Validity of the ICFT *R*-matrix method: Be-like AI^{9+} a case of study

L. Fernández-Menchero

University of Strathclyde. United Kingdom.

ADAS Workshop October 2015. Catania, Italy.

4 E 6

Contents

- 2 Atomic structure
- 3 Effective collision strengths
- 4 Conclusions

L. F. Menchero (Univ. Strathclyde)

< 177 ▶

Contents

Motivation

- 2 Atomic structure
- 3 Effective collision strengths
- 4 Conclusions

L. F. Menchero (Univ. Strathclyde)

・ 母 と ・ ヨ と ・ ヨ と

Motivation	Atomic structure	Effective collision strengths	Conclusions
Motivation			

• Work on Be-like isoelectronic sequence. 238-level CI/CC expansion, ICFT.

MZB-2014: L. Fernández-Menchero, G. Del Zanna, N. R. Badnell 2014, Astron. Astrophys., **566**, A104.

Motivation	Atomic structure	Effective collision strengths	Conclusions

- Work on Be-like isoelectronic sequence. 238-level CI/CC expansion, ICFT.
 MZB-2014: L. Fernández-Menchero, G. Del Zanna, N. R. Badnell 2014, Astron. Astrophys., 566, A104.
- Previous work. 98-level CI/CC expansion, DARC.
 AK-2014: K. M. Aggarwal, F. P. Keenan 2014, Mon. Not. R. Astr. Soc., 438, 1223.

4 / 24

Motivation	Atomic structure	Effective collision strengths	Conclusions

 Work on Be-like isoelectronic sequence. 238-level CI/CC expansion, ICFT.
 MZP 2014: L. Eernéndez Menchere, C. Del Zappa, N. P. Padpell

MZB-2014: L. Fernández-Menchero, G. Del Zanna, N. R. Badnell 2014, Astron. Astrophys., **566**, A104.

- Previous work. 98-level CI/CC expansion, DARC.
 AK-2014: K. M. Aggarwal, F. P. Keenan 2014, Mon. Not. R. Astr. Soc., 438, 1223.
- Work MZB-2014 received a hard critique: DARC vs ICFT, resonance resolution, energy range.
 K. M. Aggarwal, F. P. Keenan 2015, *Mon. Not. R. Astr. Soc.*, 447, 3849.

Motivation	Atomic structure	Effective collision strengths	Conclusions

 Work on Be-like isoelectronic sequence. 238-level CI/CC expansion, ICFT.
 MZP 2014: L. Ferréndez Menchere, C. Del Zenne, N. B. Bednell,

MZB-2014: L. Fernández-Menchero, G. Del Zanna, N. R. Badnell 2014, *Astron. Astrophys.*, **566**, A104.

- Previous work. 98-level CI/CC expansion, DARC.
 AK-2014: K. M. Aggarwal, F. P. Keenan 2014, Mon. Not. R. Astr. Soc., 438, 1223.
- Work MZB-2014 received a hard critique: DARC vs ICFT, resonance resolution, energy range.
 K. M. Aggarwal, F. P. Keenan 2015, *Mon. Not. R. Astr. Soc.*, 447, 3849.
- Reply: L. Fernández-Menchero, G. Del Zanna and N. R. Badnell 2015, *Mon. Not. R. Astr. Soc.*, **450**, 4174.

Motivation	Atomic structure	Effective collision strengths	Conclusions
Motivation			

- 238-level ICFT of MZB-2014 gives in general larger results for the effective collision strengths ↑ than 98-level DARC of AK-2014.
- Electron exchange included by AK-2014 for more angular momenta than MZB-2015: 2J = 81 vs 2J = 23.
- Energy step length of AK-2014 slight finer than MZB-2014, depends on ion.
- AK-2014 goes further in scattering energy than MZB-2014: 12 times versus 3 times the ionization potential plus interpolation up to $E = \infty$ in Burgess–Tully domain.
- DARC vs ICFT.

