ADAS-EU R(10)PU03

ADAS-EU

ADAS for fusion in Europe Grant: 224607

Hugh Summers, Adam Foster, Stuart Loch, Martin O’Mullane
and Allan Whiteford

PUBL3: Heavy species in fusion plasma modelling
and spectral analysis

25 May 2010

This document has been prepared as part of the ADAS-EU Project. It is subject to change without
notice. Please contact the authors before referencing it in peer-reviewed literature.
© Copyright, The ADAS Project.

PUBL3: Heavy species in fusion plasma modelling
and spectral analysis

Hugh Summers, Adam Foster, Stuart Loch, Martin O’Mullane
and Allan Whiteford

Department of Physics, University of Strathclyde, Glasgow, UK

Abstract: The derived data for usual application in fusion, from the perspective of light elements,
are hugely unwieldy for heavy elements, preventing the immediacy and handleability to which
ADAS aspires for the experimental diagnostic analyst. So additional work must be done within
ADAS in the direction of spectral synthesis for the spectroscopist and in the direction of enhanced
condensation for the plasma computational modeller. The purpose of this article is to put all these
steps in the hands of the ADAS user who wishes to become expert and, for the more application
oriented user of ADAS, to explain what is available now for heavy species in ADAS, how to access
it and use it correctly.

Contents

1 Introduction

[.1 Atomicnomenclatures e e e
1.2 Population StruCtUre v v v vttt e e e e e e e e e e
1.2.1 Somealgebra
1.3 EmiSSiVItIES o o o e e e e e e e
1.3.1 Somemorealgebra e
1.4 Primary ADAS data for heavy species e

2 Complex atom calculations

2.1 Promotionalrules
2.2 Structure, populations and emissivitieso e e e e e e e
2.3 Automatic running and naming CONVENtIONS« v v v v vt v bt e e e e e e
2.4 Optimised sizing for computer SyStemsot e e e e e

3 Ionisation state of heavy elements

3.1 Tonisation oL e e e e e e e e e e e e e e e
3.1.1 Parametric forms e e e e e e e e
3.1.2 Configuration average distorted wave ionisation
3.2 Recombination i i e e e e e e e e e e e e e
3.2.1 Radiative recombinationo e e e e e e e
3.2.2 Dielectronic recombination e e e e e e e
3.3 Finite density heavy species collisional-radiative coefficients

4 Superstages and flexible partitioning

4.1 The natural partition and SPECtrOSCOPY v v v v vt e e e
4.2 Superstage condensation and plasma transport models 0oL
4.3 Generating the SUPETStage o o i i e e e e e e e e e e e e e

© O & B~ &

5 Lifting the baseline

5.1 Global extensions to baseline data
5.1.1 Ionisation potentials
5.1.2 Atomic structure and energy levels .

5.1.3 Collision cross-sections

5.2 Targetted extensions to heavy element baselinedata

A ADAS data formats

A.l adf00: configurations and ionisation potentials oL oo

A.2 adf03: recombination, ionisation and power parameters e e u e

A.3 adf04: resolved specific ion data collections

A4 adf07: direct resolved electron impact ionis. data collections

A.5 adf08: direct resolved radiative recombination coefficients L. L.

A.6 adf09: state selective dielectronic recombination coefficients o000

A.7 adfll: iso-nuclear master files

A.8 adfl5: photon emissivity coefficients

A.9 adf23: state selective electron impact ionisation coefficients 0oL

A.10 adf32: drivers for ADAS802 ionisation calculations oL,

A.11 adf34: drivers for ADASS801 structure calculations

A.12 adf40: envelope feature photon emissivity coefficients oL L.

A.13 adf42: driver data sets for ADAS810 emissivity calculations

A.14 adf46: driver data sets for BBGP for dielectronic recombination

A.15 adf48: state selective radiative recombination coefficientso 0oL

A.16 adf54: general promotional rule sets

A.17 adf55: general dielectronic recombination promotionalrules

A.18 adf56: general ionisation promotional rules

B IDL procedures

C FORTRAN subroutines

D Shell scripts

66
69
70
71
76
79

81
81
84
91
95
99
103
114
115
116
122
123
126
130
131
137
138
142
146

150

193

241

Preface

This article is the one of a series of technical notes which are being prepared as useful extracts during the longer term
construction of the next edition of the ADAS user manual. As such it reflects a change in style, planned for the new
manual. It will be more book-like, examining and explaining in detail the physics basis behind the commitment to
certain approaches in ADAS and how these work out in practice. The new manual will remain technically detailed with
extended appendices. However, it is hoped this will be ameliorated by much more emphasis on worked examples. That
is to say the actual manoeuvres, adopted by experienced ADAS users in getting the atomic modelling into application
scenarios will be mapped, rather as an expert system. It has become clear that, for some, ADAS operates in a somewhat
rarefied atmosphere in which too much is assumed. It is this which I wish to improve upon.

Heavy species do represent a major absorption in the fusion physics community at this time. They are challenging
experimentally because of their radiating characteristics and are unfamiliar as plasma contacting wall materials and as
migrating plasma species in operating scenarios. Also from a modelling and spectral analysis point of view they are
complex with very large numbers of ionisation stages overwhelming models and computers, millions of spectral lines
overwhelming identification and simple spectral analysis, and excessive numbers of active bound electrons which stop
the most accurate collision cross-section calculations.

In this sense, heavy species have also stopped ADAS for a while. ADAS, stemming from the JET Joint Undertak-
ing, has its roots and greatest sophistication in light elements. The matter has been put right, or writing more cautiously
‘improved’, with ADAS redesigned. It is hoped that this redesign will appear transparent to many ADAS users. This
document is intended for those wish to work more closely with heavy species in the redesigned ADAS framework.

H P Summers
October 2009

Chapter 1

Introduction

The original core purpose of ADAS [4] is to act on collections of fundamental atomic data and to transform them into
the useful derived data collections required for direct application to experiment analysis and plasma models. To do
so, ADAS implements ‘collisional-radiative’ atomic models. This purpose remains for heavy species. Unfortunately,
the necessary fundamental data collections of items such a energy levels, Einstein coefficients and electron impact
excitation rate coefficients are either non-existent or require prohibitive amounts of handwork to assemble. So the
redesigned ADAS addresses and enables the task of automatic creation of necessary fundamental data. The derived
data for usual application in fusion, from the perspective of light elements, are hugely unwieldy for heavy elements,
preventing the immediacy and handleability to which ADAS aspires for the experimental diagnostic analyst. So
additional work must be done within ADAS in the direction of spectral synthesis for the spectroscopist and in the
direction of enhanced condensation for the plasma computational modeller. The purpose of this article is to put all
these steps in the hands of the ADAS user who wishes to become expert and, for the more application oriented user
of ADAS, to explain what is available now for heavy species in ADAS, how to access it and use it correctly and to
inform on what can reasonably be added on request.

The remainder of this chapter introduces some nomenclature, outlines basic ideas of population and emisssion
modelling and encourages the reader, with access to ADAS, to start trying some ADAS procedures. Also a quick
pointer is given to where the main ADAS heavy species data are to be found in the data base. Chapter 2 is a ‘hands-on’
approach to the ADAS tools for calculating a baseline of fundamental data. It follows this through to calculating
excited populations, emissivities and radiated power of heavy element ions for the baseline of derived data. Chapter 3,
in a similar approach, addresses the calculation of ionisation state with sections on ionisation and recombination
coeflicient production. In chapter 4, special methods, implemented to ease heavy species handling in plasma transport
models, are treated. Chapter 5 describes the ADAS approach to on-going improvement of its heavy element capability,
called ‘lifting the baseline’. This approach is quite tightly defined and focused and it is hoped that in consequence it
will be helpful to external structure/collision specialists, who might wish to contribute to the ADAS data bases. There
are a number of appendices for completeness.

