(URFIN www.cea.fr

A spectral modelling code for VUV-XUV

R. Guirlet

with Martin's answers to many (silly) questions

(and more to come)

ADAS workshop, Catania,1st October 2015

Context and motivations

- WEST project will change Tore Supra into an all-W tokamak for long discharges, high fluxes (ITER)
 - New spectrometers (XUV, SXR)
 - New quantities to be measured (pedestal)
- Line identification and λ calibration
- VUV-XUV lines provide constraints for transport
 - Ratios of lines from different ionisation stages
 - $\blacksquare Many ratios \rightarrow many constraints$
- VUV-XUV measurements help validate PEC data

Imaging crystal spectrometer

Imaging crystal spectrometer

Element	Energy [keV]	Crystal	Bragg angle [°]	Rowland radius [m]
Ar XVII	3.1218	Qu (11-20)	54.0183	1.3516
Ar XVIII	3.3206	Qu (10-12)	55.0106	1.3511
F XXV	6.6685	Ge (422)	53.604 <mark>5</mark>	1.3526

Context and motivations

- WEST project will change Tore Supra into an all-W tokamak for long discharges, high fluxes (ITER)
 - New spectrometers (XUV, SXR)
 - New quantities to be measured (pedestal)
- VUV-XUV lines provide constraints for transport
 - Ratios of lines from different ionisation stages
 - Many ratios \rightarrow many constraints
- VUV-XUV measurements help validate PEC data
- Line identification and λ calibration

LAYOUT

- Model description:
 - Transport
 - Emissivity and PECs
 - Spectral synthesis
 - Testing and using the model
 - Conclusion prospects

MODEL DESCRIPTION

TRANSPORT

- Whatever you want
- At the moment, the code is designed for a stationary state
- For testing:
 - Continuity equation for total density of each impurity: $\Gamma_Z = -D_Z \vec{\nabla} n_Z + \vec{V}_Z n_Z$

Consistent solution of continuity equations to be implemented shortly

 $T_{e}(r)$

 $V_1(r), V_2(r),.$

I.o.s. geometry Instrument function Brightness calibration Efficiency in orders > 1

ADAS workshop, Catania | 1st October 2015 | PAGE 9

Magnetic

equilibrium

- Strong hypothesis: all quantities are uniform on a magnetic surface no SOL

EMISSIVITY CALCULATION

- $\epsilon^{Zi}_{3, jk}(r) [photons s^{-1} cm^{-3}] = n_e(r) \times n^{Zi}_{3}(r) \times PEC_{jk}(n_e(r), T_e(r)) \qquad PEC [cm^3 s^{-1}]$
- Strong hypothesis: all quantities are uniform on a magnetic surface no SOL

- $\epsilon^{Zi}_{3, jk}(r) [photons s^{-1} cm^{-3}] = n_e(r) \times n^{Zi}_{3}(r) \times PEC_{jk}(n_e(r), T_e(r)) \qquad PEC [cm^3 s^{-1}]$
- Strong hypothesis: all quantities are uniform on a magnetic surface no SOL t = 5.9 s, Puetterich n_{W} [m⁻³] x 10¹⁵ #39143 1000 # 39143 14 10-12s 800 1.5 Ly_ 600 400 00 12 Ly_s 20 1 200 100 10 2-4 0.5 50C 80 60 Z [m] 10° Cou 40 8 0 20 30.0 35.0 40.0 25 (6 2 3 4 Major Radius (m) Wavelength (Å) MoM, PPCF 1999 -0.54 -1 JET \rightarrow W not included in the 2 -1.5 (a) model yet 4 Angioni (JET SM) 2014 2 3 R [m]

EMISSIVITY CALCULATION

- $\epsilon^{Zi}_{3, jk}(r) [photons s^{-1} cm^{-3}] = n_e(r) \times n^{Zi}_{3}(r) \times PEC_{jk}(n_e(r), T_e(r)) \qquad PEC [cm^3 s^{-1}]$
- Strong hypothesis: all quantities are uniform on a magnetic surface no SOL t = 5.9 s, Puetterich n_{W} [m⁻³] x 10¹⁵ 1000 # 39143 14 10-12s 800 1.5 Lv. 600 400 12 1 200 100 10 0.5 80 60 Z [m] 0° Col 8 40 0 30.0 35.0 40.0 3 Major Radius (m) 6 Wavelength (Å) MoM, PPCF 1999 -0.54 -1 JET \rightarrow W not included in the 2 -1.5 (a) model yet 2 3 Angioni (JET SM) 2014 R [m]
- Recombination PECs not considered but could be (C V 40.73 Å 1s² ¹S 1s2p ³P)
- CX PECs not considered
- For $W \rightarrow \text{combine results with S. Henderson & J. Hong ?}$

