THE 20TH ADAS WORKSHOP, 29–30 SEPTEMBER, 2016 @ NFRI GUNSAN KOREA

PRELIMINARY INVESTIGATION OF W45+, W46+ SPECTRA BY USING SH-ELECTRONBEAMIONTRAP FOR COMPARISON OF SPECTRA FROM TOKAMAK

Y. YANG¹, J XIAO¹, J. RZADKIEWICZ², R. HUTTON¹ AND Y. ZOU¹ ¹ SHANGHAI EBIT LABORATORY, FUDAN UNIVERSITY, SHANGHAI, CHINA ² NATIONAL CENTRE FOR NUCLEAR RESEARCH (NCBJ), WARSAW, POLAND 楊洋

2016 SEP. 30

<u>OUTLINES</u>

- I. Background
- II. Motivation
- III. Experimental Investigations
- IV. Result and Discussion

I. BACKGROUND

- Tungsten will be a strong candidate of the material for ITER divertor. ALL Spectroscopies related to tungsten were then become highlight fields.
- In many Tokamaks (like JET), in order to provide the physics and engineering basis for the exploitation of ITER, tungsten divertors are installed.

In order to diagnose the W concentration in the plasma, a high resolution X-Ray crystal spectrometer at JET has been upgraded with the wavelength window from around 5.2Å

Comparison of the spectrum measured by the upgraded X-ray spectrometer with that calculated by flexible atomic code for W45+,W46+ and Mo32+ at different electron temperatures and densities.

The figure shows the spectral at a temperature of 4 keV and a density around 10¹⁹ m³.

• There are two basic tasks that will be done through analyzing these spectral.

- Line identification
- Intensity analysis for W and Mo concentrations

<u>BACKGROUND</u>

- Some considering about these two tasks.
 - 1. The Doppler shift (and broadening).

A relative Doppler shift between W and Mo can be inferred.

If there is no Doppler shift, the wavelength identification and then line identification will be more deterministic!

• 2. A lot of calculation will be carried on for Data which will be used for the concentrations analysis.

- 2. A lot of calculation will be required for the Data which will be used for the concentrations analysis.
 - As the environment of plasma in Tokamak is usually very complex and full of variations, The Data from calculations and simulation will not be easy to verify.

h

If there is a more stable and controllable plasma with its parameters separately adjustable, the data verification and the model test will be more reliable!

EBIT BRIEF INTRODUCTION

- Electron Beam Ion Trap (EBII) probably is one of such apparatus which was designed to process disentangling studies of Plasmas.
 - Almost no Doppler shift
 - Ne, Ee(Te), P(E,T), B, Element
 - Static and dynamic

II. **MOTIVATION**

MOTIVATION (A EBIT PLASMA)

- 1. A flat crystal spectrometer was made and equipped on the SH-EBIT, with a resolving power($\lambda/\Delta\lambda$) around 5000 at 5Å.
- 2. SH-EBIT could cover a electron beam energy region from 1keV-150KeV, quasimonoenergetic and freely adjustable. (Maxwellian attempt)
- 3. The electron beam density could reach 10¹² cm³ around 4keV.
- 4. The magnetic field at the plasma could be adjusted freely from 1.5-4 T.
- 5. W and Mo can be injected in the plasma separately or simultaneously and under control.

MOTIVATION

- Measure precise wavelengths of those transitions of W and Mo at that wavelength region. It may be useful to identify the Doppler shift in the spectral from JET.
- Check the FAC calculations, by comparing spectral acquired at different electron energies. Especially on the line ratios from the same charge state ions.

MOTIVATION

- Measure the E1 and M2 transition of Mo32+ (lines may need a check). To check the discrepancy between calculation and experiment.
- Inject both W and Mo, and vary their abundances, and compare results with Tokamak's.

III. EXPERIMENTAL INVESTIGATIONS

EXPERIMENTAL INVESTIGATIONS

• Demonstration of connection between EBIT and flat crystal spectrometer

 正
 BIT主体腔

 一
 BIT主体腔

 狭缝法兰
 X射线CCD

 夏姆赫兹线圈
 电子束

Slit imaging system

EXPERIMENTAL INVESTIGATIONS

 The preliminary experiments' parameters :

Ee le 3.155kV 15mA 3.76kV 37mA 4.337kV 37.7mA 4.94kV 37.6mA 37.7mA 4.93kV 4.95kV 42mA 42mA 5.25kV

- Magnetic field: 3T
- Only W(CO)6 injected

IV. SOME RESULTS AND DISCUSSIONS

SPECTRA OF W

								2 3 -
					Ee		le	Ne /cm-3
IMAGING RESULT	\$			3.155	kV	15	mA	2.5E+12
	5			3.76	kV	37	mA	6. 3E+12
				4.337	′kV	37.7	mA	5.1E+12
				4.94	kV	37.6	mA	5.9E+12
≤ 100 0'22 0'02 0'02 0'02 0'02 0'02 0'02 0	140000 -	<u>A</u>		4.93	kV	37.7	mA	7.7E+12
- 100 -	130000 - - 120000 -	1		4.95	kν	42	mA	8.6E+12
	110000 - 100000 -		a l	5.25	kν	42	mA	8.4E+12
	90000	200 300 40	500 600	700 (b)				
	140000 - 130000 - 120000 - 100000 - 90000 -		••••••••••••••••	(0)				eBIT主体腔
206 1200 1200 Pixel number	80000	200 300 40	00 500 600	700 (a)			A	来缝法兰 X自线ecco

漂移管

亥姆赫兹线圈

电子束

+*+ +*+

SOME LINES NOT IDENTIFIED FOR HIGHER ELECTRON ENERGY, WAITING FOR MORE INVESTIGATIONS

COMPARISON WITH JET DATA

NEXT STEPS

- Mo is prepared to injected into the plasma. Measurements will be arranged for different parameters of plasma
- Mixture of W and Mo will be injected into the plasma.
- More calculation will be done for further analysis.

THANK YOU FOR YOUR ATTENTION!

Communications and Collaborations are warmly welcomed.

