CXSFIT - Charge Exchange Fitting

Allan Whiteford (ADAS)

M G von Hellermann, Thijs Versloot (FOM/Jülich)

L D Horton, C F Maggi, J Schirmer, T Pütterich, R McDermott (IPP-Garching)

K-D Zastrow, T M Biewer*, C Giroud and A G Meigs (UKAEA/JET)

 \star Permanent institution: ORNL

15th September 2009

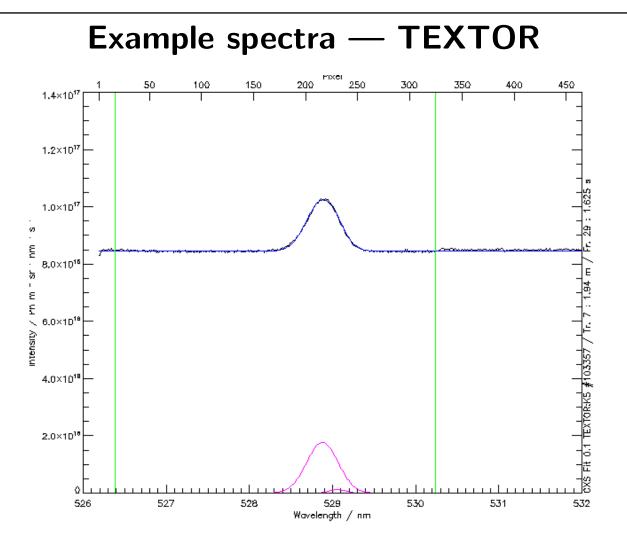
ADAS-EU Training Course

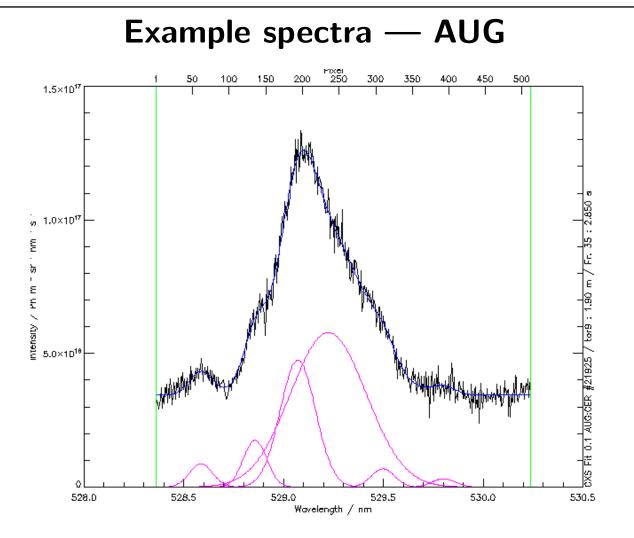
Contents

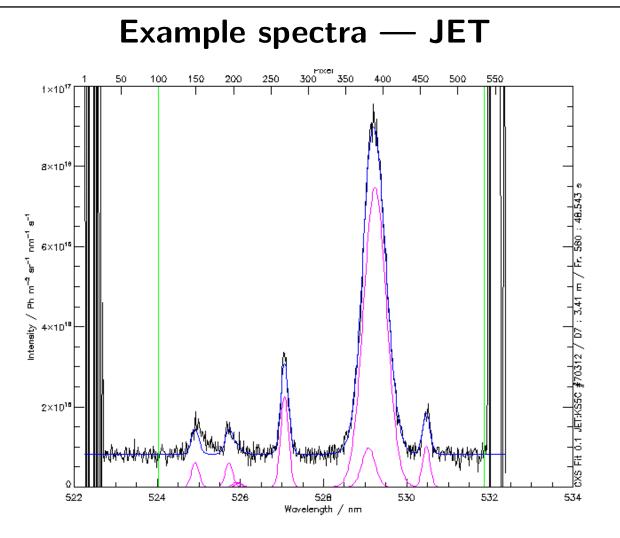
- Background.
- KS4FIT.
- CXSFIT.
- Graphical Interface.
- Feature highlights.
- Fit history methodology and automatic processing.
- Benchmarking and testing.

Background

- Fitting charge exchange spectra has always been a complicated process:
 - on the fly wavelength calibration (based on Be line position),
 - the passive signals means a one Gaussian fit is usually not possible,
 - other lines make it difficult to fit the background,
 - using carbon temperatures to aid in the fitting of helium spectra,
 - coupling line positions together based on known wavelengths,
 - now we have tungsten contaminating the spectra,
 - and many many more.
- von Hellermann and co-workers developed advanced techniques to solve all of these issues at JET — resulted in a computer code called KS4FIT.