- J resolved data are needed
 - Ex: Ar VIII 2p⁶3s ²S 2p⁶3p ²P → 1/2 3/2 700.2 Å 1/2 - 1/2 713.9 Å
- Light species ($Z \le 10$): default is 96 for historical reasons
 - 🗕 He Li Be
 - C⁵⁺, N^{(3,4,6)+}, O^{(1-4,6,7)+}, Ne^{(3,4,6,8,9)+}
- Particular cases of a few ions of light species
 - **B**: 93
 - N⁵⁺, Ne⁷⁺: 98
 - C⁽¹⁻⁴⁾⁺, O⁵⁺: ic
- Heavier species
 - AI, Si, CI, Fe, Ni^{(13-15,18,20-22)+}, Cu, Ge, Mo: ic
 - Ar^{(6-14,17)+}, Ni^{(10-12,16)+}, Kr^{(25,26,33,34)+}: LS

O SPECTRAL SYNTHESIS

- Emissivity (i.e. local spectrum) or brightness (integrated along l.o.s.)
- Brightness spectrum must include magnetic equilibrium & spectrometer characteristics:
 - Line of sight geometry
 - Instrument function (not essential induced from isolated lines)
 - Wavelength resolution
 - Brightness calibration: not always available essential for wide wavelength range spectrometers (SPREDs) and to obtain quantities in physics units
 - Efficiency in diffraction orders > 1: obtained by absolute calibration or deduced from plasma measurements (but difficult!)

Cea TESTING AND USING THE MODEL

- Test: VUV measurements + experimental transport coefficients
 - Tore Supra pulse 40801
 - Grazing incidence (Schwob) spectrometer 2 detectors, range 15-360 Å

TESTING AND USING THE MODEL

C V I/R

Usually around 0.5 for a central chord in Tore Supra

I/R PEC ratio > 1 in expected (T_e , n_e) range

 \rightarrow Adding recombination PECs for both lines: probably not enough \rightarrow Add also CX PECs? (see JET - MoM + M. Mattioli PPCF99)

Cea TESTING AND USING THE MODEL

- Test: VUV measurements + experimental transport coefficients
 - Tore Supra pulse 40801
 - Grazing incidence (Schwob) spectrometer 2 detectors, range 15-360 Å

Cea TESTING AND USING THE MODEL

infm

- Test: VUV measurements + experimental transport coefficients
 - Tore Supra pulse 40801
 - Grazing incidence (Schwob) spectrometer 2 detectors, range 15-360 Å

- Complete model: transport → emissivities → VUV-XUV spectra (brightn. or emiss.)
- Wide collection of ADF15 (PEC) data of various origin/quality
- Free parameters: impurity nature and concentration, transport coefficients
- Efficiency in orders > 1 should be determined, preferably in lab.
- Rich information obtained from comparison modelled/measured spectra
- But effects of physical quantities mixed up with free parameters and uncertainties
- **C** VI Ly α - γ well reproduced
- C V I/R : need for recombination + CX PECs
- C IV : 312.4 Å overestimated?
- **Fe** XV / Fe XIV wrong by factor 2-3: correct transport, PEC or equil. discretis.?

- Use a more sophisticated transport model:
 - consistent resolution of continuity equations
 - add time dependence
- Improve quality + consistency of ADF15 data
- Add recombination (and CX) PECs
- Add data for SXR spectral simulation (Ar to prepare the WEST imaging crystal spectrometer)
- Model other plasmas/instruments to improve the model & contribute to the physics analysis (in particular wide spectra)
- 2D model to take account of SOL integration & divertor radiation ?

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint Paul Lez Durance Cedex T. +33 (0)4 42 25 46 59 | F. +33 (0)4 42 25 64 21

IRFM

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019