

Heavy Species in ADAS

from the viewpoint of one lowly ion

Martin O'Mullane

Department of Physics University of Strathclyde

ADAS-EU Training Course, EFDA-JET, 14-Oct-2010

Atomic data requirements

Three aspects of the heavy species question

The data we need

- ► Source functions *adf11* acd, scd, ccd
- Power coefficients adf11 plt, prb
- Line emission adf15 pec
- ► Spectral feature emission *adf40* f-pec

How to get it

- Scoping the problem
- Automated generation

How to use it

- Potentially large datasets
- Partitioning and superstaging.

Let's choose tin (Z=50)

First questions: Where do its stages radiate? And what if there is no helpful ADAS *adf11* data?

Now let's narrow our focus to Sn¹³⁺

- What is its ground state configuration?
- What configurations contribute to spectral emission?
- And to radiated power?
- How do we choose which ones to include?

The *adf00* set archives ionisation potential and ground configurations:

• •

tin -500 7.343d+00 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f0 5s2 5p2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f0 1 1.463d+01 1s2 2s2 5s2 5p1 • • • • 2p6 Зрб 12 2.744d+02 1s2 3s2 3d10 4s2 2s2 4p6 4d2 2p6 3s2 13 2.995d+02 1s2 2s2 Зрб 3d10 4s2 4p6 4d1 2p6 14 3.959d+02 1s2 2s2 3s2 3p6 3d10 4s2 4p6

What configurations should be considered?

With a ground state of $3d^{10}4s^24p^64d^1$ we can

- promote the valence 4d electron to any higher nl shell
- allow 4s or 4p electrons to be excited
- ▶ or any other electron from 2p perhaps?
- however where do we stop in Δn or Δl ?
- and how many configurations should we consider?

There are 180 distinct ground configurations (for elements up to Radon) A rule based method is desirable (essential!)

ADAS rules for choosing where to promote electrons

index[]	:	index of ground configuration of each ion of element in <i>adf54</i> file
config[]	:	ground configuration for each ion of element
n_e1[]	:	number of electrons for each ion of element
no_v_sh1[]	:	number of open (valence) shells. Include outer-most shell even if closed.
max_dn_v1[]	:	maximum Δn promotion for first (outer-most) valence shell.
min_dn_v1[]	:	minimum Δn promotion for first (outer-most) valence shell.
		Negative value allows access to inner unoccupied or open shells
max_dl_v1[]	:	maximum delta ΔI promotion for first (outer-most) valence shell.
min_dl_v1[]	:	minimum delta ΔI promotion for first (outer-most) valence shell.
max_dn_v2[]	:	maximum Δn promotion for second (inner-most) valence shell.
min_dn_v2[]	:	maximum Δn promotion for second (inner-most) valence shell.
max_dl_v2[]	:	maximum delta ΔI promotion for second (inner-most) valence shell.
min_dl_v2[]	:	minimum delta Δl promotion for second (inner-most) valence shell.
prom_c1[]	:	promote from inner shell closed shells (1=yes,0=no).
max_n_c1[]	:	maximum inner shell <i>n</i> from which promotions are permitted.
min_n_c1[]	:	minimum inner shell <i>n</i> from which promotions are permitted.
max_1_c1[]	:	maximum inner shell 1 from which promotions are permitted.
min_1_c1[]	:	minimum inner shell <i>l</i> from which promotions are permitted.
max_dn_c1[]	:	maximum Δn promotion from a permitted inner shell.
min_dn_c1[]	:	minimum Δn promotion from a permitted inner shell.
		Negative values of Δn allow access to inner unoccupied or open shells.
max_dl_c1[]	1	maximum ΔI promotion from a permitted inner shell.
min_dl_c1[]	1	minimum Δl promotion from a permitted inner shell.
fill_n_v1[]	1	add all <i>nl</i> configurations of outer valence shell n (1=yes,0=no).
fill_par[]	1	if n_fill only add opposite parity to valence shell else add both parities (1=yes, 0=n0).
for_tr_se1[]	1	Cowan option for radiative transitions 1 - first parity, 2 or 3(default).
last_4f[]	:	shift an electron valence shell to unfilled 4f as extra ground.
grd_cmplx[]	:	include configurations of same complex as ground configuation for valence n-shell.

adf54 : rules for automatic data generation

Care needed!! resolved calculations (ic or LS) can overwhelm computers.

