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Motivation: Metastable, Fine-structure Transitions
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• As previously explained (see GCR
presentation by A. Giunta),
ic-resolved GCR will require rate
coefficients for transitions between
the fine-structure levels of metastable
terms in an ion — e.g. circled levels
in figure.

• Necessarily, the transitions will be of
the quadrupole (E2) type: dipole
excitation is excluded by parity
conservation within a term.

• The relatively small energy level
differences mean ion-impact
excitation can become significant —
next slide.
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Electron-impact vs. Ion-impact

• Discrepancies in the general structure of electron and ion impact cross-sections as well as
where the thermal distributions of the colliding species lie explain why ion-impact favours
small energy level differences.

• Increased projectile ion speed distributions can also help: at ITER, we will have ion
temperatures Ti ∼ 8 keV, fast fusion alphas Eα:D−T = 3.5 MeV, and ionised neutral beam
atoms ENB ∼ 1 MeV [1].

Working in atomic units (au), ∆E/IH is the transition energy, IH is the ionization potential of hydrogen in the
same units as ∆E , and σ is the cross-section for the arbitrary transition from the target ion level i to j . The
temperature, T , of both the colliding ion and electron velocity distributions (red blocks) is assumed to be equal.
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Calculation Technique

• The relatively large mass, mp, of an ion projectile results in an impractically large
number of partial waves in the close-coupling region near the target, meaning a
semi-classical approach is appropriate versus a fully quantum mechanical one.

• Coulomb excitation as per Alder et al [2]: the ion projectile follows a classical
trajectory determined by scattering in a Coulomb field, and the excitation probability
of the target is obtained through first-order, time dependent perturbation theory.

• The Coulomb excitation differential cross-section is thus given by:

dσi→j = Pi→j(θ)
1

4π

(
ztzp
Ep

)2

csc4(θ/2)dΩ , (1)

• Pi→j (θ) is the transition probability for a given trajectory, and

the remainder of the theory will address its specification.
• zt, zp are the target and projectile charges, respectively.
• Ep is the geometric mean of the projectile kinetic energy:

Ep =
√

Ep,iEp,f

• θ is the scattering angle in the cms frame.
• The boxed term is the classical Rutherford differential cross-
section. https://commons.wikimedia.org/w/index.php?title=File:

Differential_cross_section.svg&oldid=138819349
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The Transition Probability, Pi→j

• First-order, time-dependent perturbation theory tells us:

Pi→j =
1

ωi

∑
MiMj

|bij(t =∞)|2 ; bij =
1

i~

∫ ∞
−∞
〈j |H(t)| i〉 e iωtdt. (2)

• After a great deal of algebra and the use of 1
|rp−r| ≈

∑
λ Pλ(̂rp · r̂)rλ/rλ+1

p , we find for

the quadrupole case:

Pi→j(E2) = 4m0B(E2)zp
−2z−4

t Ep,iEp
2 sin 4(θ/2) dfE2

dΩ
(θ, ξ) , (3)

where B(E2) is the reduced, quadrupole atomic transition probability that we obtain
from our atomic structure calculations, m0 is the reduced mass of the projectile and
target, and ξ is the dimensionless, symmetrized adiabaticity parameter: ξ ∝ Ep

−3/2.

• dfE2
dΩ

(θ, ξ) is the differential excitation cross-section function made up of classical

orbital integrals that fall out of the right hand equation in 2; these integrals need to
be computed numerically, and a table of pre-computed values due to Alder et al [2]
has been employed in numerous computer programs — an area for improvement.
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Detailed Considerations and History of Pi→j
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• Coulomb excitation calculations have a
long history, but the subject must be
revisited because numerous mistakes
have been made when calculating
Pi→j .

• Penetrating collisions and the
strong-coupling region need to be
treated correctly, as in the figure.

• Codes due to Bely and Faucher [3] and
Bahcall and Wolf [4] both treat
penetrating collisions incorrectly,
leading to the incorrect high energy
scaling of the cross-section.

• Seaton [5] gets this right but does not
ensure the correct fall-off of the
cross-section.

• Burgess and Tully [6] summarize the
mistakes and present a completely
corrected form of the theory, but their
resulting code has been lost.
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Objectives

End Goal

Replace the lost Burgess and Tully [6] semi-classical Coulomb excitation code with
our own code that will assimilate fully within the ADAS framework.