1.1 Atomic nomenclatures

A particular state of an ion of a heavy atom has the electrons occupying a set of orbitals or shells. The specification
of the number of electrons in each orbital is called the configuration. Thus the ground state of the ion Kr*! has
configuration 1s22s%2p®3s23p®3d'%4s%4p>. ADAS incidentally can tell you the ground configuration of any ion of any
element, using the ADAS IDL procedure read_adf00.pro which accesses data of ADAS data format adf00'. For the
ADAS user, seeking the ground configuration of tantalum, nuclear charge, z0 = 73 and ion charge?, z_ion=6, type at
the IDL command line (user entry is in ifalic)

IDL>z0=73

The FORTRAN subroutine xxdata_00.for returns the complete data held in ADAS data format adf00 which includes ionisation potentials.
2Conventionally zg, z and z; = z + 1 are used for the nuclear charge, the ion charge and the ion charge+1 in formulae and codes. Misleadingly
z1 has been used as the IDL procedure keyword for the ion charge z. The keyword z/ is now deprecated in favour of the non-clashing z_ion

IDL>z_ion=6

IDL>read_adf00,z0=z0,z_ion=z_ion,config=config

IDL>print,config
giving the result: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f13 5s2 5p6. The pattern shown is the form adopted by
the atomic structure theorist Bob Cowan, whose codes are extensively used for heavy species in ADAS. Note that
the orbitals are in the natural order of increasing orbital quantum number / and principal quantum number n. The
occupancy of the shell is often assigned the letter g. Cowan may omit closed inner closed shells and also shells of
zero occupancy - which can cause uncertainty and confusion. The Cowan configuration string is rather long and more
compact forms are used by other atomic structure theorists such as Eissner. These more compact notations are helpful
to fit in with the historic organisation of ADAS data formats - especially adf04. ADAS adopts two configuration
formats, Standard form , which for the Ta*® ground state appears as

152 252 2p6 352 3p6 3da 452 4p6 4da 4 fd 552 5p6
Here letters are used for ¢ > 9 as a = 10,b = 11 and so on, so that the character field length assigned to each orbital
substring is 4. Also ADAS uses the Eissner form which for the Ta*® ground state appears as

2152256352456560652756860963A52B56C
Here each orbital substring is assigned three characters apart from the first which is assigned only two characters if
the shell occupancy is < 10. Thus 21 refers to the 1s> orbital and 609 refers to the 44'° orbital. The last character in
each set of three is the orbital number as 1 = 15,2 = 25,3 =2p,4=35,5=3p,6=3d,7 =4s,8 =4p,9 = 4d,
A =4f, B=5s,C = 5p and so on down the alphabet. The first two characters of each orbital substring always give
a number equal to 50 + ¢g. This is except for the first orbital in the string for which the 50 is missed out if g < 10.
Eissner form is a little confusing at first but very compact. In mass produced adf04 datasets, the configuration string
appears in Eissner form. ADAS has a number of IDL procedures and FORTRAN routines to identify if text strings
are of standard form or Eissner form and to transform between them, including xxdtes.pro and xxcftr.pro in IDL and
xxdtes.for * and xxcftr.for in FORTRAN. For example, in IDL type

IDL>in_cfg = '1s2 252 2p6’

IDL>type=2

IDL>xxcftrin_cfg=in_cfg,out_cfg=out_cfg,type = type

IDL>print,out_cfg
giving the result 21522563. The procedure actually uses xxdtes.pro to check if the input string is correctly formed to
be a configuration string and then type = 1, 2, 3 and 4 gives Standard — Standard, Standard — Eissner, Eissner —
Standard and Eissner — Eissner respectively.

The words ‘resolution’, ‘resolved’ and ‘unresolved’are used a lot in ADAS. ‘Resolution’ in the ADAS context
does connect to spectrum lines but in a more abstracted atomic physics sense than in spectroscopy. A configuration
describes in general a large number of individual quantum states. The smaller sub-groupings ferm and level are more
relevant to spectroscopy, identified in Russell-Saunders coupling (LS coupling) by total orbital angular momentum, L,
and total spin angular momentum, S, quantum numbers in the first case and by L, § and total angular momentum, J,
quantum numbers (or possibly only J if L and S are too imperfect quantum numbers) in the second case respectively.
The complete set of spectrum lines between two configurations is called a transition array, between two terms is called
a multiplet and between two levels is called a component or simply a line. The word ‘resolution’ refers to whether
one is dealing with configurations and transition arrays - referred to as configuration average or simply ca resolution,
with terms and multiplets - referred to as ferm or simply Is resolution, or with levels and lines - referred to as level
or intermediate coupling or simply ic resolution. Many ADAS data sets are encountered with ‘ca_’ or ‘Is_’ or ‘ic_’
embedded in the data set name and it is to the above resolution that they refer. Resolution or choice of resolution is
of great importance in ADAS for heavy species since Is or ic resolution may easily flood computers and storage. So
ADAS must pick carefully amongst the possible resolutions and it is here that the connection with actual spectroscopy
occurs. In principle, high resolution spectroscopy allows identification of individual lines, but if there are very large
numbers of lines or if the spectral resolution is lower, then only multiplets or possibly only transition arrays can be
distinguished. From a fundamental atomic physics point of view, required data on Einstein coefficients and excitation
rate coefficients at ca resolution are to a first approximation simply weighted sums of these data at Is resolution and
likewise at ic resolution. However, the lower resolutions can be evaluated theoretically much more expeditiously.

3 A more sophisticated variant of xxdtes.for is available called g5dtes.for which can split very long configuration strings into ‘top’ and ‘tail’ so
that the ‘top’ fits in with older fixed ADAS configuration string lengths. Also the subroutine picks out the valence orbital n and /.

1.2 Population structure

In ADAS, the words population structure are used to refer to the set of number densities of excited states of an ion in a
thermal plasma relative to the ground state number density at specified conditions of electron density N, and electron
temperature 7,. Usually other parameters, such as deuterium density, deuteron density and deuteron temperature are
of less importance. For heavy species modelling, at this time, only the electron parameters are included and so the
population structure is determined by electron collisions and by spontaneous emissions alone. Also the free electrons
are assumed to be isotropic with a Maxwellian distribution of speeds. In fact ADAS is a bit more particular about
‘excited’ states, distinguishing ordinary excited states which can cascade freely and excited states which cannot. The
latter states, which are low lying - that is close to the ground state in energy and which have large slowly relaxing
populations relative to ordinary excited states are called metastable states. They behave from a time-dependent point-
of-view rather like the true ground state and so are grouped with it. Collectively, it is convenient to call the true ground
state and the metastables simply the metastables. For light elements, the separating off of the metastables from ordinary
excited states is important for accurate dynamic modelling of such species in the fusion plasma. This approach is called
the generalised-collisional-radiative picture or GCR picture for short [5]. But what are the metastables in practice?
This depends on the ion and its charge and is connected with the ‘resolution’ discussed in section 1.1. For ions of low
charge dominated by the electrostatic part of the Hamiltonian, levels of the same term are nearly degenerate and Is
resolution is appropriate. The main metastables are mostly then the lowest lying terms of each spin system of the ion -
the situation for light element ions. For more highly charged systems, the relativistic part of the Hamiltonian becomes
important, spin system breakdown occurs and the levels of terms move apart in energy. Then the main metastables
tend to be the fine structure levels of the lowest term and ic resolution is appropriate. The GCR picture for the low
ionisation stages of a heavy element is appropriately at Is resolution (which is called level I population modelling*)
and the high ionisation stages should be at ic resolution (which is called level 2 population modelling*). It is however
difficult to procure accurate enough atomic data at these resolutions so that meaningful metastable lifetimes may be
calculated. GCR is too sophisticated for the generality of heavy element ions at this time. So simplification (to a
baseline approximation of population modelling) is necessary. We do not wish to lose completely the possibility of
re-introducing the full GCR picture, albeit selectively and consistently, when possible in the future (see chapter 5). So
we wish to examine these modelling levels, their interconnections, their assumptions and how to mix them in some
detail in the next sub-section 1.2.1. For those who do not wish to follow the matrix algebra of section 1.2.1, it may just
be noted that for the heavy species baseline modelling, we allow only the ground state to be a ‘metastable’ and all the
rest of the states are treated as ordinary excited states. This latter picture is called the collisional-radiative picture or
CR picture for short. We handle the population structure in a mixture of ic and ca resolutions which is not prevented
by the CR picture.

1.2.1 Some algebra

Consider the populations of ionisation stage z, separated into the metastable populations N7, indexed by the Greek
letter p, and ordinary excited populations N;*, indexed by the Roman letter i. The stage z has adjacent stages z— 1 and
z+ 1, its child and parent, with metastable populations labelled as N,; 1 and N}**! respectively. The time-dependent
equations 1.1 of the populations are written in matrix/suffix form>, where we have omitted coupling to more distant

ionisation stages.

N;z_l Cur NeRyor 0 0 N;’Z_l
d | NyF _| NeSpwr Cpor Coj NeTpw N;Z (LD
dr| N* 0 Cir Cij Neriw || Ny -
N;ZH 0 NeSwr NeSVj evw N\T/ZJrl

This means that these equations are actually complete only for the stage z. Note that we have not shown explicitly the
ordinary populations of stages z — 1 and z + 1 and that some of the sub-matrices are shown as script letters (eg. C,u,
and R,,-) whereas others are shown as standard letters (eg. C,- and S, ;). Technically, this is because a ‘quasi-static’
assumption has been made about the ordinary populations of the stages z — 1 and z + 1 and the influence of their
ordinary populations has been condensed onto their metastable populations. Note that the on-diagonal elements of C
and C are -ve quantities. C and C are linear in the electron density N,. We wish to demonstrate this procedure for the
ordinary populations of the stage z.

“4level I and level 2 also imply a precision level for the radiative and collisional data which must be met.
5In the following equations summation convention over repeated indices is adopted.