Work through Sn¹³⁺

- Within ADAS the generation of heavy species data is almost exclusively a non-GUI activity.
- The outputs are standard adf11, adf15 and adf40 datasets which can be used and examined with the GUI interactive system.

At the IDL command line:

```
; Let's choose Sn13+
```

```
z_nuc = 50
z_ion = 13
tag = xxesym(z_nuc, /lower) + string(z_ion, format='(i2.2)')
```

; Use promotion rules from W work

a54file = '/u/adas/adas/adf54/promotion_rules_w_adf54.dat'

adas8xx_promotion_rules, z0_nuc = z_nuc, z_ion = z_ion, ionpot = ip, \$
 prom_rules=rules, a54file = file
help, rules, /st

** Structure <9b54e9c>, 25 tags, length=60, data length=60, refs=1: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d1' STRING ' CONFIG INDEX INT 129 NO_V_SHL INT 1 3 MAX_DN_V1 INT MIN_DN_V1 INT 0 2 MAX_DL_V1 INT MIN_DL_V1 INT -2 MAX_DN_V2 INT 0 MIN_DN_V2 INT 0 MAX_DL_V2 INT 0 MIN DL V2 INT 0 PROM CL INT 1 MAX_N_CL INT 4 MIN_N_CL INT 4

MAX_L_CL	INT	1
MIN_L_CL	INT	0
MAX_DN_CL	INT	1
MIN_DN_CL	INT	0
MAX_DL_CL	INT	2
MIN_DL_CL	INT	0
FILL_N_V1	INT	1
FILL_PAR	INT	0
FOR_TR_SEL	INT	3
LAST_4F	INT	0
GRD_CMPLX	INT	0

adas8xx_promotions, z0_nuc = z_nuc, z_ion = z_ion, ionpot = ip, \$
 prom_rules = rules, \$
 promotion_results = results

help, results, /st

** Structure <9b530dc>, 11 tags, length=2496, data length=2496, refs=1: STRING '4d1 GRD CFG Array[36] GRD OCC INT Array[25] EX CFG STRING GRD_PAR 0 INT Array[25] EX_PAR INT GRD_ZC_COW LONG -14 Array[25] EX_ZC_COW LONG Array[36, 26] OC_STORE INT Array[7] NO_CONFIGS LONG NO_TERMS LONG Array[7] Array[7] NO_LEVELS LONG

print, results.grd_occ

print, results.oc_store[*,1] print, results.oc_store[*,2]

; Write CA driver files for restricted plasma parameters

files = { adf34_file : 'adf34_ca_' + tag + '.dat', \$ adf42_ca_file : 'adf42_ca_' + tag + '.dat', \$ adf04_ca_file : 'adf04_ca_' + tag + '.dat', \$ adf40_ca_file : 'adf40_ca_' + tag + '.dat', \$ adf15_ca_file : 'adf15_ca_' + tag + '.dat', \$ adf11_ca_file : 'adf11_ca_' + tag + '.dat'} : [1.0e3, 2.0e3, 5.0e3, 1.0e4, 1.5e4, \$ plasma = {theta 2.0e4, 5.0e4, 1.0e5], \$ indx_theta : indgen(8), rho : [1.0e8, 1.0e10, 1.0e12, 1.0e14], indx_rho : indgen(4), npix : [128, 256], wvlmin : [100.0, 1.0], wvlmax : [150.0, 500.0], indx_wvl : indgen(2), theta_noscale : 0, rho scale : 0

adas8xx_create_drivers, z0_nuc=z_nuc, z_ion=z_ion, ionpot=ip, \$
 promotion_results=results, \$
 plasma=plasma, files=files

