ADAS Workshop, GUNSAN, 2016

VUV Spectroscopy and Discussion on Line Identification in KSTAR Plasmas

C. R. Seon¹, J. H. Hong², H.Y. Lee², I. W. Song², H. G. Lee¹, Y. H. An¹, J. H. Jang², J. S. Park², W. Choe², R. Guirlet⁶ S. Pak¹, M. S. Cheon¹, J. H. Choi¹,

œ

W. Biel³, M. O'Mullane⁴, P. Bernascolle⁵, and R. Barnsley⁵ ¹ITER Korea, National Fusion Research Institute

² KAIST

³FZ Julich

⁴Univ. Strathclyde, UK

⁵ITER Organization, France

⁶CEA, France University of Strathclyde

Glasgow

Prototyping of ITER VUV Spectrometer

Overview of ITER VUV Spectrometer Design

VUV Edge Imaging spectrometer (17 nm - 32 nm)

- ✓ 1-dimensional spatial monitoring, 2 cm spatial resolution at rho/R = 0.85 1.03,
- \checkmark One field mirror, and one collimation mirror for relay optics

VUV Core Survey spectrometer (2.4 nm - 160 nm)

- \checkmark 5-channel spectrometers divided in wavelength for high efficiency
- ✓ 5-mirror optimization for DSM slot minimization

Divertor VUV spectrometer (15 nm - 32 nm)

✓ Tungsten line emission from divertor plasmas

VUV Core Survey

Wavelength Range

(nm)

Line Width (nm)

Spectral Resolution

(BICCD ~ 20 um) Incidence Angle

(degree) Distance: Slit to

Grating (mm) Distance: Grat. to

Det. (mm)

VUV Edge Imaging

Mean resolution $\lambda/\delta\lambda = 491$, mean line width = 6.807 Pixel, mean Etendue = 1.0175E-004 mm² sr

1

2.4-

7.8

0.021

206

3.5

650

~550

2

7.0-

16.2

0.035

315

7.0

470

~470

 λ = 24.50 nm : Imaging line width = 0.0466 nm Bandpass line width = 0.0493 nm Camera line width = 6.7539 Pixel Etendue = 1.0226E-004 mm² sr Transmission = 0.08233 TH = 1.00000 Dispersion = 0.59141 nm/mm

4

29-

60

0.054

669

28

400

~400

5

55-

159

0.106

646

45

300

~300

3

3

14.4-

32

0.044

462

20

550

~550

Prototyping of Two channels (15-30 nm, 30-60 nm)

2-channel prototype detector test

ITER Prototype VUV Spectrometers at KSTAR

- Spectrometer table on the F-port deck
- 3 m long Vacuum Extension Tube
- Two Gate Valves
- One Bellows
- VUV survey mirrors
- (1) Cylindrical
- 10 cm x 5 cm, R.O.C. = 13.5 cm
- (2) Convex
- 10 cm x 5 cm, R.O.C. = 700 cm
- VUV Imaging
- (1) Concave R.O.C. = 50 cm
- (2) Ellipsoidal

Ar Puffing Experiment (L mode)

VUV spectra before/after Kr injection (#13104 by KAIST)

- Kr was injected at ~ 9s during 4 s period.
- Large peaks of Kripton were observed

Need Kr data for transport study

Summary

- Prototypes of ITER VUV spectrometer system have been tested for & calibrated in the laboratory with calibrated hollow cathode lamp.
- After laboratory test, spectrometer system has been installed on KSTAR Fport. Showed nice data from KSTAR campaigns
- Tungsten, Argon, Neon and Kripton lines were identified
- Measured data from VUV spectrometer has been used for impurity transport study on KSTAR since 2012 KSTAR campaign & Cross check with SXR diagnostic results has been done.
- Using CAES spectrometer, W lines were observed

