Atomic data needs for high resolution X-ray astronomy

Adam Foster Smithsonian Astrophysical Observatory

Definitions

"High Resolution" $\Delta E=5eV$ $E/\Delta E \sim 1000.0$

X-ray 0.3 < E < 50 (keV) (no molecules)

Upcoming Missions: Astro-H (2016)

Illustration: Akihiro Ikeshita / JAXA

- > Hard X-ray Imaging System (HXI)
- > Soft X-ray Spectroscopy System (SXS)
- > Soft X-ray Imaging System (SXI)
- > Soft Gamma-ray Detector (SGD)

Observe energies from 0.3-300keV

ADAS Workshop, Catania

Athena - launch 2028

European Space Agency "L2" mission 2.5eV energy resolution High spatial resolution (~5 arcsec)

Exploring "The Hot and Energetic Universe"

- b the formation and evolution of groups and clusters of galaxies
- > the chemical evolution of hot baryons
- > feedback effects of active galactic nuclei in clusters
- > missing baryons thought to populate the intergalactic medium
- > formation and early growth of black holes
- > accretion by supermassive black holes through cosmic time
- > galaxy-scale feedback involving active galactic nuclei and star formation
- physics of accretion onto supermassive black holes as a driver of active galactic nuclei

Not going to say more as we have 13+ years to wait...

Lineshapes

> SXS: 5eV resolution, non-dispersive spectrometer

Allows study of extended
objects with high resolution for
the first time

 Astro-H goal: "Revealing the large-scale structure of the Universe and its evolution"

 Galaxy clusters are of particular interest

Need accurate line shapes for modeling these features

5

Calibration Standard

Line widths measured by current calorimeters are dominated by the natural line widths – which are not known for many useful elements!

6

Absorption Cross Sections

Chandra HETG observations of interstellar medium absorption.

Initally find poor fit, low ionization parameter

Shift wavelengths of O I and O II cross sections, get better fit

Absorption cross section wavengths known to \sim 50mA accuracy. Current detectors can already get to \sim 23mA.

1st Oct 2015

ADAS Workshop, Catania

Non-equilibrium

Have "complete" data for all ions of all elements. Very few calculations/measurements to compare with, especially for inner shell ionization. Doubly so for $K\beta$

Non-equilibrium

DR-Lines

DR satellite lines are a strong potential temperature diagnostic

Satellite line emissivities need to be updated and expanded

3.55keV "sterile neutrino" Line

Find residual line at 3.57keV in a range of cluster samples.

Found in all instrum

Nearby atomic lines: K XVIII 2p-1s @ 3.515keV Ar XVII DR @ 3.62keV Stacked 73 galaxy clusters at their rest frame.

"Smears out" instrumental effects

1st Oct 2015

ADAS Workshop, Catania

(Low Energy!) Charge Exchange

Simplified CX model created to model SWCX. Improved model (REAL cross sections!) needed to model comets/planetary atmospheres. Ongoing project with University of Georgia to obtain theoretical cross sections

Comparison of Models

Need to identify how and why these models differ!

ADAS Workshop, Catania

Uncertainties!

Need to identify how and why these models differ!

14

Summary

> We are about to have much improved spatial and spectral resolution, but not all requirements are driven by this. Identified needs are:

- > Line widths & shapes
- > Absorption Cross Sections (energy level accuracy)
- > Inner shell ionization collision strengths
- > Dielectronic Recombination Satellite Lines
- > Charge Exchange cross sections
- > Model Comparison
- > Uncertainties