The driver file for ADAS801 (Cowan code):

-5	2	10	1.0	5.d-09	5.d-11-2	013	0	1.0 0.65	0.0	0.5
50	-14	Sn	ground	z1=13 0	4d1					
50	-14	Sn	cfg 01	0	5s1					
50	-14	Sn	cfg 02	0	5d1					
50	-14	Sn	cfg 03	0	5g1					
50	-14	Sn	cfg 04	0	6s1					
50	-14	Sn	cfg 05	0	6d1					
50	-14	Sn	cfg 06	0	6g1					
50	-14	Sn	cfg 07	0	7s1					
50	-14	Sn	cfg 08	0	7d1					
50	-14	Sn	cfg 09	0	7g1					
50	-32	Sn	cfg 10	0	3d10 4s1	4p6	4d2			
50	-32	Sn	cfg 11	0	3d10 4s1	4p6	4d1	5s1		
	-5 50 50 50 50 50 50 50 50 50 50 50	-52 50 -14 50 -14 50 -14 50 -14 50 -14 50 -14 50 -14 50 -14 50 -14 50 -14 50 -14 50 -14 50 -32 50 -32	-5210 50 -14 Sn 50 -32 Sn 50 -32 Sn	-52101.0 50 -14 Sn ground 50 -14 Sn cfg 01 50 -14 Sn cfg 02 50 -14 Sn cfg 03 50 -14 Sn cfg 03 50 -14 Sn cfg 04 50 -14 Sn cfg 05 50 -14 Sn cfg 06 50 -14 Sn cfg 07 50 -14 Sn cfg 08 50 -14 Sn cfg 09 50 -32 Sn cfg 10 50 -32 Sn cfg 11	-52101.05.d-0950 -14 Sn ground z1=13050 -14 Sn cfg 01050 -14 Sn cfg 02050 -14 Sn cfg 03050 -14 Sn cfg 04050 -14 Sn cfg 05050 -14 Sn cfg 06050 -14 Sn cfg 07050 -14 Sn cfg 08050 -14 Sn cfg 09050 -14 Sn cfg 10050 -32 Sn cfg 10050 -32 Sn cfg 110	-52101.05.d-095.d-11-250-14Sn ground z1=1304d150-14Sn cfg 0105s150-14Sn cfg 0205d150-14Sn cfg 0305g150-14Sn cfg 0406s150-14Sn cfg 0506d150-14Sn cfg 0606g150-14Sn cfg 0707s150-14Sn cfg 0807d150-14Sn cfg 0907g150-32Sn cfg 1003d1050-32Sn cfg 1103d10	-52101.05.d-095.d-11-201350 -14 Sn ground z1=1304d150 -14 Sn cfg 0105s150 -14 Sn cfg 0205d150 -14 Sn cfg 0305g150 -14 Sn cfg 0406s150 -14 Sn cfg 0506d150 -14 Sn cfg 0606g150 -14 Sn cfg 0707s150 -14 Sn cfg 0807d150 -14 Sn cfg 0907g150 -32 Sn cfg 1003d104s14p6	-52101.05.d-095.d-11-2013050-14Sn ground z1=1304d150-14Sn cfg 0105s150-14Sn cfg 0205d150-14Sn cfg 0305g150-14Sn cfg 0406s150-14Sn cfg 0506d150-14Sn cfg 0606g150-14Sn cfg 0707s150-14Sn cfg 0807d150-14Sn cfg 0907g150-32Sn cfg 1003d104s14p64d1	-52101.0 $5.d-09$ $5.d-11-2$ 0130 1.0 0.65 50 -14 Sn cfg 01 0 $5s1$ 50 -14 Sn cfg 02 0 $5d1$ 50 -14 Sn cfg 03 0 $5g1$ 50 -14 Sn cfg 04 0 $6s1$ 50 -14 Sn cfg 05 0 $6d1$ 50 -14 Sn cfg 05 0 $6d1$ 50 -14 Sn cfg 06 0 $6g1$ 50 -14 Sn cfg 07 0 $7s1$ 50 -14 Sn cfg 09 0 $7d1$ 50 -14 Sn cfg 09 0 $7g1$ 50 -32 Sn cfg 10 0 $3d10$ $4s1$ 50 -32 Sn cfg 11 0 $3d10$ $4s1$ $4p6$ $4d1$ $5s1$	-52101.05.d-095.d-11-201301.00.650.050-14Sn ground z1=1304d150-14Sn cfg0105s150-14Sn cfg0205d150-14Sn cfg0305g150-14Sn cfg0406s150-14Sn cfg0506d150-14Sn cfg0606g150-14Sn cfg0707s150-14Sn cfg0907g150-14Sn cfg0903d1050-32Sn cfg1003d1050-32Sn cfg1103d10