The quasi-static assumption is that dN;*/dt = 0 which means that these ordinary populations are assumed in in-
stantaneous statistical equilibrium with the various metastable populations®. This implies that

-1
le/z 1 0 0 i N+z—l
NG |0 0 N (1.2)
N;Z 0 _C]_'il Ci —NeC;il Tiy Nﬁ“l .
N 0 0 1 -
and then . ol
+7— 1 A
a| N Cor NeRyo O Ny
E sz = Nesp;u epo' Ne:RpW N(r“ (13)
Ny 0 NSw Cn || N

where we have the definitions of the effective metastable cross-coupling coefficient, effective recombination coefficient
and effective ionisation coefficients between the various metastables of stages z, z — 1 and z + 1

Q?rd—m = epo’/Ne = (Cp()' - ijc;‘ilcia')/Ne
A =Rey =1 = CpiCilriy (1.4)
S(Crd—w =8,s =Sy — Svjc;‘ilci(r-

Also there is formally an addition to the C,,, term called the parent metastable cross-coupling coefficient
Xol,, = =(S,;C5'riw)IN (1.5)

which we assume had already been incorporated. The superscript ‘CD’ denotes ‘collisional-dielectronic’ - a historic
synonym for ‘collisional-radiative’ and parallels the naming conventions in the ADAS data format adf1I used for such
data.

The matrix algebra and description above is the most complete formulation within the collisional-radiative frame-
work, but can only be implemented at a consistent level I or level 2 precision in practice if all the fundamental data
ingredients, especially radiative (including forbidden transitions) and collisional (including non-dipole and spin chang-
ing) data are available. At the present time, and probably well into the future, this will be possible, and indeed only
worthwhile, for selected, targetted ions of special diagnostic impact. In this context though, we do note that rapid
progress is being made on the first wave of targetted ions and iso-electronic sequence in the ADAS Project and we
return to this in chapter 5. In this section, progressive simplifications of the GCR sub-matrix partitions and their eval-
uation are described which reduce accuracy to baseline level, but simultaneously extend coverage to universal. It is
helpful at this point to make some distinction between the baseline of fundamental data production and the baseline of
derived collisional-radiative data. The fundamental data accuracy imposes limits on the derived data accuracy. Within
a baseline accuracy of fundamental data, simplifications of the collisional-radiative methods for production of the de-
rived data are justifiable.

Consider then the two-by-two submatrix partition of the full collisional-radiative matrix (equation 1.1) for the ion-
isation stage z and the associated one-by two and two-by-one partitions for the ionisation and recombination linkages
to the parent ionisation stage z + 1 respectively. We seek fundamental data for the ionisation stage z (see chapter 2)
to fill the matrices C,- and of C;;. The ADAS baseline mass production uses the Cowan code and its electron impact
collisional rates are calculated in a modified plane-wave Born approximation. So spin-changing (except from spin
system breakdown) collisional transitions are missing and C,, is in principal unsound - as the collisional loss rate
from metastables is incomplete. In practice though, metastability decreases for more highly ionised heavy element
ions. Also, for heavy species with typically small energy differences between true ground and populated metastables,
the metastable-ground collisional coupling in C,, would be large and move the relative populations to Boltzmann.
We can force the metastable relative populations to Boltzmann or introduce artificial strong collisional coupling rates
between them (creating local thermodynamic equilibrium within the metastable set) to the same effect. Let us force
Boltzmann fractions of the metastables of the stages z — 1 and z + 1. That is

[N;z—l] — [fuBazzz] Nt
[N;-zﬂ] _ [fVBoltz] Ntel (1.6)

5We assume no direct populating mechanism from stage z — 1 to ordinary excited state of stage z.

where flfzfl)B”ltz = wyexp(l,/kT.)] X wwexp(y, [kT,) and Nl = 2 N;Z‘l. Since the sum of the populations of
the ordinary levels is very small compared with the sum of the metastable populations, N**~! is the effectively the
whole population of the stage z — 1. Similiarly for ffZ”)BDI’Z and N***1. The I, denote ionisation potentials. Then

adding up equations 1.5 over u and v and substituting from equations 1.6

Nt eeh N RETED 0 Nt
SN = NS G NGRGTTY | NG (1.7)
Nt 0 Nesg—mﬁ) e+ NFetl

where C&D = 3 €, [REITD = 3, Ry , 8517 = 8, £59" and so on. Evidently, we can do the same
for the metastables of ionisation stage z so returning completely to the CR picture as required for our baseline. But

equations 1.7 demonstrate how to mix GCR and CR data selectively.

Returning again to the two-by-two submatrix partition of the full collisional-radiative matrix (equation 1.1), we have
discussed the strategy for the populations N, and the sub-matrix C,-. From the quasi-static assumption and equations
1.2, the ordinary level populations of the stage z are given by

N1 = =CjCigNy* = Cjl rig NN (1.8)

It is to be noted that the collisional-couplings in the C;, and C;; are dominated by non-spin change and for these the
Cowan calculations for the ADAS baseline are sound. The ordinary level populations may be expressed therefore as

N3 = F;f:c)NeN;z + Fﬁ.f”)zvezv;“‘ (1.9)

showing that the ordinary level populations are made up of two parts, driven by excitation from the metastables of the
stage z and by recombination from the metastables of the stage z + 1 respectively, becoming with the ADAS baseline
simplification

NJH — F;.?c) f(S-Z)BOhZ Ne N+z + F;;ec) f‘fz+1)Boltz Ne N+z+1 . (1) 10)

Sometimes it is preferred to refer the ordinary populations to the ground state (lowest metastable) of the stage. Putting

Bolte . plaboliz) (OB then equation 1.10 is replaced by
+z _ p(exc) £(z)Boltz +z (rec) p(z+1)Boltz +z+1
NiE = P fabole ey fe0) peeBolis g pyace!, (1.11)

It is helpful to consider further sub-divisions of the ordinary excited states spanned by C;;. For the ionisation stage z, let
ni’;) be the number of configurations which we need to include in structure calculations at ic resolution for spectroscopy

ca)

(subject also to the constraint of computational resources). Let n“““ be the number of configurations which we need

of T . .
to include in structure calculations at ca resolution to ensure the excitation line power is sufficiently complete. We
expect niil?) to include configurations up to some principal quantum n-shell nffs“) of the valence electron. Finally let

ng;") be number of principal quantum shells of the valence electron which must be considered to ensure dielectronic

recombination is sufficiently complete (bn stands for ‘bundle-n’). Evidently the ni’jf) should be contained in the set

ngf) Also n{® should be contained in nl". It is of course unrealistic computationally to evaluate fully-coupled

ic-populations over all configurations ni‘;‘) and to evaluate fully-coupled ca-populations over all n-shells n,(lbs"). It is

equally unrealistic from a physics point-of-view, since collisional processes in finite density plasmas ensure that sub-
shell populations of high-enough configurations approach statistical within each configuration and also that /-sub-shell
populations of high-enough n-shells approach statistical within each n-shell. We have before us then three manageable
collisional-radiative matrices, of progressively greater excited level span but of progressively coarser resolution.

¢l et

. clea ¢l 0,

) i j 74 (bn) (bn) bn)

e][oo cto || Gi Gy G (1.12)
v T bl gl

i3 "7

;‘la) spans the same range

where partitioning delimits the progressively extending ranges. The notation means that C 7
of levels as Cf;"), but in the former case the components are bundled-up for whole configurations, while in the latter

the levels are fully resolved. Again Cg,cja,) and C;(,,bj_,',') span the same range of configurations, but in the latter case are

bundled-up into principal quantum shells. Sophisticated population modelling, as is done in GCR modelling of light
elements, carries out a sequence of condensations (analogous to that of equations 1.1 — 1.3) and expansions from the
three-by-three partition matrix to the two-by-two partition matrix and finally to the one-by-one partition matrix. In
illustration, the step from the two-by-two ca matrix is as follows: Eliminate the direct couplings in the Cf‘i“) partition

of the two-by-two matrix and call it C(“’) Then replace it with Cz‘f‘la) = C’f‘l”) - CEC”)(C(‘a)) ' (“') Expand the matrix
G 2 oyer the resolved manifold of G o through replacing C;;) py C o 4 Wl, C.(c_”)U ; The pre- multlpher W7 is wi/w;

1f i € i otherwise 0. The ws are statlstlcal weights. The post- multlpher Us;is 1 1f JjEJ otherw1se 0. The current ADAS
heavy element baseline follows a simpler prescription, however some parts of the more elaborate procedure are on the
further development ‘road-map’. Hence the detailed description here.

