions a
DU ] scaling very close to n* was
| n=3 ] found.
R R S * So the recommendation would
;o T T T T T T T T T T T be to
A B+ " - Evaluate your non-
Do perturbative calculation until
o T T scales as n*%, then extrapolate
i I”_| _ |?||||l|”| _ Illﬁl _ Izlnl _ Izlil i to higher n.
L g2+ O 7 « Or fit semi-empirical data
i (e.g. ECIP) to the RMPS

_ results and used the same
”” ! ||;||||l|”||||l|5||||3|”| |||3|5|| 0 Scaling factor tO Scale tO
Threshold scaled energy even h |g her n shells.
FIG. 5. (Color online) n-scaled electron-impact-tonization cross sections vs threshold scaled energy, that is, cross section divided by n* for = Note that the bu nd Ied—n S d ata

the n-bundled excited states of (a) B, (b) BF, and (c) B, In all plots the solid line shows the n = 3 RMPS data, the dashed line shows the

n = 4 RMPS data and in panel {c) the solid circles show the i = § RMPS data (1 Mb = 1071 cne?). can be eXt a p o) I a te d .

Lee et al., Phys. Rev. A 82 042721 (2010)
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N 1onization
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» Good agreement
between the new
RM calculations and
the recently
published data of
Wang et al. PRA 89
06714 (2014)

* How do we
metastable resolve
the final state? Use
the Sampson
angular factors?

* 4S mostly goes
to the ground
(°P)

* (D) and (3S)
split can go to
multiple places?
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sImplies that the
angular
coefficients could
be used to
resolve the final
terms.

* If mixing
coefficients
are also
included

 The (*P)
mixes very
strongly with
the 2s2p*
(“‘P)

«25s-2p excitation
starts at 5eV.




Conclusions

e We have new SXB data for Mo* and W?3*.

— We are moving on to the lower charge states

 The new N ionization work will hopefully provide a
road-map for metastable resolved excited state
ionization calculations.

e We have all of the data for GCR calculations for C*
through to C>*. We are completing the remaining
calculations for neutral C.

— Any interest in an intermediate GCR data-release for
carbon?
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