50	-32	Sn cfg 12	0	3d10 4s1	4p6	4d1	5d1
50	-32	Sn cfg 13	0	3d10 4s2	4p5	4d1	4f1
50	-32	Sn cfg 14	0	3d10 4s2	4p5	4d1	5p1
50	-32	Sn cfg 15	0	3d10 4s2	4p5	4d1	5f1
50	-14	Sn cfg 16	1	4f1			
50	-14	Sn cfg 17	1	5p1			
50	-14	Sn cfg 18	1	5f1			
50	-14	Sn cfg 19	1	6p1			
50	-14	Sn cfg 20	1	6f1			
50	-14	Sn cfg 21	1	7p1			
50	-14	Sn cfg 22	1	7f1			
50	-32	Sn cfg 23	1	3d10 4s1	4p6	4d1	5p1
50	-32	Sn cfg 24	1	3d10 4s2	4p5	4d2	
50	-32	Sn cfg 25	1	3d10 4s2	4p5	4d1	5d1

Back to the IDL command line:

; Run the CA structure code

adas8xx_create_ca_adf04, z_ion, \$
 z_nuc, \$
 results.oc_store, \$
 ionpot = ip, \$
 plasma = plasma, \$
 adf04_t3_file = files.adf04_ca_file

adf04 file for Sn¹³⁺

Sn+13	50	14		2415630.6		
1	19		(0)0(4.5)	0.0	
2	606527558529		(0) 0 (134.5)	604454.8	
3	1B		(0) 0 (0.5)	656865.3	
4	1A 10		(0) 0 (6.5)	664371.3	
5	10		(0) 0 (2.5)	810958.4	
5			(0) 0 (4.5)	1048671.2	
	00001/000029			44.5)	1052972.9	
0	1r			419.0)	1239200.0	
10	10		2010	0.5)	1290221.2	
11	18		Social	2 5	1366810 5	
12	1F		Solos	8.5	1400752.2	
13	60652755851951C		Solos	179.5)	1412966.0	
14	11) O (O)	4.5)	1485688.9	
15	1J) 0 (0)	6.5)	1609362.8	
16	1M		(0)0(0.5)	1611744.1	
17	60652755851951D		(0)0(299.5)	1649394.9	
18	1N		(0)0(2.5)	1654541.6	
19	1K		(0)0(8.5)	1668939.1	
20	60651756851951B		(0)0(19.5)	1715621.3	
21	10		(0) 0 (4.5)	1722798.2	
22	1P		(0) 0 (6.5)	1795180.9	
23	1U COCE17ECOE10E10		(0) 0 (8.5)	1831229.6	
24	00001/000019010			59.5) 410.0\	100/100.5	
20	COCE17ECOE10E1n			419.0)	0100015 7	
1	000317300319310		(0)0(50.5)	2103913.7	
14 0	3 1 9	6+05	3 924	.05 9 80+05	1 96+06 2 94+06 3 92+06 9 80+06 1 96+03	7
4	1 1 92+11 7 9	2+00	8 17+	00 8 96+00	1 02+01 1 12+01 1 20+01 1 54+01 1 87+01	i
3	1 7.69+06 1.9	9-01	2.02-	01 2.09-01	2 17-01 2 23-01 2 27-01 2 39-01 2 47-01	ĩ
5	1 1.07+11 3.8	9-01	4.07-	01 4.70-01	5.77-01 6.73-01 7.59-01 1.13+00 1.50+00	ō
6	1 1.17+07 7.2	1-01	7.29-	01 7.54-01	7.91-01 8.20-01 8.42-01 9.17-01 9.69-01	1
9	1 2.22+10 1.3	4-01	1.35-	01 1.35-01	1.37-01 1.39-01 1.41-01 1.59-01 1.83-01	1
12	1 1.21+08 5.5	7 - 01	5.62-	01 5.81-01	6.11-01 6.36-01 6.57-01 7.33-01 7.89-01	1
10	1 2.97+06 2.1	9-02	2.19-	-02 2.22-02	2.25-02 2.27-02 2.29-02 2.35-02 2.39-02	2