For the ADAS heavy element baseline approximate handling of the three CR/GCR matrix formulations 1.12, we
note some determinants of population structure. Bundle-n modelling extending over effectively the infinite set of ex-
cited n-shells (for example as implemented in the representative n-shell method of the ADAS codes ADAS204 and
ADAS316) shows that the effective free electron density from the collisional point-of-view is N, /ZZ7 where z; = z+ 1
for ionisation stage z. So a twenty-five-times ionised ion at a tokamak electron density of 5x10' cm™! behaves like
hydrogen in a diffuse nebula, such as Orion, in space. This means that that the critical n-shell, n.; at which colli-
sional excitation competes with spontaneous radiative decay is ~ 1000. For a neutral atom it is ~ 3-4. So possibly
excluding the neutral and singly ionised ions, virtually all the main observational spectral emission for heavy species
in tokamaks is from excited levels which are freely cascading in n. So only collisional excitation from the metastables
is effective in contributing to the populations of excited states below n.,;; and not upward stepwise excitation via other
excited states. Population of an excited n-shell below n.,; is followed only by radiative cascade (although there may
be collisional re-distribution within the sub-states of an n-shell) through lower n-shells until the metastables are again
reached. Excitation to higher n-shells is a strongly decreasing function of n (at least ~ n~>). In the light of the above,
available computational resources are such that we can choose ni"“) to ensure that the excitation contributions to radi-
ated power (see also section 1.3) are virtually complete. That is evaluated in ca approximation using the two-by-two
matrix. On the other hand the cut-off n(’; tends to be imposed by computing power restrictions. We would prefer it to
(ca)

ca)
(w>
ff
model at ca resolution up to configuration number ni’c,) . This corresponds to the one-by-one matrix of 1.12 but in ca

not ic resolution. Then the ADAS baseline radiated power for stage z is

be closer to s than we can generally achieve. Let PLT denote the radiated power calculated from a population

PLT = PLT 4 pLglcd fpm*“’) (1.13)

(u) ((a) (ll)

So what about the influence of recombination on the excited population structure? The ionisation state, that is the
balance of ionisation fractional abundances between stages z and z + 1 in actual plasma conditions is in nearly all
circumstances such that the direct recombination from the metastables of the stage z + 1 into the levels of the set up to

(m) is small compared with the excitation contributions from the metastables of stage z, except into the metastables
of z themselves. Radiative recombination at low electron density and typical electron temperatures is almost entirely
into the low-lying metastables. The other (and much larger contribution to recombination), that is dielectronic recom-
bination, is principally into highly excited n-shells spanned by the range nfff) up to n(h ") The recombination/cascade
contribution from these n-shells to the levels up to n(m) is insufficient to overturn the dominance of the contributions
from excitation. This means that for the ADAS basellne spectrum line emission modelling, the population structure
part from n'c® up to ntbm may be omitted. This does not mean that recombination is unimportant - just that it has small
direct influence on the principal line emission. It affects it only indirectly through the metastable populations and their
ionisation balance. Separated treatment of recombination and ionisation for ionisation state is possible for the ADAS

baseline and is treated in chapter 3.

1.3 Emissivities

The emission per unit volume per unit time in an observed spectrum line j — k with upper ordinary excited level
population N;r may clearly be written as

o, j—k v,j—k

AjlNTE = 3T PECLES) NoNG +)" PECYS) NN (1.14)

identifying PE G(”C the usual excitation photon emissivity coefficient, driven by the metastable o of the stage z, and

Jj—k’?
Pe G(V’jf 4> the recombmatzon photon emissivity coefficient, driven by the metastable v of the stage z+ 1. The arguments
above for the ADAS baseline indicate that the PE G(Vm_z , may be neglected and that we simplify to
peei) = Z A (1.15)

using the normalisation to the total stage population or, normalising to the ground population (see equation 1.11),

PECT) =) peelr) ol (1.16)

o,j—kd ol

The total line power arising from excitation from the separate metastable o of stage z is

c) _ (exc)
PLTE) = Zk: AEPECE (1.17)
Ji
and from the whole stage is
PLTE = " AERPECL, floboli (1.18)
o, jk

As discussed in the introduction, there may be very many lines for heavy elements giving a ‘grass-like’ or ‘quasi-
continuum’ spectrum. Embedded in this may be a number of stronger individualised lines. We wish to work flexibly
between the individual line and quasi-continuum viewpoints. Introduce an envelope feature photon emissivity coeffi-
cient, denoted by FPEC. It is defined on a wavelength interval and is a composite feature arising from very many lines
from a single ionisation stage. The FPEC is suitable as a descriptor in wavelength intervals and at spectral resolutions
where the individual component lines are unresolved or only partly resolved. This is the situation with very complex
heavy species for which it becomes helpful and economical to handle the envelope feature rather than the individual
line emissivity coefficients (PECs) above. An illustration is given in figure 1.1 for Hf*?%. It may helpful in this context
to contemplate how nearby lines overlap at typical plasma ion temperatures. ADAS provides a simple IDL procedure
cSdplr.pro which can be used for this as

IDL>ndpix=512

IDL>npix=512

IDL>wvymin=4750

IDL>wvmax=4800

IDL>ndcomp = 2

IDL>ncomp = 2

IDL>wvcomp=[4765,4780]

IDL>emcomp=[1.0d-8,5.0d-9]

IDL>tev = 8000

IDL>amss = 12

IDL>doppler = dblarr(ndpix)

IDL>c5dplsndpix, npix,wvmin,wvmax,ndcomp,

ncomp,wvcomp,emcomp, tev,amss,doppler

IDL>plot,doppler
where there are two component lines at wavelengths 4765A and 4780A with emissivities 1.0x1078 cm3s~! and
5.0x10~° cm?s~!. The example ion is carbon of atomic mass 12 and ion temperature 8000eV.

1.3.1 Some more algebra

Consider a spectral region of interest [1y, A1], which may be the range of a particular spectrometer or an interval of
special diagnostic value. For configurations I and J, introduce the configuration average energies E;“”) and E(J””), the

transition array average energy AE(“U) E(“”) E;“”) and wavelength /l(“”) = hc/ |E(“”) E;'w)l. Configurations such
that the transition wavelength /l(“") € [Ao, 41] should be handled at high resolution, that is level resolved (see below),
while configurations such that the transition wavelength /l(“”) ¢ [Ao, 41] may be handled at low resolution, that is in

10

KT4 Hf28

FPEC

(b)

-15

-20

FPEC

11025

] 10730

Figure 1.1: FPEE for Hf*?® in the spectral range of the XUV (‘SOXMOS* - KT4) spectrometer at the JET facility Vs
electron temperature at the fixed electron density of 5.0 x 10*!> cm™3. The wavelength scale is detector pixel space.
(a) View from the low temperature side. (b) View from the high temperature side showing the broadening into an
envelope feature.

11

configuration average, in which the whole configuration is treated as one effective energy level.
Consider again the spectral interval [Ag, 4] , written compactly as [0, 1] and subdivided into N, intervals as

(AT = [+ iA1= A0)/Npizs do + (i + D(A1 = 20)/Npi] -
i=0,"'7Npix_1} (119)

Also suppose that the j — k spectrum line has a normalised emission profile ¢;_(4). In general, such a profile is a
convolution of Doppler and instrumental functions. Then the envelope feature photon emissivity coefficient vector is
defined as

lambdai
gpeeol = X peel f j-r(DdA (1.20)
’ A

o, j—k
ke Ajorel0,1] i
Ajok is the natural wavelength of the j — k spectrum line. The default broadening assumed is Doppler with a
Maxwellian distribution for the emitting ion at temperature, T;,,, equal to the electron temperature, T,, used in the
collisional-radiative modelling of the PECs. This consitutes a minimum broadening. The integral in the equation is
then expressible in terms of error functions as

exc exc 1
gpec M = Y0 PECTY Slerfe((di~ Ajm)/0) -
Jik:jo€0,1]
erfc((Ais1 — Ajp)/0)} (1.21)

where o = /lj_,koz{(l’cT,-,,,,/IH)(mp/mX)(mg/m[,)}1/2 and my is the emitting ion mass. « is the fine structure constant. In
actual spectral analysis, although the emission of a heavy ion in a spectral interval may be most conveniently handled
as an FPEC, there may be a few prominent lines of the ion in the spectral interval which are usefully separated from
the FPEC. In practice, when executing the computational modelling of a heavy ion population structure, the ~ 50
strongest line emissivities are ranked and for these the familiar PECs are archived as well as the FPEC. In principle,
the minimal Doppler broadened FPECs can be convolved with effective instrument functions and/or representations
of wavelength dependent filters - see the ADAS series 4 codes ADAS414 and ADAS415. As for the PECs, the ADAS
baseline metastable simplification gives FPE C’?m‘)[o’l] and FPE G(lef“)[o’”.

Finally, it can be useful to obtain just the total radiated line power in the spectral interval [0, 1] say of an FPEC.

1.4 Primary ADAS data for heavy species

The minimum atomic data required to calculate the excited population structure of an ion in the CR picture comprises
the element symbol, ion charge, nuclear charge and ionisation potential, list of energy states together with their con-
figuration and other quantum number designations, average orbital binding energies and then Einstein A-values and
Maxwell averaged electron impact collision strengths for all relevant transitions between pairs of states. These data
assemblies are archived in ADAS data format adf04. ADAS has baseline data of this form for many elements and has
semi-automatic codes for their preparation . The data are archived in subdirectories

/home/<uid>/adas/adf04/copmm#<elem. symb.>/.
In general there are three data set types, namely,

ca#f<elem. symb.><ion charge>.dat

Is#<elem. symb.><ion charge>.dat

ic#<elem. symb.><ion charge>.dat
corresponding to the ca, Is and ic approximations described earlier.