IVI	oti	iva	tio	n

- 238-level ICFT of MZB-2014 gives in general larger results for the effective collision strengths ↑ than 98-level DARC of AK-2014.
- Electron exchange included by AK-2014 for more angular momenta than MZB-2015: 2J = 81 vs 2J = 23.
- Energy step length of AK-2014 slight finer than MZB-2014, depends on ion.
- AK-2014 goes further in scattering energy than MZB-2014: 12 times versus 3 times the ionization potential plus interpolation up to $E = \infty$ in Burgess–Tully domain.
- DARC vs ICFT.
- MZB-2014 has a much larger configuration interaction and close coupling expansion than AK-2014: 238 levels vs 98 levels.

< □ > < □ > < □ > < □ > < □ >

Contents

Motivation

- 2 Atomic structure
- 3 Effective collision strengths

4 Conclusions

L. F. Menchero (Univ. Strathclyde)

(4回) (注) (10)

Atomic energies

238-level CI structure¹ configurations $1s^2 \{2s^2, 2s2p, 2p^2\}$, $1s^2 2\{s, p\} nl$, with n = 3 - 7 and l = s, p, d, f, g for n = 3 - 5 and l = s, p, d for n = 6 - 7. Total 130 terms, 238 levels. 98-level CI structure² configurations $1s^2 \{2s^2, 2s2p, 2p^2\}$, $1s^2 2\{s, p\} nl$, with n = 3 - 4 and l = s, p, d, f. Total 54 terms, 98 levels.

¹ L. Fernández-Menchero, G. Del Zanna and N. R. Badnell 2014, *Astron. Astrophys.*, **566**, A104.

² Present work (for test comparison).

- 4 @ > 4 @ > 4 @ >

Atomic energies

Table: Al^{9+} target levels. All energies are in cm^{-1} .

i	Conf. Level	$E_{\rm NIST}$	E ₉₈ (%)	E ₂₃₈ (%)
1	$2s^2 {}^1S_0$	0.	0. (0)	0. (0)
2	$2s 2p \ ^{3}P_{0}^{0}$	155148.	155722. (0.4)	155539. (0.3)
3	$2s 2p {}^{3}P_{1}^{\circ}$	156798.	157487. (0.4)	157404. (0.4)
4	$2s 2p - {}^{3}P_{2}^{\bar{0}}$	160429.	161146. (0.4)	161278. (0.5)
5	$2s 2p \ ^{1}P_{1}^{\bar{0}}$	300490.	309273. (2.9)	307209. (2.2)
6	$2p^2 {}^3P_0$	404574.	408026. (0.9)	407826. (0.8)
7	$2p^{2}$ $^{3}P_{1}$	406517.	409969. (0.8)	409888. (0.8)
8	$2p^{2}$ $^{3}P_{2}$	409690.	413420. (0.9)	413526. (0.9)
9	$2p^{2}$ $^{1}D_{2}$	449732.	458157. (1.9)	457831. (1.8)
10	$2p^2 {}^1S_0$	553783.	567794. (2.5)	567267. (2.4)

< 回 > < 三 > < 三 >

Conclusions

Atomic energies

Table: Al^{9+} target levels. All energies are in cm^{-1} .

i	Conf. Level	$E_{\rm NIST}$	E ₉₈ (%)	E ₂₃₈ (%)
88	$2 p 4 f ^{-3} P_3$	_	2712961. (-)	2706897. (-)
89	$2 p 4 f ^{-3} P_4$	_	2713531. (-)	2707350. (-)
90	$2 p 4 f ^{-3} P_5$	_	2715225. (–)	2708632. (-)
91	$2 p 4 f ^{-3} D_3$	_	2716473. (–)	2710743. (-)
92	$2 p 4 f^{-1} D_4$	_	2717105. (-)	2710218. (-)
93	$2 p 4 f ^{-3} D_2$	_	2717141. (-)	2711361. (-)
94	$2 p 4 p {}^{-1}S_0$	_	2717922. (-)	2706869. (-)
95	$2p 4f ^{3}D_{1}$	_	2718397. (-)	2712736. (-)
96	$2 p 4 f^{-1} D_2$	_	2719895. (-)	2713991. (-)
97	$2p 4d {}^{1}F_{3}^{0}$	_	2722212. (-)	2715080. (-)
98	$2p 4d \ ^{1}P_{1}^{\circ}$	_	2723448. (-)	2716711. (-)

