

A Selection of Atomic Collision Calculations from QUB

Dr Cathy Ramsbottom

The Group

- Cathy Ramsbottom (QUB)
- Connor Ballance (QUB)
- Alan Hibbert (QUB)
- Phil Burke (Daresbury)
- Val Burke (Daresbury)
- Sibasish Laha
- Niall Tyndall
- Stefan Spencer
 - Michael Turkington

Modelling

Radiative Data (f- and Avalues, energy levels, wavelengths) Collision data (cross sections, excitation rates, recombination rates, proton rates)

CLOUDY CHIANTI XSTAR

R-matrix Methodologies:

- RMATRX I (LS coupling)
- BP RMATRX I
- DARC
- RMATRX II (LS + transformation)
- ICFT (LS + transformation)
- B-spline R-Matrix BSR

Cr II 3d⁵ ⁶S_{5/2} – 3d⁴4s ⁶D_{1/2}

Wasson IR, Ramsbottom CA & Scott MP, 2010, a&A, 524,A35

Wasson IR, Ramsbottom CA & Scott MP, 2010, a&A, 524,A35

Mn V 3d³ ⁴F_{3/2} – 3d³ ²D2_{5/2}

Grieve MFR, Ramsbottom CA, Hibbert A, Ferland G & Keenan FP, in preparation

Mn V $3d^{3} {}^{4}F_{3/2} - 3d^{3} {}^{2}D2_{5/2}$

Grieve MFR, Ramsbottom CA, Hibbert A, Ferland G & Keenan FP, in preparation

Mg VIII $2s^22p P^{0}_{1/2} - 2p^{3} P^{0}_{3/2}$

Electron-impact excitation of W XLV

Atomic Data

- Energy Levels
- Electron impact excitation collision strengths
- Maxwellian averaged effective collision strengths

chemistry.about.com

1s²2s²2p⁶3s²3p⁶3d¹⁰4s² 1s²2s²2p⁶3s²3p⁶3d¹⁰4s4p 1s²2s²2p⁶3s²3p⁶3d¹⁰4p² 1s²2s²2p⁶3s²3p⁶3d¹⁰4s4d 1s²2s²2p⁶3s²3p⁶3d¹⁰4p4d 1s²2s²2p⁶3s²3p⁶3d¹⁰4s4f 1s²2s²2p⁶3s²3p⁶3d¹⁰4p4f 1s²2s²2p⁶3s²3p⁶3d¹⁰4d² 1s²2s²2p⁶3s²3p⁶3d¹⁰4d4f → 35au

W XLV (Z=74: NELC=30)

W XLV (Z=74: NELC=30)1s²2s²2p⁶3s²3p⁶3d⁹4s²4p 1s²2s²2p⁶3s²3p⁶3d⁹4s²4d 1s²2s²2p⁶3s²3p⁶3d⁹4s4p² 1s²2s²2p⁶3s²3p⁶3d⁹4s4d² 1s²2s²2p⁶3s²3p⁶3d⁹4s²4f → 89 au

W XLV Models

Present Breit-Pauli:

- 14 configs: listed including 3d⁹ open core terms
- 10 orbitals: up to n=4 including 4f. All non-relativistic and orthogonal produced with CIV3
- 311 J π levels: fully inclusive
- Fine mesh of incident electron energies 10⁻⁶ scaled Ryds (12 000 points)
- **Radiation Damping Included (Type I)**
- **Top-up of high partial waves included**

W XLV Models

- Ballance & Griffin 2007 (BG07):
- **Fully relativistic DARC calculation**
- 22 configs: not including 3d⁹ open core terms
- 15 orbitals: up to n=5. Relativistic and produced with GRASP0
- 168 J π levels: not inclusive
- Fine mesh of incident electron energies 10⁻⁶ scaled Ryds (40 000 points)
- **Radiation Damping Included (Type I + II)**
- **Top-up of high partial waves included**

W XLV Models

Bluteau, O Mullane & Badnell 2015 (BOMB15):

Fully relativistic DARC calculation

13 configs: listed already including 3d⁹ open core terms. Exactly same 3d¹⁰ configs, add 3d⁹4s4p4d, neglect 3d⁹4s4p² and 3d⁹4s4d²