Eissner notation — quick recap

Each occupation/orbital-list pair is separated from the next by 5 (or 6)

1s 1				
2s 2	2p 3			
3s 4	Зр 5	3d 6		
4s 7	4p 8	4d 9	4f A	
5s B	5p C	5d D	5f E	5g F
etc	•			

Generating spectral and power data — ADAS810

Process the *adf42* file made by adas8xx_create_drivers with ADAS810 to generate *adf11*/plt, *adf15* and *adf40* datasets.

♦ Standard file (adf04) ♦ Driver File (adf42)			
Driver File Details:-			
Data Root <u>Central Data</u> User Data <u>User Data</u> <u>User Data</u>			
Jadf42_ca_sn13.dat adf04_ca_sn13.dat adf11_ca_sn13.dat adf15_ca_sn13.dat adf34_ca_sn13.dat adf40_ca_sn13.dat adf42_ca_sn13.dat adf42_ca_sn13.dat			
Enter driver file name			
Browse Comments Cancel Done			

🗖 Text Output 🔲 Replace Default File Name
File Name : paper-810.txt
□ PEC (adf15) file □ Replace Default File Name
File Name : jadf15_ca_sn13.dat
☐ Feature PEC (adf40) file □ Replace Default File Name
File Name : jadf40_ca_sn13.dat
■ Total power (adf11/plt) unfiltered ■ Replace Default File Name
File Name : [adf11_ca_sn13.dat
🗆 Total power (adf11/plt) filtered 🗔 Replace Default File Name
File Name : MULL
Choose output options
Cancel Done

Where lies the emission?

Back to the IDL command line!

read_adf40,file='adf40_ca_sn13.dat', fulldata=all

help, all, /st

ESYM	STRING	'Sn'
IZO	LONG	50
IS	LONG	13
IS1	LONG	14
NBLOCK	LONG	2
NPIX	LONG	Array[2]
WAVE_MIN	DOUBLE	Array[2]
WAVE_MAX	DOUBLE	Array[2]
NTE	LONG	Array[2]
TE	DOUBLE	Array[8, 2]
NDENS	LONG	Array[2]
DENS	DOUBLE	Array[4, 2]
FPEC	DOUBLE	Array[256, 8, 4,
TYPE	STRING	Array[2]

2]

wave=adas_vector(low=all.wave_min[0], high=all.wave_max[0], \$
 num=all.npix[0], /linear)