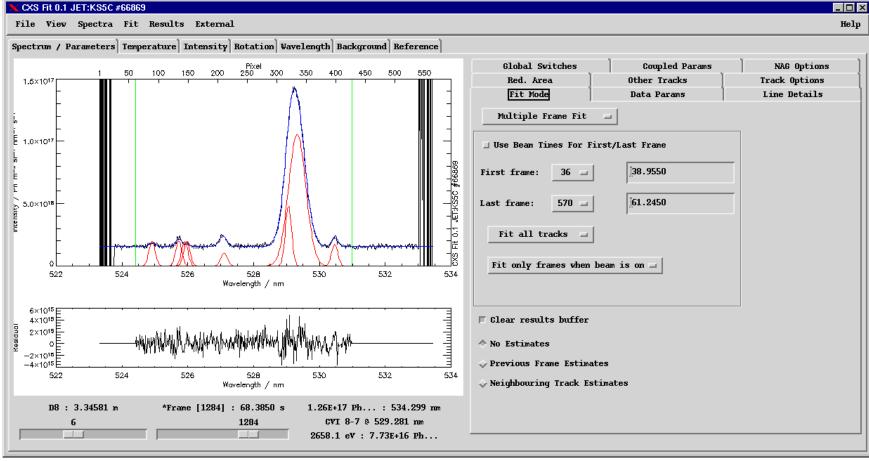

KS4FIT


- Practical implementation of charge exchange fitting at JET was called KS4FIT:
 - originally written for the IBM but ported to Linux,
 - reads spectra (JPFs) and writes results (PPFs),
 - had a TSO-style interface,
 - now replaced by CXSFIT.
- However, KS4FIT exists outside of JET where it is a different thing:
 - same core fitting algorithm,
 - input and output are completely different,
 - packaged along with InSPECtor (JAVA fitting code).
- It's the latter version of KS4FIT (the pure fitting engine) which CXSFIT uses.


ADAS-EU Training Course

CXSFIT

- CXSFIT is a joint development between ADAS, FOM, Garching, Jülich and UKAEA to provide a universal interface to KS4FIT.
- Graphical user interface written in IDL.
- Contains all of the features present in KS4FIT.
- Provides visualisation of each fit and of the overall results.
- Almost all of the code is machine independent:
 - Machine specific reading/writing routines need to supplied.
 - We really do have an identical code running on AUG, JET and TEXTOR!



Current usage and deployment

- Used exclusively on all JET core spectroscopy systems (KS5A-E),
 - Reads from JPFs and takes geometry etc. from central location.
 - Writes directly to PPFs.
- Used at AUG on CER and CHR core systems plus CHZ edge system,
 - Reads level-0 shotfiles (spectra) and geometry etc. from central location.
 - Writes directly to level-1 shotfiles compatible with cview.
- Replaced InSPECtor at TEXTOR on all Kameras (1-6).
 - Reads directly from TWU (both spectra and all other information).
 - Writes directly to TEXTOR TPD system.
- First usage at CEA Cadarache last month.

The Graphical Interface Global Switches Coupled Params Pixel 100 150 200 250 300 350 400 450 500 550 Red. Area Other Tracks Fit Mode Data Params

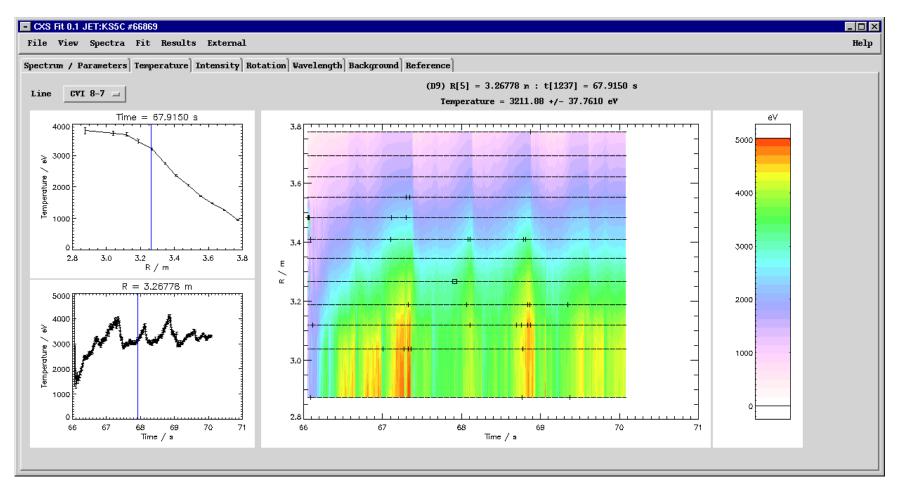
Feature Highlights: In-built line database

Global Switches	· · · · · · · · · · · · · · · · · · ·		NAG Options					
Red. Area	Other Tracks		Track Options					
Fit Mode	Data Params		Line Details					
Number of lines: 8 = Baseline: Flat = Select line CVI 8-7 = Change name: CVI 8-7								
Preset values: Select Remove This Line								
Param Value	Unit Lower	Upper	Fix					
Height 1.47854 Ph/s	m 2/sr/nm/s (0.0000) jint						
Centre 529.200	mm 🖬 [0.0000) jint						
Temperature 2500.00	eV [0.0000) jinf						
Mass 12.1100	amu	Select	-					
🗖 Autodetect Height 🔲 Suppress Line								
♦ Active Line ♦ Passive Line								
Theoretical wavelength 529.059 nm								

- Very high quality observed wavelengths included in program.
- Gives best quality rotations and on-the-fly calibration.
- If wanted, can be selected automatically based on line position.
- Can be overridden by the user if necessary.