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusions

Infinite energy point

Figure: Transition infinite energy points $y_{\infty} = \Omega_{\infty}^{\text{PWB}}$ or $\frac{4}{3}S$ for two different atomic structures: 98-level CI versus 238-level CI.

Contents

Atomic structure

3 Effective collision strengths

- Peak abundance temperature
- Low temperature
- High temperature

Conclusions

L. F. Menchero (Univ. Strathclyde)

< E

Atomic structure

Effective collision strengths

Conclusions

Peak abundance temperature

Result comparison

Figure: Effective collision strengths for electron-impact excitation of the ion Al^{9+} at $T = 10^{6}$ K. Left: Breit–Pauli versus ICFT, 98 level CI/CC; right: 98-level CI/CC versus 238-level CI/CC, ICFT.

Atomic structure

Effective collision strengths

Conclusions

Peak abundance temperature

Result comparison

Table: Number of transitions in figures which differ by more than a certain relative error $\delta = |\Upsilon_A - \Upsilon_B|/\Upsilon_B$ (or $\Upsilon \to y_{\infty}$), as a percentage.

	У∞	98 CI/CC Ƴ	ICFT Υ
Rel. error (%)	98 vs 238 CI	BP vs ICFT	98 vs 238 CI/CC
1	3778	1336	4579
2	3600	803	4400
3	3416	500	4243
4	3266	350	4077
5	3141	260	3928
6	3022	206	3798
7	2914	158	3676
8	2804	127	3569
9	2722	106	3460
10	2644	82	3357
20	2068	22	2582
30	1643	9	2090
40	1356	4	1725
50	1163	2	1449
75	846	2	1113
100	707	2	901
150	538	1	647
200	443	0	505
300	336	0	320
1000	187	0	88
Total	4035	4753	4753

Peak abundance temperature

Result comparison

Figure: The ratio of effective collision strengths from 98- vs 238-level CI/CC ICFT *R*-matrix calculations vs left: lower level and right: upper level index for all inelastic transitions amongst the 98 lowest common levels of ${\rm Al}^{9+}$ at ${\cal T}=10^6\,{\rm K}.$ Positive values indicate $\Upsilon_{98} > \Upsilon_{238}$ and negative values $\Upsilon_{238} > \Upsilon_{98}$.

Peak abundance temperature

Result comparison

- Comparing different relativistic formalism the differences are minimal. Only a few spin-change transitions present differences, and they are much smaller compared with CI/CC differences.
- Comparing different atomic structures, differences in the results Υ are same order as differences in the atomic structure $\Omega_{\infty}^{\rm PWB}$, $\frac{4}{3}S$.
- Υ for 238-level CI/CC expansion are in general larger than the ones for 98-level CI/CC expansion, while $\Omega_{\infty}^{\rm PWB}$, $\frac{4}{3}S$ was symmetrical.
- Differences are considerable larger for transitions to the *n* = 4 shell than for the *n* = 2, 3 ones.
- 98-level CC expansion is not converged for the n = 4 atomic shell.
- 238-level CI expansion gives a much more accurate atomic structure than 98-level.

3 > < 3 >

Atomic structure

Effective collision strengths

Conclusions

Low temperature

Result comparison

Figure: Effective collision strengths for electron-impact excitation of the ion Al^{9+} at $T = 2 \times 10^4 \text{ K}$. 98-level CI/CC versus 238-level CI/CC, ICFT.

Low temperature

Result comparison

- Differences between atomic structures much larger than at the peak abundance temperature.
- Position or resolution of resonances.
- Both same step lengths and checked convergence. Resolution of the resonances discarded.
- Differences in position of the resonances due to atomic structure.
- 238-level CI expansion much more reliable than 98-level one, mainly for levels in the n = 4 atomic shell.