How to identify contributing configurations

It depends of the width of the spectral region of interest

C C C	lv	configuration	(2S+1)L(w-1/2)	energy (cm^-1)	
	1 2 3 4 5 6 7	19 606527558529 1B 1A 1C 1D 606517568529	$\begin{array}{c}(0) \ 0 \ (\ \ 4.5) \\(0) \ 0 \ (134.5) \\(0) \ 0 \ (\ \ 0.5) \\(0) \ 0 \ (\ \ 6.5) \\(0) \ 0 \ (\ \ 2.5) \\(0) \ 0 \ (\ \ 4.5) \\(0) \ 0 \ (\ \ 44.5) \end{array}$	0.0 604454.8 656865.3 664371.3 810958.4 1048671.2 1052972.9	
C C C	20 21 22	60651756851951B 10 1P	- (0)0(19.5) (0)0(4.5) (0)0(6.5) -	1715621.3 1722798.2 1795180.9	
	12 13 14 15 16 17 18 19 20	$\begin{array}{ccccccc} 94.\ 9692 & 7\ (0)\ 0 \\ 99.\ 5453 & 19\ (0)\ 0 \\ 100.\ 233 & 18\ (0)\ 0 \\ 109.\ 668 & 21\ (0)\ 0 \\ 121.\ 756 & 14\ (0)\ 0 \\ 122.\ 821 & 24\ (0)\ 0 \\ 123.\ 311 & 5\ (0)\ 0 \\ 123.\ 684 & 13\ (0)\ 0 \\ 124.\ 877 & 16\ (0)\ 0 \\ \end{array}$	(44.5) - 1(0)0(4.5) (8.5) - 4(0)0(6.5) (2.5) - 3(0)0(0.5) (4.5) - 5(0)0(2.5) (4.5) - 4(0)0(6.5) (59.5) - 7(0)0(44.5) (2.5) - 1(0)0(4.5) (179.5) - 2(0)0(134.5) (0.5) - 5(0)0(2.5)	excit 1 excit 1 excit 1 excit 1 excit 1 excit 1 excit 1 excit 1 excit 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- ▶ Overplot/look at PEC *adf15* data.
- Refine promotion rules or adf34 driver to home-in
- ▶ Note that structure codes are not spectroscopically accurate.

Where next?

Identify emission region of interest — treat these in intermediate coupling. For Sn¹³⁺ :

▶ 26 configurations, 226 terms, 554 levels

```
read_adf40,file='fpec40#sn_ca#sn13.dat', fulldata=all_ca
read_adf40,file='fpec40#sn_ic#sn13.dat', fulldata=all_ic
```

wave=adas_vector(low=all_ca.wave_min[1], high=all_ca.wave_max[1], \$
 num=all_ca.npix[1], /linear)

```
plot, wave, all_ca.fpec[*, 7, 2, 1] > 1e-14, $
    xtitle = 'Wavelength (A)', $
    ytitle = 'f-PEC (ph cm!u3!n s!u-1!n)', $
    xrange = [40, 100], yrange = [1e-12, 4e-11]
```

oplot, wave, all_ic.fpec[*, 7, 2, 1] > 1e-14, color=5

In Reality

- ▶ Do not consider each stage by hand by element is preferable.
- Many scripts available within ADAS to aid this task.
- ► These impose a directory structure.
- Baseline data identified by the year '40' tag.
- ► Full instructions in forthcoming ADAS technical report.