PEC and FPEC coeflicients are functions of both electron density, N,, and electron temperature, T,. PECs are archived
in ADAS data format adf15 and the FPECs in ADAS data format adf40. The mass produced heavy element PEC data
have been assigned the year number *06’. Also the baseline PEC data for each ion, referred to the ionisation stage (or
ground state only) population, is called the ‘01’ partition (Partitions are the subject of chapter 4). The adfl5 data is
archived in data sets and subdirectories such as

/home/<uid>/adas/adf15/pecd0#w/pecd0#w_ca#wé.dat

12

for the ion W* of tungsten of nuclear charge 74, and so on for s and ic types. The associated FPECs are archived
as

/home/<uid>/adas/adf40/fpecd0#w/fpecd0#w_ca#wé.dat
Finally there is the radiated power data. All the partial PLT for the ionisation stages of an element are gathered
together in one data set. This is archived in subdirectories of ADAS data format adf11 as for example

/home/<uid>/adas/adf11/plt40_ca#w.dat

ADAS provides IDL procedures to access these ADAS data formats and deliver the results over temperature and den-
sity vectors of your choice. Thus read_adf15.pro reads adf15. The additional IDL function adas_vector.pro is helpful
for setting up equally-spaced temperature and density vectors (logarithmic by default, or linear). For example, type at
the IDL command line

IDL>te=adas_vector(low=1.0el,high=1.0e3,num=10)
IDL>dens=adas_vector(low=1.0el3,high=1.0e14,num=11,/linear)

IDL>block=2

IDL>file=‘/home/<uid>/adas/adf15/pec40#w/pec40#w_ca#wb.dat’
IDL>read_adfl5, file=file,block=block,te=te,dens=dens,wingth=wingth,data=data
IDL>print, ‘wingth=",wingth

IDL>print, ‘te(3)=",te(3), ‘dens(4)=",dens(4)

IDL>print, ‘pec(3,4)=",pec(3,4)

13

Chapter 2

Complex atom calculations

For the heavy element baseline of concern here, ab initio fundamental atomic data are generated. The first step is the
choice of a suitable basis of states for each ion of each element which spans the requirements for population mod-
elling and spectral prediction. It is usual and helpful to develop such a basis of states by focusing on configurations
commencing with the configuration to which the ground state of the ion belongs. Further excited configurations are
added following certain promotional rules, that is prescriptions for moving one (or possibly more than one) electron
from one shell of the ground configuration to another (usually higher) shell. Thus for the ground state of krypton a
typical promotion is

1522522p%3523p03d'0%45%4p° — 1522572p°3523p°3d' %454 p>4d" (2.1

This promotion is the most likely to occur in an electron impact excitation reaction with the ground state. Radiative
transitions from the excited configuration will be main contributors to spectral line emission and net radiated power
by neutral krypton in a plasma.

2.1 Promotional rules

Distinguish open and closed shells of the ground configuration. For example, the complete set of core shells up to
4f 14 of neutral tungsten, WO, has configuration

1522522p°35*3p3d' 0454 p®44"04 14 (2.2)
and the outer part of the W configuration is
55*5p%5d*5£°54%6s! (2.3)

showing Ss and 5p closed shells, two open active valence shells 5d and 6s and two embedded empty shells 5 f and Sg.
Promotions of the active valence electrons in the open shells are the first to consider.

The set of promotions for a valence electron from a specific open shell n;/; are specified by the change permitted
in ny and [/, that is the set of promotions to shells n/ with

min_dn_vl <n—n; < max_dn_vl
min_dlvl <1-1; < max_dl_vl. 2.4)

The rule for the n/; valence electron is then the values min_dn_vl, max_dn_vl, min_dl_vl and max_dl_vl and for
the n,l, valence electron is the values min_dn_v2, max_dn_v2, min_dl_v2 and max_dl_v2. In these ranges, note that
min_dn_vl, min_dl_vl, min_dn_v2 and min_dl_v1 can be negative. The ADAS procedures distinguish at most two open
valence electron shells and allows separate specification of the range maxima and minima in » and / for each. Also, if
there is only one valence shell, that is one actual open shell, then the outermost closed shell may be treated as a second

14

valence shell as though it were open. Likewise if the two outermost shells are in fact closed, as for Kr” with ground
configuration 4s24p°, then the 4p shell be may handled as the first valence shell and the 4s as the second valence shell.

Next, the promotions from closed shells are considered. A range of closed shells, from which promotion is allowed
to occur, that is closed shells n.l.; are specified, in the range

minn_cl <n—n., <max_n_cl

minlcl <1l-1. <max.l_cl. 2.5)

For these closed shells, ranges of permitted change (the same ranges apply to all the designated closed shells) are
specified as

min_dn_cl < n—ny < max_dn_cl

min_dl_cl <1-1,; <max_dl_cl. (2.6)
The rule is then the values min_n_cl, max_n_cl, min_l_cl, max_l_cl, min_dn_cl max_dn_cl, min_dl_cl and max_dl_cl.

It is convenient to add some additional controls and promotional possibilities as follow:

prom_cl promote from inner shell closed shells (on/off)

fill n_vl add all n/ configurations of outer valence shell n (on/off)

fill_par if fill_n add only opposite parity else add both parities (on/off)
last 4f shift one valence electron to unfilled 4 f as an extra ground (on/off)

grd_cmplx include configs. of same complex as the ground config. (on/off)

Note that the rules are not exclusive. In practice, they are worked through successively, adding with each rule only
these configurations which have not already occurred.

The elements up to radon (zo = 86) and all their ions comprise 180 distinct ground configurations. The excess over
86 is because neutral and near neutral ions of a given iso-electronic sequence often have different ground configura-
tions from the more highly ionised members. A typical variation of effective ground configuration is the set

1522522p®35?3p03d'045%4p04d'04 £14

1522522p%3523p03d'045%4 p04d104 f135!

1522522p035?3p03d' 04524 p%4d'04 £125 52
from the neodymium iso-electronic sequence. ADAS holds promotional rules for every possible ground configuration
in ADAS data format adf54. The procedure read_adf54.pro reads in a complete adf54 data set as

IDL>a54file = ’Jhome/<uid>/adasfadf54/promotion_rules_large.dat’
IDL>read_adf54,file=a54file,fulldata=ref _rules
IDL>print,ref_rules.config[0]

IDL>print,ref_rules.min_l_cl[0]

ref_rules is an IDL structure containing the promotional rules for every possible ground state (hence the vectors are of
length 180) . It is defined as:

15

index(] index of ground configuration of each ion of element in adf54 file
config[] ground configuration for each ion of element

n_ell] number of electrons for each ion of element

no_v_shl[] number of open (valence) shells. Include outer-most shell even if closed.
max_dn_vl[] maximum An promotion for first (outer-most) valence shell.
min_dn_vl[] minimum An promotion for first (outer-most) valence shell.

Negative value allows access to inner unoccupied or open shells
max_dl_vI[] maximum delta Al promotion for first (outer-most) valence shell.
min_dl_vI[] minimum delta A/ promotion for first (outer-most) valence shell.
max_dn_v2[] maximum An promotion for second (inner-most) valence shell.
min_dn_v2[] maximum An promotion for second (inner-most) valence shell.
max_dl_v2[] maximum delta Al promotion for second (inner-most) valence shell.
min_dl_v2[] minimum delta Al promotion for second (inner-most) valence shell.
prom_clf] promote from inner shell closed shells (1=yes,0=no).
max_n_cl[] maximum inner shell » from which promotions are permitted.
min_n_cl[] minimum inner shell n from which promotions are permitted.
max_l_clf] maximum inner shell / from which promotions are permitted.
min_l_clf] minimum inner shell / from which promotions are permitted.
max_dn_cl[] maximum An promotion from a permitted inner shell.
min_dn_cl[] minimum An promotion from a permitted inner shell.

Negative values of An allow access to inner unoccupied or open shells.
max_dl_cl[] maximum Al promotion from a permitted inner shell.
min_dl_cl[] minimum Al promotion from a permitted inner shell.
fillnvlI[] add all nl configurations of outer valence shell n (1=yes,0=no).
fill_par[] if n_fill only add opposite parity to valence shell else add both parities (1=yes, 0=n0).
for_tr_sel[] Cowan option for radiative transitions 1 - first parity, 2 or 3(default).
last 41] shift an electron valence shell to unfilled 4f as extra ground.
grd_cmplx[] include configurations of same complex as ground configuation for valence n-shell.