High temperature

Result comparison

Table: Comparison of effective collision strengths, Υ , at $T = 2 \times 10^7$ K and the reduced quantity y_{∞} at infinite temperature. A(B) denotes $A \times 10^B$.

	DARC		10	CFT	
i—j	98-level CI/CC	98-level	CI/CC	238-le	evel CI/CC
T (K)	2×10^7	$2 imes 10^7$	∞	2×10^7	∞
1-52	3.01(-2)	3.20 (-2)	2.40 (-2)	3.22 (-2) 2.64 (-2)
1–64	1.70(-4)	1.96(-4)	1.01(-4)	9.40(-5) 1.63(-5)
1–70	5.29(-6)	4.23 (-6)	2.68(-6)	2.18 (-5) 2.18(-5)
1-80	8.45 (-6)	7.05 (-6)	_	1.09 (-5) –

DARC: K. M. Aggarwal and F. P. Keenan 2014, *Mon. Not. R. Astr. Soc.*, **438**, 1223 98-level ICFT: present work 238-level ICFT: L. Fernández-Menchero, G. Del Zanna, N. R. Badnell 2014, *Astron. Astrophys.*, **566**, A104.

< □ > < □ > < □ > < □ > < □ >

High temperature

Differences at high temperature

MZB-2014 calculated Ω up to three times the ionization potential and interpolated in Burgess–Tully domain.

A. Burgess and J. A. Tully 1992. Astron. Astrophys., **254**, 436–453. AK-2014 calculated Ω up to twelve times the ionization potential and did not perform any interpolation up to infinity.

過 ト イヨト イヨト

Atomic structure

Effective collision strengths

Conclusions

High temperature

Burgess–Tully diagram

Figure: Reduced collision strengths versus energy from 238-level CI/CC ICFT R-matrix calculations for selected transitions of $\rm Al^{9+}$.

L. F. Menchero (Univ. Strathclyde)

< E

- ∢ 🗇 እ

Strathclyde

High temperature

Result comparison

- Calculated Ω reached asymptotic form. Interpolation in Burgess–Tully domain properly done.
- Differences in the infinite energy point lead to differences in the Υ for high temperature.
- Infinite energy points more reliable for 238-level CI expansion than for 98-level CI expansion.

E + 4 E +

Contents

1 Motivation

- 2 Atomic structure
- 3 Effective collision strengths
- 4 Conclusions

L. F. Menchero (Univ. Strathclyde)

< 回 > < 三 > < 三 >

Conclusions

- Three main error sources: atomic structure, close coupling expansion and inclusion of relativistic effects.
- Different atomic structures / CI expansions lead to large differences, mainly at high temperature / energy.
- A larger CC expansion improves strongly the results, mainly for the higher excited terms / levels.
- Method to consider the relativistic effects (ICFT, BP, DARC) does not change meaningfully the results.
- No calculation can guarantee the quality of the results for the last terms / levels included in the close-coupling expansion.
- Nothing special about Be-like Al⁹⁺. Same conclusions can be applied to other ions and sequences.
 For example: Fe¹³⁺: G. Del Zanna, N. R. Badnell, L.

Fernández-Menchero, G. Y. Liang, H. E. Mason and P. J. Storey Strathcy 2015. Mon. Not. R. Astron. Soc. In press.

Monthly Notices

MNRAS 450, 4174-4183 (2015)

doi:10.1093/mnras/stv88

Validity of the ICFT R-matrix method: Be-like Al 9+ a case study

L. Fernández-Menchero,1* G. Del Zanna² and N. R. Badnell¹

¹Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
²Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

Accepted 2015 April 20. Received 2015 April 16; in original form 2015 March 16

Thank you for your attention

L. F. Menchero (Univ. Strathclyde) Validity of the ICFT *R*-matrix method ADAS Worksl

・ 同 ト ・ ヨ ト ・ ヨ ト