Ionisation

Very similar to excitation — driven by *adf56* collection of rules

index[]	:	index of ground configuration of each ion of element in adf56 file
config[]	:	ground conf[]iguration for each ion of element
n_el[]	:	number of electrons for each ion of element
no_v_shl[]	:	number of shells to treat as valence shells. Max. 2 relevant to relating ion and parent.
v1_shl[]	:	first valence shell position in adf56 configuration specifications.
v2_shl[]	:	second valence shell position in adf56 configuration specifications. zero if none defined.
drct_eval_v[]	:	evaluate direct ionisation from the valence shell(s).
drct_eval_cl[]	:	evaluate direct ionisation from other non-valence (closed) shells.
min_shl_cl[]	:	lowest closed shell to include (position in adf56 configuration specifications).
exca_eval_v2[]	:	evaluate excitation/autoionisation from second valence shell if identified.
max_dn_v2[]	:	maximum change in v2 n-shell to be included.
min_dn_v2[]	:	minimum change in v2 n-shell to be include.
max_dl_v2[]	:	maximum change in v2 1-shell to be included.
min_dl_v2[]	:	minimum change in v2 1-shell to be include.
exca_eval_cl[]	:	evaluate excitation/autoionisation from other non-valence (closed) shells.
max_dn_cl[]	:	maximum change in closed n-shell to be included.
min_dn_cl[]	:	minimum change in closed n-shell to be included.
max_dl_cl[]	:	maximum change in closed 1-shell to be included.
min_dl_cl[]	:	minimum change in closed 1-shell to be included.
exst_eval[]	:	evaluate ionisation from excited states.
exst_adf00_prt[]	:	assume parent for building excited states is as present in the adf00 data set for the ion.
exst_prt_hole_shl[]	:	specify position of shell in ground configuration to form parent if not from adf00 above.
max_n_exst[]	:	maximum n-shell for excited states to be included.
max_l_exst[]	:	maximum 1-shell for excited states to be included.
drct_eval_exst_v[]	:	evaluate direct ionisation from excited state valence shells.
drct_eval_exst_cl[]	:	evaluate direct ionisation from excited state non-valence (closed) shells.
exca_eval_exst_v[]	:	evaluate excitation/autoionisation for excited states from valence shells (v1 and v2 above).
exca_eval_exst_cl[]	:	evaluate excitation/autoionisation for excited states from non-valence (closed) shells.

adf32 is the driver file for CADW ionisation code from the Auburn group.

Once again to the IDL command line!

; Add offline-ADAS IDL library to the path

!path = expand_path('/u/adas/offline_adas/adas8#2/idl') + ':' + !path

; Promotion rules - compiled by Adam Foster (arf)

a56file = '/u/adas/adas/adf56/large_arf09.dat'

; Sn13+ !!


```
elem = Sn
stage = 13
ip_z = 3193147.3
ip z1 = 2415629.2
seq = rb
_____
                 _____
Type = Direct /number=3/
200-51 1 2 01. 1. 5.0E-08 1.0E-11-2 0130 0 1.00 0.65 71. 0.5
                                                           0.70
                                           4d
  50 14 sn+13 ground 4d1
  50 15 sn+14 from 4d 3d10 4s2 4p6
  -1
200-51 1 2 01. 1. 5.0E-08 1.0E-11-2 0130 0 1.00 0.65 73. 0.5
                                                           0.70
  50 14 sn+13 ground 4d1
                                      4s
  50 15 sn+14 from 4s 3d10 4s1 4p6 4d1
  -1
200-51 1 2 01. 1. 5.0E-08 1.0E-11-2 0130 0 1.00 0.65 72.0.5
                                                           0.70
                                                 4p
  50 14 sn+13 ground 4d1
  50 15 sn+14 from 4p 3d10 4s2 4p5 4d1
 -1
_____
Type = InDirect /number=2/
#
20 -51 0 2 10 1.0 5.e-08 1.e-11-2 130 1.0 0.65 66. 0.5
                                                         0.7
  50 14 sn+13 ground 4d1
 50 14 sn+13 ground 4d1
50 14 sn+13 via 4d 3d10 4s1 4p6 4d2
50 14 sn+13 via 4f 3d10 4s1 4p6 4d1 4f1
50 14 sn+13 via 5s 3d10 4s1 4p6 4d1 5s1
                                                    4s
                                                    4d
                                                   - 4f
                                                     5s
  50 14 sn+13 via 7h 3d10 4s1 4p6 4d1 7h1
                                                    7h
  50 14 sn+13 via 7i 3d10 4s1 4p6 4d1 7i1
                                                     7i
  -1
#
20 -51 0 2 10 1.0 5.e-08 1.e-11-2 130 1.0 0.65 66. 0.5
                                                          0.7
  50 14 sn+13 ground 4d1
                                                     4p
  50 14 sn+13 via 4d 3d10 4s2 4p5 4d2
                                                     4d
  50 14 sn+13 via 4f 3d10 4s2 4p5 4d1 4f1
                                                     4f
  50 14 sn+13 via 7h 3d10 4s2 4p5 4d1 7h1
                                                     7h
  50 14 sn+13 via 7i 3d10 4s2 4p5 4d1 7i1
                                                     7i
  -1
C I made this!
C-----
```