ADAS does have a capability to ‘size’ proposed complex atom calculations to available computer resources, pro-

viding an adf54 optimised for these resources. This is discussed in section 2.4. In practice it can be useful to obtain

the ground configurations and promotional rules for every ion of an element at the one time. The IDL procedure
adas8xx_promotion_rules.pro

achieves this. For example, for krypton (zo = 36), type at the IDL command line

IDL> z0_nuc=36
IDL> a54file =
IDL> adas8xx_promotion_rules,

‘/home/adasjadasjadf54/promotion_rules_large.dat’
20_nuc = z0_nuc,

aS4file = a54file,

ionpot = ionpot,

prom_rules = prom_rules

IDL> print,’ground config. for z=2 :’, prom_rules.config[2]

IDL> print/max_dn_vl value for z=2 :’, prom_rules.max_dn_vli[2]

IDL> print’index value for z=2 :’, prom_rules.index([2]

The structure prom_rules has the same organisation as ref_rules but the range of the vectors is 0 — zo — 1. The index
number of the ground state of each ion of the element in the full re f _rules list is given by prom_rules.index. By adding
the keyword z_ion, it is possible to specify the exact ionisation stage(s) for which rules are required.

The further procedure

adas8xx_promotions.pro
establishes the actual configurations and their shell occupancies, for an ion of the element. For example continuing
from the previous IDL, type at the IDL command line

16

IDL> z.ion=2
IDL> adas8xx_promotions, z0_nuc = z0_nuc,
z_lon = z_ion,
ionpot = ionpot[z_ion],
prom_rules = prom_rules,
promotion_results=promotion_results

IDL> print, promotion_results.no_configs,format="("no_configs =",7i8)’
IDL> print, promotion_results.no_terms, format="("no_terms =",7i8)’
IDL> print, promotion_results.no_levels, format="("no_levels =",7i8)’
IDL> print, 'total configs =’,long(total(promotion_results.no_configs))
IDL> print, 'total terms =,long(total(promotion_results.no_terms))
IDL> print, 'total levels =’,long(total(promotion_results.no_levels))

promotion_results is another IDL structure specifying all the configurations of an ion allowed by the rules in ground
and excited configuration categories, along with their parities and effective charges (of the type required for Cowan
code input), together with an occupation number vector expansion of these configurations 7. configs is defined as
follows:

grd_cfg : ground configuration string (Cowan)

ex_cfg[] : excited configuration strings (Cowan)

grd_par : ground configuration parity

ex_par[] : excited configuration parities

grd_zc : grd. configuration eff. charge for Cowan adf34 driver
exzc[] : exc. configuration eff. charges for Cowan adf34 driver
oc_store[,] : configuration occupation number vectors (all)

The various output keyword sub-parameters of configs are in the necessary form for the subsequent calculations
described in the next sub-section. In particular, the ground configuration character string grd_cfg and the vector of
excited configuration character strings ex_cfg, together with their parities, grd_par and ex_par, are required for deter-
mining the atomic structure for the ion. The full details of the output parameters are given in the header lines of the
procedures themselves (see appendix B). For complex, many-electron ions, the rules can lead to a substantial number
of included configurations and to very large numbers of terms and levels. It is helpful, and part of the machinery of
ADAS, to be able to assess these numbers before embarking on the complete structure calculations themselves. As can
be seen from the example above adas8xx_promotions.pro also gives this information. In illustration, the summary
information from the procedure, using the default ’large’ promotion rules for W*2! gives configurations

4d'4f7 ground config.

4404 055! valence 4 shell promotion
4d"°4f5p!
4d"°4f5d"
4d"°4f05 f!
4d14f55!

3d'%4524p>44'04 £8 closed 4p shell promotion
3d104524p34d 14 7551
3d"°4524p>4d"4 751
3d'"%45*4p34d"4f75d1
3d"4524p54d"4 751
3d1%4524p54d 14 f15g1

7 An IDL procedure cfg2occ.pro converts from Eissner, Cowan or standard configuration strings to occupation number vector form.

17

4d°4f8 closed 4d shell promotion
44041755
A4 f75p!
441754
APAfT5]!
445"

The configuration, term and level counts separated into those from the sequence of rules are

g vl v2 cl fill.n last4f grd_cmplx
no_configs = 1 5 0 12 0 0 0
no_terms = 31 1186 0 18468 0 0 0
no_levels = 327 12989 0 231385 0 0 0

with total configs = 18, total terms = 19685 and total levels = 244701. Clearly, at Is and ic resolution, complete
structure calculations may barely be feasible on the largest computers. At ca resolution, on the other hand, the
structure calculations are feasible on small systems.

2.2 Structure, populations and emissivities

Following the determination of a suitable set of configurations for an ion, there are a number of atomic structure and
collisional cross-section codes which can be used to calculate the energy levels, spontaneous emission coefficients and
electron impact excitation rate coefficients, and then assemble them into adf04 data sets in the various resolutions.
Such codes will be reviewed and their role for ADAS discussed further in chapter 5. In ADAS, very extensive use
is made of the Autostructure code and the Cowan code. These are both essentially structure codes, and both are able
to calculate plane wave Born approximation electron impact cross-sections and rate coefficients. This rather simple
approximation (with some threshold modification) is nonetheless very suitable for the ADAS baseline general survey
of heavy species. Autostructure is preferred for dielectronic recombination coefficient calculations and as a prelude to
sophisticated R-matrix collision calculations. ADAS series 7 is largely centred on use and exploitation of Autostruc-
ture and we shall discuss it further in section 3.2. For the heavy element baseline though, the preferred code is Cowan
and ADAS series 8 is largely centred on its use and exploitation. It is for this reason that the promotional IDL proce-
dures have the prefix adas8xx_ since they reside in the series 8§ libraries.

Basic execution of Cowan is allowed interactively from the IDL-ADAS menus via ADAS801. The input screen
asks the user to select a driver data set of format adf34. ADAS makes considerable use of driver data sets so that
calculations can be exactly reproduced at later times and these drivers are assigned their own ADAS data format
numbers. The adf34 format is designed for Cowan code input and it includes the character strings of the ground
and excited configurations of the ion obtained in the previous section. Some samples are present in the ADAS
data base, archived in element name sub-directories. Thus a driver for a Xe*!® Cowan structure calculation is
/home/adas/adas/adf34/xenon/xel0.dat. ADAS can help in preparing adf34 drivers with the procedure
adas8xx_create_drivers.pro
It requires the configuration set information in the IDL structure configs from a prior execution of procedure adas8xx_promotions.pro.
Illustrative IDL commands are as follow (continuing the IDL for the same earlier Kr*? case, where the keyword pa-
rameters z0_nuc, z_ion, ionpot etc. were set):

IDL> files = {adf34 file: "adf34_krypton_kr2.dat’}
IDL> adas8xx_create_drivers, z0_nuc = z0_nuc,
z-ion = Z_ion,
ionpot = ionpot[z_ion],
files = files,
promotion_results=promotion_results

Note that a restricted keyword parameter set has been used in this illustration. Return to the example of an adas8xx_create_drivers.pro

18

ADAS 801 INFUT

Input File Details:-

Data Root Iu}?ae:re:g«zzid;‘»;‘a;.ﬁ‘m;;e.saﬁ%1E<§;

Central Data| User Data -1 Edit Path Nawe

I":mm,vxem .dat

L1

xel.dat

xel0.dat
xell.dat
xel2.dat
xel3.dat
xeld.dat
xel5. dat
xelb.dat
xel7.dat i

Data File

Options: -

+ Structure run only

- Standard 14 tewperatures, El only

+ Standard 14 tewiperatures, E1 and forbidden
+ Type 1 adf0d file, EL only

+ Type 1 adf0d file, E1 and forbidden

Tonisation Potential (cm-1) |i1.87592e+06 Get IP| from central ADAS

Browse Comments Cancell Done| iake Iopul FPile.. | Extra Options...
Figure 2.1:

call shown above. The adf34 data set is ready for input to ADAS801 in an interactive IDL-ADAS sesssion. The input
screen for ADAS801 is shown in figure 2.1. Note the expectation of an adf34 driver, which can be from the user
ADAS file space. ADAS801 returns a fully formed adf04 datasets in both Is and ic approximation ready for further
ADAS processing.

Structure and Born cross-section calculation in the ca approximation are simpler than than for the /s and ic cases. Only
the renl step for single electron orbital energies and rcn2 step for uncoupled one-electron matrix elements are required
from the Cowan package. The simplicity means that it is quick to execute even for ions with extended configuration
lists and so can provide approximate estimates of the contributions of configurations which are precluded by size in the
much more complex s and ic calculations. An IDL procedure has been prepared in a ’stand-alone’ form for generation
of adf04 data sets at ca resolution, namely:
adas8xx_create_ca_adf04.pro

The procedure requires an occupancy matrix for included configurations, data which generally comes in the promo-
tion_results.oc_store keyword sub-parameter from previous execution of adas8xx_promotions.pro. The ionisation
potential and a set of temperatures for tabulation of the Maxwell averaged collision strengths are required for the
adfv4 file. Again, a restricted set of keyword parameters have been used. It is necessary to generate a set of reduced
temperatures, theta. A simple direct call for C*? with configurations 15°2s', 15?3d", 15?35, 1s?3p' and 1s22p' is
illustrated below.

