

The Tungsten Project: Dielectronic Recombination data for Collisional-Radiative Modelling in ITER – W74+ -W38+

S. P. Preval, N. R. Badnell, M. G. O'Mullane

Outline

University of Strathclyde Science

- Motivation
- The Tungsten Project
- Calculation Methods
- Results and Comparisons
- Conclusion

Motivation

- The divertor at ITER will be constructed with Tungsten.
- ITER-like wall in JET experiment shows large power losses in the plasma.
- Need to understand this from Collisional-Radiative perspective.
- Need partial final-state resolved DR/RR rate coefficients.

Motivation

- Several Tungsten DR data sets exist:
 - Pütterich et al. (2008), scaled ADPAK data (Post et al. 1977, 1995).
 - Foster (2008), Burgess General Formula.
 - Chung et al. (2005), FLYCHK.
- Compare steady-state ionization balances computed using ionization rate coefficients from Loch et al. (2005), and Pütterich/Foster DR rate coefficients.

- Require partial DR rate coefficients for entire isonuclear sequence of Tungsten.
- The Tungsten Project aims to be the first to calculate this data.
- Data will be hosted on OPEN-ADAS as it is published.
- Data will be calculated using AUTOSTRUCTURE (Badnell 1986, 1997, 2011)

- AUTOSTRUCTURE is a distorted wave code using kappa-averaged semi-relativistic wavefunctions calculated with a TFDA potential.
- Calculates level, term, or configuration resolved energies, radiative/autoionization rates, and many other atomic quantities.

FIG. 5. (Color online) W^{20+} merged-beam DR rate coefficients: experiment [7] [upper solid (black) curve], partitioned total [dotdashed (cyan) curve], IC total [lower solid (red) curve], LS total [long-dashed (green) curve], and IC $4d \rightarrow 4f$ only [short-dashed (blue) curve].

FIG. 3. (Color online) Comparison of our measured (symbols) and various calculated merged-beam recombination rate coefficients. The solid curve (labeled IC) is the result of the present intermediatecoupling calculation. The short-dashed curve (labeled PD) is the result of the fully partitioned calculation including autoionizing (and radiative) damping. The long-dashed curve (labeled RR) is the calculated rate coefficient for radiative recombination. Inset: The same data up to 20 eV on a double logarithmic scale. The full circle (labeled ST) is the rate coefficient from the statistical theory by Dzuba *et al.* [13].

Badnell (2011) – W20+

- It gets difficult remembering what comes after Z=30 on the periodic table...
- Instead of referring to an ion by the metal it represents (i.e. Zn-like), refer to these by their Z.
- E.g. Si-like is now 14-like, Zn-like is 30-like, and Gd-like (Gadolinium) is 64-like.

- DR rate coefficients are calculated in core excitations, labelled by initial and final principal quantum number n_i and n_f respectively.
- E.g. A core excitation beginning at $n_i = 3$ and finishing at $n_f = 4$ is 3 4.
- We check if a core excitation is worth calculating in IC by looking at it's contribution to the total in configuration average.

- Summing over autoionizing states, the Rydberg electron is calculated explicitly for each principal quantum number n up to n = 25, and then logarithmically up to n = 999.
- Angular momenta number ℓ are included so as to numerically converge the DR rate coefficients to <1% over the ADAS temperature range z²(10 - 10⁷)K.

- N-electron configurations include all possible single excitations plus mixing.
- N+1-electron configurations are just Nelectron with an extra electron added.
- Mixing configurations are included using the "one up-one down" rule.
- E.g. $3p^2 \rightarrow 3s \ 3d$, $4p \ 4d \rightarrow 4s \ 4f$

Example: 16-like 3-3 Configs

N-electron target

 $3s^2 3p^4$ $3s^2 3p^3 3d$ $3s 3p^5$ $3s 3p^4 3d$ $* 3p^6$ $* 3s^2 3p^2 3d^2$ N+1-electron target $3s^2 3p^5$ $3s^{2}3p^{4}3d$ $3s^2 3p^3 3d^2$ $3s3p^{6}$ $3s3p^{5}3d$ $3s3p^43d^2$ $3p^63d$ $3s^2 3p^2 3d^3$

IC Total DR rate coefficients 3-4

IC Total DR rate coefficients 3-4

ADAS Workshop 2016 - South Korea

ADAS Workshop 2016 - South Korea

CA vs IC – Include mixing!

- CA is good for diagnostic purposes, but IC should be used when possible.
- Differences of ~80% observed between IC and CA partial DR rate coefficients.

30-like Partial DR rate coefficient: 4-4

30-like Partial DR rate coefficient: 4-5

W46+ Comparison

W45+ Comparison

W44+ Comparison

So... where are we now?

PHYSICAL REVIEW A 93, 042703 (2016)

Partial and total dielectronic recombination rate coefficients for W73+ to W56+

S. P. Preval,^{*} N. R. Badnell, and M. G. O'Mullane Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom (Received 20 December 2015; published 7 April 2016)

Dielectronic recombination (DR) is a key atomic process that affects the spectroscopic diagnostic modeling of tungsten, most of whose ionization stages will be found somewhere in the ITER fusion reactor: in the edge, divertor, or core plasma. Accurate DR data are sparse while complete DR coverage is unsophisticated (e.g., average-atom or Burgess General Formula), as illustrated by the large uncertainties that currently exist in the tungsten ionization balance. To this end, we present a series of partial final-state-resolved and total DR rate coefficients for W^{73+} to W^{56+} tungsten ions. This is part of a wider effort within *The Tungsten Project* to calculate accurate dielectronic recombination rate coefficients for the tungsten isonuclear sequence for use in collisional-radiative modeling of finite-density tokamak plasmas. The recombination rate coefficients have been calculated with AUTOSTRUCTURE using κ -averaged relativistic wave unctions in level resolution (intermediate coupling) and configuration resolution (configuration average). Comparison with previous calculations of total DR rate coefficients for W^{63+} and W^{56+} yield agreement to within 20% and 10%, respectively, at peak temperature. It is also seen that the Jüttner correction to the Maxwell distribution has a significant effect on the ionization balance of tungsten at the highest charge states, changing both the peak abundance temperatures and the ionization fractions of several ions.

DOI: 10.1103/PhysRevA.93.042703

So... where are we now?

Partial and Total Dielectronic Recombination Rate Coefficients for W^{55+} to W^{38+}

S. P. Preval,^{*} N. R. Badnell, and M. G. O'Mullane Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom (Dated: September 28, 2016)

ADAS Workshop 2016 - South Korea

So... where are we now?

- Ions $W^{73+} W^{56+}$ (01-like 18-like): now published.
- Ions W⁵⁵⁺ W³⁷⁺ (19-like 36-like): Paper Submitted
- Ions W³⁶⁺ W²⁶⁺ (37-like 46-like): MOSTLY finished, paper being written.
- Ions W²⁶⁺ onwards: Mentally preparing ourselves.

Future work

- Continue calculations into 4f shell and beyond.
- Updated ionization balances with new data.
- Collisional-Radiative modelling Plasma Emissivity et al.
- Effective ionization/recombination rate coefficients for transport codes.

W45+ Comparison