Feature Highlights: Complex coupling

Fit Mode Red. Area Global Switches	Data Params Other Tracks Coupled Params	Line Details Track Options NAG Options		Fit Mode Global Switches Red. Area	Data Params Coupled Other Track	Params	Line Details NAG Options Track Options
F Activate Coupled Par	rameters			Туре	To Line	From Line	From Track
Centre =	CIII 8-6 = BeII Ref	⊥ + <u>⊥</u> <u>)</u> 3.408	F	Temperature 🖃	CVI-pass 🖃	CVI 8-7 =	Track 12 =
Ti 🖃	CIII 8-6 = Bell Ref		Г	Ang. Freq. 🖃	CVI-pass 🖃	CVI 8-7 🚍	Track 12 =
Centre 🖃	CIII4F4Da = BeII Ref	- + - <u>-1.33</u>		Temperature 🗖	EVI. 8-7 🗖	CVI 8-7 🗖	Track 1 🗖
Ti =	CIII4F4Da = BeII Ref	x = 1.000		Temperature 🖬	CVI 8-7 🗖	CVI. 8-7 🗖	Track 1 💷
Centre 🖃	CII4F4Db = BeII Ref	- + - <u>-1.15</u>		Temperature 🗖	CVI 8-7 🗖	EVI. 8-7 🖃	Track 1 🗖
Ti =	CIII4F4Db = = BeII Ref	x 1.000		Temperature 🗖	CVI. 8-7 🗖	CVI. 8-7 🗖	Track 1 =
Centre 🖃	CII4F4Dc = BeII Ref	→ + → →		Ti Factor: 1.00000			
Ti 🖃	CII4F4Dc = Bell Ref	x _ [1.000	AF Fac	AF Factor: 1.00000			


Can couple inside a spectrum or across tracks.

Global Switches	Coupled Params	NAG Options
Red. Area	Other Tracks	Track Options
Fit Mode	Data Params	Line Details
Mark Fits as Poor	=	
Outliers in Time 🖃]	
Quantity : Temper	rature 🖃	
Line : CVI 8	-7 =	
100 % above poir	ts on either side	
50 % below poir	ts on either side	
🔷 Use data values 🔇	Use error bars	
🗆 Clear results buffer		
♦ No Estimates	\diamond Self Mapping Esti	imates
\diamond Previous Frame Estima	tes $ ilde{}$ Self Mapping (wit	th baseline)
\rightsquigarrow Neighbouring Track Es	timates	

Highlights: detecting poor data

- Can do analysis of fit results to check quality/sanity
- Outliers in time or nonphysical $T_{\rm i}$ profiles
- Necessary on systems with high temporal resolution.
- Can be used as part of a more complex analysis.

Preview of results

Repairing spectra

- Even with all the options available, usually a few of the fits don't converge.
- Marked with crosses (poor fits) or stars (failed fits) in the output preview.
- Options exist to refit the failed or poor frames with new fit options:
 - 'standard' current procedure at JET is to use the previous frame estimates,
 - sometimes necessary to do individual fits by hand,
 - conceivable that different temporal regions may need different setup entirely.
- However, this means that to reproduce results or use the same recipe on a different shot there are multiple parameter settings which need to be used.

Fit History

- CXSFIT stores the fit history, i.e.:
 - The list of steps used to produce the current fit in terms of what the fit options were set to each time a fit was initiated.
- Fit histories can be saved as default recipes (also written to default output).
- Very simple history might be:
 - 1. fit all frames with beam on for all times,
 - 2. fit any failed frames using previous frame estimates,
 - 3. fit any remaining failures using neighbouring tracks option.
- Allows the user to load in a spectrum, load a recipe and then "replay" the history. Standard recipes can be developed for particular instruments.

The command line

- CXSFIT can be controlled from the command line for convenience or for batch processing, examples are:
- Load a spectrum at startup:
 - cxsfit cer:17148
- Do batch processing using the same recipe:
 - cxsfit ks5c:66869 ks5c_carbon8-7.fit replay save ks5c_66869.cxf quit
 - cxsfit ks5c:66870 ks5c_carbon8-7.fit replay save ks5c_66870.cxf quit
 - cxsfit ks5c:66871 ks5c_carbon8-7.fit replay save ks5c_66871.cxf quit
- Reload a previously saved setup:
 - cxsfit k5_103357.cxf

Testing and benchmarking

- Benchmarking between CXSFIT and the TSO KS4FIT has been done at JET. Results were almost identical (expected since the core code is the same).
- Extensive testing has been done on AUG for a number of spectra. Including helium spectra using external estimates.
- Testing at TEXTOR gave very similar results to InSPECtor implementation (expected that the CXSFIT results are better due to the treatment of errors).
- The output of CXSFIT at JET can be processed by the current (IBM-esque) version of CHEAP. Similarly for IDL-CHEAP at AUG and Matlab-CHEAP at TEXTOR.
- Possible CHEAP re-development and rationalisation is an issue.

CXSFIT can be run downstairs, please feel free to have a go. Tutorial sheets are available. Thank you