Next to the unix command line

/u/adas/offline_adas/adas8#2/adas8#2.pl adf32_ca_sn13.dat adf23_ca_sn13

Return to IDL to inspect the results

read_adf23, file='adf23_ca_sn13.dat', fulldata=all, szd_total=szd

help, szd,/st

**	Structure	<a3e784c>, 7</a3e784c>	<pre>tags, length=6576, data length=6576, refs=1:</pre>
	TE	DOUBLE	Array[12]
	Q_ION	DOUBLE	Array[1, 3, 12]
	IS_Q_ION	LONG	Array[1, 3, 12]
	Q_EXC	DOUBLE	Array[1, 41, 12]
	IS_Q_EXC	LONG	Array[1, 41, 12]
	QTOT	DOUBLE	Array[1, 1, 12]
	IS_QTOT	LONG	Array[1, 1, 12]

http://www.adas.ac.uk

Recombination

- ▶ *adf55* rules are imminent.
- ► However, use ADAS407/ADAS408 for now.

Selectively uplift the quality of baseline

- With increasing atomic number relativistic effects assume a greater importance.
- Compare the baseline Born data to DARC to assess its validity.

Consider Ni-like Xe⁺²⁶ with a 3d¹⁰ ground configuration:

Handling heavy species data

It may not always be necessary to consider all ionisation stages of an element. Again, for tin, consider the partiton (extract from *scripts416* driver file:

//#02/p00/ 00/ p01/ 01 02 03 04 05 06 07/ p02/ 08/ p03/ 09/ p04/ 10/ p05/ 11/ p06/ 12/ p07/ 13/ p08/ 14/ p09/ 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49/ p10/ 50/

Generate partitioned *adf11* data

Process with ADAS416: See /u/mog/adas/scripts416/tin_10stage.dat

Choose adad416 script file:
Data Root //afs/ipp/home/m/momullan/adas/scripts416
Central Data User Data - Edit Path Name
tin_10stage.dat
tin_10stage.dat
Data Filo
Browse Comments Cancel Done

Note: *adf11* datasets in /u/mog/ADAS-EU_course/.

Compare ionisation equilibrium balance

```
At the IDL command line
```

```
te = adas_vector(low=1, high=1000, num=40)
dens = fltarr(40) + 1e12
; Explicity name adf11 files
files = {acd : 'acd66_sn#10stage.dat', $
         scd : 'scd66_sn#10stage.dat' }
run_adas405, uid='adas', elem='sn', year=89, te=te, dens=dens, $
             files=files, frac=frac_par
files = {acd : 'acd89_sn.dat', $
         scd : 'scd89 sn.dat' }
run_adas405, uid='adas', elem='sn', year=89, te=te, dens=dens, $
             files=files, frac=frac
```

xmin = min(te, max=xmax)
ymin = 0.001
ymax = 1.5

plot_oo, [xmin, xmax], [ymin, ymax], /nodata, ystyle=1, \$
 xtitle = 'Te (eV)', ytitle = 'Fractional abundance'

We assume that we have no great interest ouside our chosen ions!