19

IDL> z0_nuc =6

IDL> z.ion=3
IDL> adf04_tl file = "adf04_copmmi#6_ca#c3_tl.dat’
IDL> adf04_13 file = ‘adf04_copmm#6_ca#c3 _t3.dat’
IDL> ionpot=64.494
IDL> occup= [[2,1,0,0,0,0],

[2,0,0,0,0,1],

[2,0,0,1,0,0],

[2,0,0,0,1,0],

[2,0,1,0,0,0]

)
IDL> theta= [2.00e+02, 3.00e+02, 5.00e+02, 7.00e+02, 1.00e+03, $

1.50e+03, 2.00e+03, 3.00e+03, 5.00e+03, 7.00e+03, $
1.00e+04, 1.50e+04, 2.00e+04, 3.00e+04, 5.00e+04, $
7.00e+04, 1.00e+05, 1.50e+05, 2.00e+05, 3.00e+05, $
5.00e+05, 1.00e+06, 2.00e+06, 5.00e+06, 1.00e+07]
IDL> plasma= { theta: theta,$
theta_noscale:[0],$
indx_theta:indgen(n_elements(theta)) }
IDL> adas8xx_create_ca_adfo4, z_ion,
z0_nuc,
occup,
ionpot = ionpot,
plasma = plasma,
adf04tl file = adfo4 t1 file,
adfv4 3 _file = adfo4 13 _file

The output adf04 files, adf04_t1_file and adf04_t3_file) are of type 1 (collision strength) and of type 3 (Maxwell aver-
aged collision strength) respectively and are fully formed for further use in ADAS calculations. Note the use of the
plasma structure here: this structure is designed to hold details of the plasma parameters and spectrometer wavelength
ranges. Here, we have only defined three items within the structure; the full structure is defined as follows:

theta[] . electron temperature vector(K)
indx_theta[] : index vector sub-selection from full theta vector
theta_noscale : 1 (or set)=> temperatures theta are not scaled with z;
0 (or not set) => temperatures theta are scaled with z;
rho[] . electron density vector(cm™>)
indx_rho[] . index vector sub-selection from full rho vector
rho_scale : 1 (or set)=> densities rho are scaled with z;
0 (or not set) => densities rho are not scaled with z;
npix([] . wavelength ranges pixel allocation vector
wvlmin(] : minimum wavelength (A) of each wavelength range
wvlmax(] : maximum wavelength (A) of each wavelength range
indx-wvl[] : index vector sub-selection from full set of wavelengths ranges

It is convenient to work with z-scaled temperatures and densities in collisional-radiative modelling. Convention-
ally one defines 6 = T,/ z% and p = N,/ zZ where z; = z+ 1. ADAS has for many years used a tabulation of 8 which is
approximately equally spaced logarithmically. Computational limitations in earlier years meant that the ranges used
were less than we now prefer. For compatibility and flexibility, the ADAS default 6 set is quite wide and dense and we
sub-select from it with a pointer vector called indx_theta. The older ADAS indx_theta pointed to eight theta values, but
now fourteen values are usually selected. A logical unscaled_theta advises if the working theta vector is not scaled.
The default, with the keyword omitted is scaled. A similar policy is adopted for p, although here the default is for the
density to be unscaled. Since we have a number of preferred spectral intervals, matching the various spectrometers
at JET and at the laboratories of ADAS Project participants, an indx_wvl pointer approach is also adopted for the
wavelength intervals. Note that npix gives the detector pixel allocations for the various intervals. A default plasma
structure can be loaded by calling the function adas8xx_plasma_defaults.pro:

20

IDL> plasma = adasS8xx_plasma_defaults(/all)

The population structure, radiated power and emssivity calculation for an ion may be executed interactively by
selecting the code ADAS810 from the ADAS series 8 menu. The input screen for ADAS810 is shown in figure 2.2.
Note that there is an option of using a newly created adf04 data set (type 3 is required) or an adf42 data set. Format

ADAS 810 INPUT

+ Standard file (adf04)| Driver File (adfd2)

Driver File Details:-

Data Root |V,4 hemef wamenes adas i edf484

Central l]ataI User Data, -l Edit Path Name

I_?adﬂz_cl_swip .dat;

=]

adfd?_cl_swip.dat
adfd? c2_swip.dat
adfd?_si2 swip.dat

c_1 adfll swip plt.dat
c_1_adfl5 swip.dat
Data File | ¢ 1_adf40_swip.dat
c_2 adfll plt swip.dat
c_2_adfl5 swip.dat
c_2_adf40_swip.dat

fig adf40 cl.ps

fig adf40_c2.ps

fiq adf40_5i2.ps
makefig read adf40.pro
si_2 adfll_swip_plt.dat]

Enter driver file name

Browse Commentsl Cancell Donel

Figure 2.2:

adf4?2 is assigned to drivers for ADAS810. Such drivers are convenient since, as well as specifying the adf04 file to
use, they specify all the additional parameters required for execution (such as electron temperatures and densities), so
that the subsequent ADAS810 processing screen is filled. Also the names of the various output data sets are specified,
all this assisting systematic studies. As perhaps expected, the IDL procedure adas8xx_create_drivers.pro can also
create the adf42 driver. Returning to the Kr*? example, using the sample promotion_results structure:

IDL> plasma = adas8Sxx_plasma_defaults(/all)
IDL> files = { adf34_file : "adf34_ca_kr2.dat’, $
adf42 ca file : "adf42_ca_kr2.dat’, $
adf04_ca_file : ’adf04_ca_kr2.dat’, $
adf40_ca_file : ’adf40_ca_kr2.dat’, $
adfl5_ca_file : ’adfl5_ca_kr2.dat’, $
adfll ca_file : "adfl 1 _ca_kr2.dat’}
IDL> adas8xx_create_drivers, z0_nuc = z0_nuc, $
z_ion = z_ion, $
ionpot = ionpot[z_ion], $
files = files, $
promotion _results=promotion_results, $
plasma = plasma

With the restricted set of keyword parameters in this example, the various output data set names (adf11, adf15 and
adf40) are set up to to match the adf42 name by the adf42 driver.Note that the filenames here are not of the form
favoured for archiving, and are simply kept short as an example. The files structure will be explained in more detail in
section 2.3.

21

2.3 Automatic running and naming conventions

We wish to move on to large scale production and now describe the full capabilities built in to the ADAS IDL codes.
It is useful for this to be able to define some structure to move large numbers of variables around simply as structures.
Already the plasma structure has been defined in section 2.2, holding the plasma conditions and spectrometer proper-
ties in which the ion is being studied. Also of use when dealing with large quantities of data is a standardised naming
convention, not only for final data sets but also for the many different driver files required to operate the codes.

The ADAS driver data sets of format adf34 and adf42 have been introduced in the previous sub-section. Quite a large
number of data sets are created, used and archived in the heavy species work and we wish to maintain consistency and
logical connection of naming for our heavy species production. Another IDL structure, files is introduced, defined as
follows:

adf34 file : primary (config.) adf34 driver name for ADAS801
adf34_inst_file : supple. (plasma) adf34 driver name for offline ADAS8#1
adf34_1ls_pp_file : supple. (Is-resol.) adf34 driver name for offline ADASS8#1
adf34_ic_pp_file supple. (ic-resol.) adf34 driver name for offline ADAS8#1
adf42 _ca file : primary (ca-resol.) adf42 driver name for ADAS810

adf42 s file : primary (Is-resol.) adf42 driver name for ADAS810
adf42_ic_file : primary (ic-resol.) adf42 driver name for ADAS810
adf42_ca_pp_file : supple. (ca-resol.) adf42 driver name for offline ADAS810
adf42_Is_pp file supple. (Is-resol.) adf42 driver name for offline ADAS810
adf42_ic_pp_file : supple. (ic-resol.) adf42 driver name for offline ADAS810
adfo4_ca_tl file : specific ion (ca-resol.) adf04 type 1 () dataset name
adfo4_ca_t3_file : specific ion (ca-resol.) adf04 type 3 (T) dataset name
adf04 s file . specific ion (Is-resol.) adf04 type 3 () dataset name
adfO4_ic file : specific ion (ic-resol.) adf04 type 3 (') dataset name
adf15_ca file . PEC emiss. coefft. (ca-resol.) adf15 dataset name

adfl5 Is_file : PEC emiss. coefft. (Is-resol.) adf15 dataset name

adfl5 _ic file . PEC emiss. coefft. (ic-resol.) adfl5 dataset name
adf40_ca_file . FPEC feature emiss. coefft. (ca-resol.) adf40 dataset name
adf40_Is file . FPEC feature emiss. coefft. (Is-resol.) adf40 dataset name
adf40_ic file o FPEC feature emiss. coefft. (ic-resol.) adf40 dataset name
adfll _ca file 1 PLT power coeflt. (ca-resol.) partial-adf]1 dataset name
adfl 1 ls file : PLT power coefft. (Is-resol.) partial-adf]] dataset name
adfll _ic file . PLT power coefft. (ic-resol.) partial-adfl] dataset name

Note the various names for final derived data output (adf11, adfl5 and adf40), the fundamental data adf04 and the
drivers adf34 and adf42 in the ca_, Is_ and ic_ resolutions. Also note the extra inst_ and pp_ names within adf34 and
adf42 which are required for batch processing.

