
Overview of Atomic Structure and Collision Theory

Nigel Badnell

Department of Physics

University of Strathclyde

Glasgow, UK

– ADAS 2009 –



Atomic Structure Methods

It is deceptively simple to write down the structure problem to be solved

Ψ = Σ

Z

ν

aνψν . (1)

The total wavefunction for the atom Ψ is expanded in terms of a complete set of

(antisymmetric) basis states ψν (an N -product of one-electron orbitals) with expansion

coefficients aν.

Spherically symmetric problem → (θ, φ) problem solved. Use standard angular algebra

methods and packages are used, mostly based on Racah algebra but also Condon and

Shortley (Slater-states).

Only require to determine radial dependence of wavefunction.
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• Hartree/Dirac-Fock: coupled-set of radial equations result from formally varying radial

orbitals to give stationary value of an energy functional — self-consistent solution:

MCHF (Froese), HFR (Cowan), MCDF (Grant) etc. (Expansion coefficients may also

be determined this way, MCHF.)

• Configuration Interaction (CI): radial equations (usually uncoupled) contain variational

parameters (e.g. ”model potentials”) which are varied (numerically) to minimize a

computed energy functional: AS/SS, CIV3, HULLAC

• As CI but using a self-consistent model potential: AS, HULLAC, FAC.

All approaches then, usually, construct and diagonalize the Hamiltonian to give the final

e-states and e-energies.

Basis expansion is slow to converge in general. A plethora of basis functions are used:

spectroscopic, psuedo (Laguerre), B-splines etc.

Pros & Cons: problems with converging HF for excited states. Local vs global minimum,

flexible enough variational parameters.

Scattering codes can use only the simplest HF methods, in general: unique, orthogonal...

– ADAS 2009 – 2



Hamiltonian

♣ Schrödinger equation based (AS, CIV3, MCHF):

• Non-relativistic: kinetic, nuclear & electrostatic operators.

• Breit-Pauli: as above, plus one-body fine-structure (spin-orbit), and non-fine-structure

(Mass-Velocity & Darwin).

Fine structure mixes terms, non-fine-structure can be added to NR above.

• Breit-Pauli: as above, plus two-body fine-structure (spin-spin, spin-orbit, spin-other-

orbit).

• Breit-Pauli: as above, plus two-body non-fine-structure (orbit-orbit, contact-spin-spin,

Darwin).
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♣ Kappa-averaged Dirac equation based (± small component): radial functions still

depend only on nl, not nlj. Then using above Breit-Pauli operators. (HFR one-body

only, AS.)

♣ Dirac equation based, large and small component.

• Dirac-Coulomb (HULLAC, FAC)

• + (Generalized) Breit +QED (GRASP, Sampson/LANL)

Others: Sapirstein & Johnson, Desclaux, Chen...

Coupling schemes: LS, LSJ, jK, jj (unitary transformations).

What matters more are good quantum numbers...
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Atomic Structure Data

Bound-Bound

• Energy levels, (”All”)

• Ek and Mk radiative rates (”Most”)

Bound-Free

• Autoionization rates, DR (AS, HULLAC, FAC, MCDF(Chen) ...)

• Photoionization cross sections, RR (ditto)

Free-Free

• Infinite and finite energy Plane-wave Born (AS, Cowan)
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And More...

• Hyperfine

• Stark-mixing, DR

• ...
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Complex (Heavy) Species

• Unresolved Transition Array (UTA) Spectral shape — Bauche-Arnault, Bauche &

Klapisch

• Configuration-average (CA) collisions — Cowan driven.

Both neglect configuration interaction.
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Atomic Collision Methods

Time-dependent methods solve the full Schrödinger equation — TDCC.

Time-independent methods expand the antisymmetric total wavefunction for the target-

plus-colliding particle Ψ in terms of a known complete basis of target states ψν.

Ψ = AΣ

Z

ν

ψνφ . (2)

The expansion coefficients φ representing the colliding particle (projectile) are then to

be freely determined by a variational of the scattering matrix leading to the continuum

Hartree/Dirac-Fock equations.
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Coupled-channel methods

Resonances arise naturally when the scattering energy of an open-channel coincides with

that of a closed-channel.

Traditional close-coupling approximation truncates the expansion to a low-lying set of

closely-coupled atomic states — neglects ionization loss.

Pseudo-state expansions attempt to approximate the sum/integral over a wide range of

energies and work towards practical numerical convergence — RMPS, CCC.

Complete basis expansions can be used over a limited energy range and volume (particle

in a box) — B-spline R-matrix, Intermediate Energy R-matrix.
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Distorted-wave methods

DW methods solve (elastic) uncoupled continuum Schrödinger/Dirac equations and treat

the (inelastic) coupling as a perturbation — can keep problem small, a series of 2x2

calculations: AS/HULLAC/FAC/LANL & UCL(historic)

Resonances are often neglected from electron-impact excitation, but not recombination —

DR. Use of the IPIRDW approximation (Independent Processes Isolated Resonance using

DW): AS/HULLAC/FAC

Simple ”DW”: Coulomb or plane-wave Born for EIE & EII: ATOM or AS/Cowan

Heavy species: can/need we go beyond PWB?
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R-matrix

Probably the most successful method/code suite for electron-impact excitation and

photoionization (no so much for electron-ionization).

A close-coupling method which is very efficient at mapping-out resonances, compared to

CCC, UCL-IMPACT (historic) etc. (But not compared to IPIRDW...)

Need to solve the coupled integro-differential scattering equations at tens, if not hundreds,

of thousands of energies and for ∼ 100 angular momentum symmetries.
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Key Idea

Divide scattering region into two: an inner region that just encompasses the atom/ion

(wavefunctions ∼< 10−3, say, outside) and where the scattering potentials are complicated

(e.g. short-range); and an outer region where we only have an asymptotic Coulomb

potential and, maybe, dipole and quadrupole coupling potentials (with analytic coefficients).

Let the dividing boundary radius be r0.

The inner region is a finite volume and we can expand our (to be determined) continuum

wavefunction in terms of a simple orthogonal basis of states ui(r), say, with a fixed (outer)

boundary condition given by the logarithmic derivative:

d

dr
log(ui(r))

˛

˛

˛

˛

r=r0

=
u′
i(r)

ui(r)

˛

˛

˛

˛

r=r0

= b (3)

where b is usually taken to be zero (it must be a constant).

This leads to a set of discrete positive energy solutions k2
i , say (particle in a box).
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The inner region solution at r = r0 for any scattering energy k2 is completely characterized

by the R-matrix:

R ≡

∞
X

i=1

[ui(r0)]
2

k2
i − k2

. (4)

The scattering matrix (hence, cross section) is determined by matching the outer region

solution to the inner region one at r0.

For example, for s-wave (l = 0) scattering off a neutral atom

K =
− sin(kr0) +R(k cos(kr0) − b sin(kr0))

cos(kr0) +R(k sin(kr0) + b cos(kr0))
. (5)

Here, K is the reactance matrix, which is simply related the the S-matrix.

A more detailed exposition, based on Burke & Robb (1975), is available.
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Web Links

http://amdpp.phys.strath.ac.uk/

http://amdpp.phys.strath.ac.uk/tamoc/

http://amdpp.phys.strath.ac.uk/autos/

http://amdpp.phys.strath.ac.uk/UK APAP/codes.html
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