

Uncertainty of medium-weight and heavy element line power coefficients

Stuart Henderson and the ADAS team

19th ADAS Workshop 2015, INAF – Osservatorio Astrofisico di Catania 1st October 2015

Motivation

Focus in magnetic fusion and astrophysics is moving towards medium-weight and heavy elements

- This talk will focus on tokamak related aspects (see other talks for astrophysics overview)

- Wall materials in tokamaks (e.g. Fe, Mo, W) often migrate into the plasma
 - Conditions for 'burning' tokamak plasmas are highly dependent on ion power functions - $P_{\alpha} = P_{loss} = P_{trans} + P_{rad} = P_{trans} + N_e^2(f_zL_z)$
 - Future tokamak designs (i.e. DEMO) are exploring the concept of using seeded impurities (e.g. Ar, Kr, Xe) to dissipate the large exhaust heat loads through radiation
 - Main modelling uncertainty in current DEMO design systems is from power functions
 - There must exist some uncertainty on the derived atomic data inputs

Moving to a new baseline in ADAS

- Currently ADAS provides high precision GCR data for ions up to neon
 - Above-baseline quality data available only for a selection of ions
 - Expand GCR data to medium-weight and heavy elements

The ADAS GCR data will form the new baseline in ADAS, replacing the current baseline (89) data

- Now using Autostructure with intermediate coupling (ic) level resolution
- Possibility of R-matrix (resonances), DW (spin changing transitions) and PWB cross-section calculations are key to Autostructure's usage
- In addition, we aim to provide a 'worst-case' uncertainty of the derived atomic coefficients

What are the main sources of uncertainty associated with the derived atomic coefficients within ADAS?

Power function overview

Ionisation balance uncertainties:

- Ionisation rates
- Recombination rates
- Focus of other talks

Line power P_{LT} uncertainties:

- Configuration selection
- Atomic structure and energy levels
- Collisional excitation cross-sections
- Focus of *this* talk

Configuration selection

The main complexity in a structure calculation is usually the *correct* selection of configurations

- limited by the size of the calculation
- ideally capturing as much of the radiated power as possible

For the low levels of the ion, we require a set of optimal configurations for each ion

- define the configurations in terms of promotion rules for each driving configuration
- pick rule sets that produce highest ΔP_{LT} / ΔN_{Levels}

Optimisation method built on previous Ph.D. work by Adam Foster

- now using Autostructure
- combining (and further optimising) configuration sets from metastable driving configurations

٠

٠

Promotion rules for configuration sets

A set of rules defining the promotion of electrons from a driving configuration can be used to generate a configuration set

Promotion rules and optimisation

1. Define list of promotion rule changes, e.g.

ID	Description	ID	Description
1	Δn_{v1}^{max} +1	8	Δl_{v2}^{min} -1
2	Δn_{v1}^{min} -1	9	Δn_{cl}^{max} +1
3	ΔI_{v1}^{max} +1	10	$\Delta n_{cl}{}^{min}$ -1
4	Δl_{v1}^{min} -1	11	ΔI_{cl}^{max} +1
5	Δn_{v2}^{max} +1	12	ΔI_{cl}^{min} -1
6	Δn_{v2}^{min} -1	13	Ground complex
7	ΔI_{v2}^{max} +1	14-19	Extra options

- 2. Start from a driving configuration (usually the ground) and cycle through each rule change
- 3. On each iteration, calculate the CA P_{LT} for one T_e and N_e and store 'figure of merit' ratio $-\,\Delta P_{LT}$ / ΔN_{Levels}
- 4. Rule change with highest ratio is set as reference scenario, and step 2 is repeated
- 5. Loop continues until the number of configurations/levels is greater than pre-defined limits

Optimisation example

Fe-like Zn⁴⁺; Ground 3d⁸; 500 level limit

Note: Different rule changes used for first iteration to force dipole transitions

Optimisation example

Optimisation example

Multiple driving configurations

We now have a set of configurations for *each* driving configuration

- But an ion may have a number of driving configurations (i.e. metastables)
- The final configuration set should be based on all driving configurations

Further optimisation required using GCR model with ion-impact collisional excitations (see talk by *M Bluteau*) to determine relative populations of metastable configurations

Further optimisation steps:

- 1. Combine configurations from each driving configuration (removing any duplicates)
- 2. Distinguish between the metastable and promoted configurations
- 3. Systematically remove each promoted configuration in turn
- 4. Remove configurations with lowest values of $\Delta P_{LT} / \Delta N_{Levels}$ until limits satisfied

Multiple driving configurations

Case study: Krypton

- Perform analysis P_{LT} uncertainty analysis for Kr iso-nuclear sequence
 - ions in the range 1<Z<15
- Atomic structure uncertainty
 - compare Autostructure vs. Cowan using PWB ic resolution
- Collisional excitation cross-section uncertainty
 - compare DW vs. PWB using Autostructure in *ic* resolution
- Compare P_{LT} with previous (89) ADAS baseline

Uncertainties from atomic structure

Near neutral ions are a problem case, where further optimisation of Autostructure scaling parameters is required – currently in development

٠

Uncertainties from atomic structure

Comparison of Autostructure vs. Cowan (*ic* PWB) PLT at ionisation potential

Near neutral ions are a problem case, and therefore further optimisation of Autostructure scaling parameters is required – currently in ADAS development

٠

Uncertainties from collisional excitation cross-sections

Uncertainties from collisional excitation cross-sections

Kr power function

Note: results require further testing and analysis – for visualisation purpose only

Summary & Discussion

ADAS baseline moving to Autostructure, DW and *ic* resolution for medium-weight and heavy elements

- Configuration sets optimised to power using promotion rules
 - secondary optimisation step for multiple driving configurations
- Uncertainty on P_{LT} from atomic structure and collisional excitation cross-sections typically below 30%
 decreases with ion charge

Discussion

٠

•

How are uncertainties propagated and stored in ADAS?