10 orbitals: up to n=4 including 4f. Relativistic and produced with GRASP0

313 J π levels: inclusive

Fine mesh of incident electron energies 10⁻⁶ scaled Ryds (48 000 points)

Radiation Damping Included (Type I)

Top-up of high partial waves included

W XLV Energy Levels in au

Index	Lev	vel	Present	$NIST^a$	\mathbf{BG}^{b}	\mathbf{Q}^{c}	\mathbf{SS}^d	\mathbf{F}^{e}	\mathbf{VI}^{f}
1	$4s^2$	$^{1}S_{0}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	4s4p	$^{3}P_{0}^{\circ}$	3.165	3.167	3.175	3.170	3.175	3.187	3.173
3	4s4p	$^{3}P_{1}^{0}$	3.423	3.429	3.445	3.436	3.428	3.450	3.425
4	4s4p	$^{3}P_{2}^{o}$	6.833	6.809	6.887	6.844	6.859	6.860	6.853
5	$4p^2$	$^{3}P_{0}$	7.246	7.236	7.306	7.290	7.242		7.236
6	4s4p	${}^{1}P_{1}^{0}$	7.486	7.478	7.552	7.509	7.481	7.511	7.474
7	$4p^2$	$^{3}P_{1}$	10.687	10.688	10.777	10.726	12.674		10.688
8	$4p^2$	$^{1}D_{2}$	10.752	10.765	10.825	10.771	13.659		10.743
9	4s4d	$^{3}D_{1}$	12.976	12.679	12.764	12.699	10.697		12.670
10	4s4d	$^{3}D_{2}$	13.086	12.801	12.895	12.827	10.752	12.861	12.794
11	4s4d	$^{3}D_{3}$	13.709	13.413	13.554	13.470	13.452	13.499	13.446
12	4s4d	$^{1}\text{D}_{2}$	13.840	13.617	13.761	13.678	12.799	13.716	13.652
13	$4p^2$	$^{3}P_{2}$	14.690	14.630	14.761	14.676	14.631	14.725	14.619
14	$4p^2$	$^{1}S_{0}$	14.813	14.804	14.933	14.848	14.815		14.802
15	4p4d	³ F ⁹	16.314		16.116		19.980		16.015

Index	Level	Pres BP	NIST	BG07	BOMB15
1	4s ^{2 1} S ₀	0.000	0.000	0.000	0.000
2	4s4p 3P° ₀	3.165	3.167	3.175	3.174
3	4s4p 3P° ₁	3.423	3.429	3.445	3.440
4	4s4p 3P° ₂	6.833	6.809	6.887	6.882
5	4p ^{2 3} P ₀	7.246	7.236	7.306	7.337
6	$4s4p 1P_1^{\circ}$	7.486	7.478	7.552	7.539
7	4p ^{2 3} P ₁	10.687	10.688	10.777	10.800
8	4p ^{2 1} D ₂	10.752	10.765	10.825	10.848
9	4s4d ${}^{3}D_{1}$	12.976	12.679	12.764	12.790
10	4s4d ³ D ₂	13.086	12.801	12.895	12.921
11	4s4d ³ D ₃	13.709	13.413	13.554	13.579
12	4s4d ¹ D ₂	13.840	13.617	13.761	13.786
13	4p ^{2 3} P ₂	14.690	14.630	14.761	14.785
14	4p ^{2 1} S ₀	14.813	14.804	14.933	14.960
15	4p4d 3F° ₂	16.314	-	16.116	16.142
16	4p4d $3D_1^{\circ}$	16.927	-	16.767	16.797
17	4p4d 3F° ₃	17.383	-	17.256	17.283