• First step: use the proton-impact Bely-Faucher [3] codes as source of initial
ion-impact data and make necessary minor modifications as a learning
experience and in an effort to mitigate flaws.

• Completed modifications:
• Generalization to permit any bare nucleus projectile (ie mp and zp parameters

introduced)

• Extension of dfE2
dΩ

(θ, ξ) data table: higher mesh density and lower values of ξ

(higher Ep values for cross-sections) — more on next slide
• Incorporation of Bethe limit, Ωlim, from structure calculation for extrapolation of

collision data during rate coefficient calculation — two slides forward
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Extension of dfE2

dΩ (θ, ξ) Data Table
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• ‘extended’ refers to the use of the extended dfE2

dΩ (θ, ξ) data table, and ‘coarse’
to the original, limited data table from Alder et al.

• ‘linear’ refers to linear interpolation of the cross-sections between the values
obtained using the dfE2

dΩ (θ, ξ) table, and ‘cubic’ refers to cubic spline
interpolation

• In theory, the Bely-Faucher (1970) results should lie on top of our coarse, linear
results as these codes should be nearly identical; however, provenance is
uncertain
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Inclusion of Ωlim for Rate Coefficient Calculation
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• BFHE = original Bely-Faucher strategy for high energy contribution of
cross-section to rate coefficient: σij(Ef ) · Ef = cons. = C and so
αHE = C

∫
e−Ei/kTd(Ei/kT ) = C

• AIHE = fit a line to last collision strength and Ωlim and compute improper
integrals using analytic form similar to above

• ’Recommended’ is extended, cubic, BFHE: use of our extended dfE2

dΩ (θ, ξ) data
table, cubic spline interpolation of cross-sections during integration, and the
BFHE scheme
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Projectile Variation

B-like Isoseq: 2s2p2 4P1/2 → 2s2p2 4P3/2
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• Change from decreasing function along projectile sequence at lower Tp to increasing
function along projectile sequence at higher Tp can be explained by zp scaling of of
cross-sections
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zp Variation of Cross-section
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Projectile Variation: 3D High T

B-like Isoseq: 2s2p2 4P1/2 → 2s2p2 4P3/2
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Projectile Variation: 3D Low T

B-like Isoseq: 2s2p2 4P1/2 → 2s2p2 4P3/2
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Target Variation

B-like Isoseq: 2s2p2 4P1/2 → 2s2p2 4P3/2

C
II

O
IV

N
e

V
I

M
g

V
III

S
i X

S
X

II

A
r X

IV

C
a

X
V

I

Ti
X

V
III

C
r X

X

Fe
X

X
II

N
i X

X
IV

Zn
X

X
V

I

Target Ion

10−13

10−12

10−11

10−10

10−9

10−8

R
at

e
C

oe
ff.

,α
ij

(c
m

3
s−

1 ) Tp/z2
t = 1 eV

1H1+

9Be4+

C
II

O
IV

N
e

V
I

M
g

V
III

S
i X

S
X

II

A
r X

IV

C
a

X
V

I

Ti
X

V
III

C
r X

X

Fe
X

X
II

N
i X

X
IV

Zn
X

X
V

I

Target Ion

10−11

10−10

10−9

10−8

10−7

R
at

e
C

oe
ff.

,α
ij

(c
m

3
s−

1 ) Tp/z2
t = 1000 eV

1H1+

9Be4+

• Decreasing αi→j along target sequence at lower Tp is likely again due to repulsive
effect at threshold.
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Concluding Remarks

• We have successfully implemented a set of codes which can calculate
ion-impact excitation cross-sections and rate coefficients using the Coulomb
excitation approximation.

• Accommodation of any bare nucleus projectile has been achieved, with correct
scaling of rate coefficients and cross-sections achieved

• Expansion of the dfE2

dΩ (θ, ξ) data table and incorporation of the Bethe limit for
collision strength extrapolation have implemented as improvements upon the
Bely-Faucher and in preparation of what will be need to be done with our own
re-write.

• Preliminary Generalized Collisional-Radiative (GCR) modelling has shown that
ion-impact excitation will indeed have an effect upon metastable populations
relevant for spectroscopic modelling.

• The next step will be to implement the full prescription of Burgess and Tully in
our own code, correctly dealing with penetrating collisions and ensuring the
proper high energy behaviour.
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