W XLV 2-3

W XLV 2-9

W XLV 3-10

Strong Dipole Transition

 $3d^{10}4s^2 {}^{1}S_0 - 3d^94s^24f {}^{1}P_1^{\circ}$

$1-177 (f_1=3.109, A_{ii}=2.205 \times 10^{14})$

Index	Level		Contr.	Energy	Index	Level		Contr.	Energy
			%	(a.u.)				%	(a.u.)
158	$4s^24f$	$^{3}P_{0}^{0}$	100	77.6166	175	$4s^24f$	$^{3}D_{3}^{o}$	37	80.6121
159	$4s^24f$	$^{3}P_{1}^{0}$	75	77.7227		$4s^24f$	$^{1}F_{3}^{o}$	24	
	$4s^24f$	$^{3}D_{1}^{o}$	25		176	$4s^24f$	${}^{3}G_{4}^{9}$	46	80.6649
160	$4s^24f$	$^{3}H_{5}^{o}$	53	77.8745		$4s^24f$	${}^{1}G_{4}^{o}$	30	
	$4s^24f$	$^{1}H_{5}^{o}$	44			$4s^24f$	${}^{3}F_{4}^{9}$	23	
161	$4s^24f$	$^{3}D_{2}^{o}$	56	77.9015	177	$4s^24f$	${}^{1}P_{1}^{0}$	78	81.3494
	$4s^24f$	$^{3}P_{2}^{0}$	29			$4s^24f$	$^{3}D_{1}^{o}$	15	
	$4s^24f$	${}^{3}F_{2}^{o}$	15		178	$4s4d^2$	$^{5}D_{2}$	35	83.5747
162	$4s^24f$	${}^{3}F_{3}^{o}$	56	78.0210		$4s4d^2$	${}^{5}F_{2}$	21	
	$4s^24f$	$^{3}D_{3}^{o}$	26			$4s4d^2$	${}^{5}P_{2}$	13	
	$4s^24f$	${}^{3}G_{3}^{\circ}$	13		179	$4s4d^2$	${}^{5}P_{1}$	45	83.5820
163	$4s^24f$	$^{3}H_{5}^{o}$	100	78.0413		$4s4d^2$	$^{5}D_{1}$	34	
164	$4s^24f$	${}^{3}G_{4}^{o}$	51	78.0612	180	$4s4d^2$	${}^{5}F_{3}$	26	83.6167
	$4s^24f$	$^{1}G_{4}^{o}$	22			$4s4d^2$	$^{5}D_{3}$	18	
	$4s^24f$	${}^{3}F_{4}^{o}$	15			$4s4d^2$	${}^{5}G_{3}$	14	

BP –present BOMB15

chemistry.about.com

Fe II The Rosetta Stone Element

Model	LSπ		J	Π
No. Configs	States	Channels	States	Channels
1	24	72	63	420
2	32	98	82	540
3	100	315	262	1800
4	116	363	299	2052
5	261	805	716	5076
6	285	877	779	5496
7	389	1239	1055	7596

No. Target States	Max No. Channels	Max size (N+1) H matrix	Total No. Transitions
100 (LSπ)	315	12 660	5050
262 (Jπ)	1800	36 055	34 453
716 (Jπ)	5076	> 100 000	256 686

Model	LSπ		J	π
No. Configs	States	Channels	States	Channels
1	24	72	63	420
2	32	98	82	540
3	100	315	262	1800
4	116	363	299	2052
5	261	805	716	5076
6	285	877	779	5496
7	389	1239	1055	7596

No. Target States	Max No. Channels	Max size (N+1) H matrix	Total No. Transitions
100 (LSπ)	315	12 660	5050
262 (Jπ)	1800	36 055	34 453
716 (Jπ)	5076	> 100 000	256 686

Fe II 3d⁶4s ⁶D_{9/2} – 3d⁶4s ⁶D_{7/2}

Ramsbottom CA, Hudson CE, Norrington PH & Scott MP, 2007, A&A, 475, 765

Ramsbottom CA, Hudson CE, Norrington PH & Scott MP, 2007, A&A, 475, 765

Fe II Transition 6-7

Fe II Transition 7-9

Cloudy Models

Cloudy Models

FIG. 6.—Top: Upper level energies for Fe II emission lines, color coded according to their A_{ij} value. Middle: λF_{λ} spectrum of PHL 1811. Bottom: Same as the top panel, for Fe III.

Leighly KM, Halpern JP, Jenkins EB & Casebeer D, 2007, ApJSS, 173, 1

Fe II The Rosetta Stone Element

Latest Calculation from QUB

- 262 LS or 716 Jπ target states with configs 3d⁶4s, 3d⁷, 3d⁶4p, 3d⁵4s², 3d⁵4s4p
- Last target threshold approximately 23eV
- Breit-Pauli + DARC treatments
- Target energies shifted to NIST where possible
- Highly applicable to recent quasar studies

Thank You