Structure and modified Born collisional rate ceofficient calculation in the Is and ic approximation can be performed at
the IDL command line by the procedure

adas8xx_create_Is_ic_adf04.pro
This procedure requires the full capabilities of ADAS8#1 and is designed to fit in with use of adf34 drivers and the
systematic naming conventions of the heavy element baseline. It requires the supplementary adf34 drivers of type _inst
and _pp as well as the main driver. Suppose these are present in the data base for Fe*?? (perhaps through prior use of
adas8xx_create_drivers.pro), then in illustration, at the IDL command line enter

22

IDL> z0_nuc =26

IDL> z_ion=22

IDL> adf34_file = /home/adas/adas/adf34/iron/fe22.dat

IDL> adf34_inst file = /home/adas/adas/adf34/iron/fe22 _inst.dat

IDL> adf34_Is_pp_file = /homejadasfadasjadf34/iron/fe22 Is_pp.dat

IDL> adf34_ic_pp_file = /homejadas/adas/adf34/iron/fe22_ic_pp.dat

IDL> adf04 s file = strcompress(’adf04_copmmi#’ + string(z0_nuc, $
format="(i2)’) + " + ’Is#’ + elsymb $
+ string(z_ion],format="(i2)’) + ".dat’, $
Jremove_all)

IDL> adf04_ic_file = strcompress(’adf04_copmm#’ + string(z0_nuc, $
format="(i2)’) + '_’ + ’ic#’ + elsymb $
+ string(z_ion],format="(i2)’) + ".dat’, $
Jremove_all)

IDL> files = { z0_nuc = z0_nuc, $
z_ion = z_ion, $

files = files, $}

In this vein, the calculation may be continued at the IDL. command line with the next stage of population structure
and emissivity evaluation, delivering adf1 1, adf15 and adf40 output data sets. As noted earlier, the ADAS810 package
contains the key codes for these calculations with drivers adf42. Again, assuming setup of the files structure in a prior
step (so that the adf42 drivers are created correctly), enter

IDL> adas8xx_create_adf15_adf40, z0_nuc = z0_nuc,
z_lon = z_ion,

files = files

The latter calculation can be restricted to only the ca part with the keyword /ca_only, otherwise the three ca, Is and ic
calculations will be executed.

To alleviate the need to run all of these procedures manually, the IDL run_adas808.pro.
can be used as a wrapper for this. There are a number of keyword variable parameters and default settings so that input
to the procedure can be small. An example at the IDL. command line is as follows

IDL> zO_list = [25,26]

IDL> nel_min =3

IDL> nel-max =4

IDL> a54file = 'Jhomejadas/adas/adf54/promotion_rules_medium.dat’

IDL> run_adas808, z0_list=z0_list, nel_min=nel_min, $
nel_max=nel_max,/ca_only,Jonly 801
or

IDL> run_adas808, z0_list=z0_list, nel_min=nel_min, $
nel_max=nel_max, a54file=a54file, Jonly_801

or

IDL> run_adas808, zO0_list=z0_list, nel_min=nel_min, $
nel_max=nel_max,a54file=a54file

A list of elements is specified at the one time as, for example z0_list=[10,12], and all the ions of these elements
with numbers of bound electrons between nel_min and nel_max are computed at the same time. The keyword only_ca

23

run_adas808

cycle through
elements and ions

adf54
customised
rule
set

adas8xx_promotions_rules

adfoo
element

ground
configs.

read_adf00 read_adf54 [€

v

adas8xx_promotions

generates configuration set

v

adas8xx_create_drivers

adf34
includes
_inst, _ic_pp,
_Is_pp

adf42
includes _ca,
_lIs, _ic, _Is_pp,
ic_pp,cs_pp

v

Driver archiving allows independ-
ent submission of adas801,
adas8#1 and adas810 runs

v

- = adas8xx_create_ca_adf04
7 ~
+ temporary ™ spawns
\
| datasets < >| /.../offline_adas/adas8#1/bin/rcn1

\ /
\\ P ¢

adas8xx_create_ls_ic_adf04

A

adfo4

g ~
/ temporary A - spawns -
data sets \;(N /.../offline_adas/adas8#1/scripts/ » typel3
\ , run_adas8#1 Is#, iccat
N _ . ¢
adas8xx_create_adf15_adf40
spawns
/.../offline_adas/adas8#1/scripts/ >
run_adas810

adf40

categories
cat, Is#, ic#

adf15
catgories
ca#, Is#, ic#

adf11

partial plt
category ca#,
Is#,ic#

Figure 2.3: Schematic of run_adas808.pro program flow for complete sequential heavy species calculation from
The various temporary and permanent data sets created are indicated. Note that the

the IDL command line.
adas8xx_create_ls_ic_adf04.pro and adas8xx_create_adf15_adf40.pro steps spawn offline_adas scripts.

24

restricts the calculation to configuration average only. This is advisable for a first quick look at a new heavy element.
The keyword only_801 terminates the calculation at the atomic structure point, that is after creation of the adf04
files. Otherwise the calculation continues on to the population structure, low level line power and emissivities. The
procedure by default creates the output data sets in the directory from which the procedure is executed. However
the keyword /archive_files will cause creation of sub-directories following conventional ADAS data format naming
prescriptions. These will again be in the current directory, unless the keyword archive_dir is set to specify an alternative
location. In fact scripts for off-line execution of ADAS801 and ADASS810 are also created during the execution of
run_adas808.pro with the terminating part-name _script, together with information text files with the terminating
part-name _paper.

adf no. subdir. subsubdir. datasets

adf04/ copmm#<nuc.chge.> / ca_40#<el.symb.><ion chge.>.dat
ca_40#<el.symb.><ion chge.>_tl.dat
1s_40#<el.symb.><ion chge.>.dat
ic_40#<el.symb.><ion chge.>.dat

adfll/ <class>40 <class>40_<el.symb.>.dat

adf11/* plt40_partial pltd40#_partial_<el.symb> plt40_partial_ca#<el.symb.><ion chge.>.dat
plt40_partial Is<el.symb.><ion chge.>.dat
plt40_partial _ic#<el.symb.><ion chge.>.dat

adf15/ pecd4O#<el.symb.>/ pec40#<el.symb>_ca#<el.symb><ion chge.>.dat
pec40#<el.symb> _Is#<el.symb><ion chge.>.dat
pec40#<el.symb>_ic# <el.symb><ion chge.>.dat

adf40/ fpec4O#<el.symb> / fpec40#<el.symb> _ca#t<el.symb><ion chge.>.dat
fpec40#<el.symb>_ca#t<el.symb><ion chge.>.dat
fpec4O#<el.symb>_ca#<el.symb><ion chge.>.dat

adf34/ <elem.name> / <el.symb.><ion chge.>.dat
<el.symb.><ion chge.>_inst.dat
<el.symb.><ion chge.>_ls_pp.dat
<el.symb.><ion chge.>_ic_pp.dat

adf42/ <elem.name> / ca#<el.symb.><ion chge.>.dat
Is#<el.symb.><ion chge.>.dat
ic#<el.symb.><ion chge.>.dat
<el.symb.><ion chge.>_ca_pp.dat
<el.symb.><ion chge.>_ls_pp.dat
<el.symb.><ion chge.>_ic_pp.dat

scripts/ <elem.name> / <el.symb.><ion chge.>_1s_801 _script
<el.symb.><ion chge.>_ic_801 _script
<el.symb.><ion chge.>_ca_810_script
<el.symb.><ion chge.>_1s_810_script
<el.symb.><ion chge.>_ic_810_script

Table 2.1: 2. The classes under ADAS data format adf11 comprise acd, ccd, scd, qcd, xcd, plt, prb, prc, zcd, ycd, ecd.
The last three are required for superstaging and are new to ADAS. 3. * denotes a temporary archive of partial plt data
which is conveniently held in local storage. It does not appear in central ADAS. 4. ’810’ refers to population, low
level line power and emissivity post-processing and is described in the next section.

A little more needs to be said about directories and sub-directories. ADAS has a significant legacy of sub-directory
structures and data set naming practice within the various ADAS data formats. Some of these have become so en-
trenched that they have assumed the status of ‘the standard naming’ although they have some inconsistencies between
different ADAS data formats and with hindsight might have been chosen differently. While not a major issue for
work with light elements, it is so for heavy elements driven by the need to operate automatically. In this section, the
preferred prescriptions for heavy elements are given and comprise a somewhat eclectic mixture recognizing historical
usage but sometimes the need to change. Year number, element nuclear charge, element name, ion charge, partition
layer and legacy mnemonic conventions play a part. The naming conventions, by ADAS data format, are shown in ta-
ble 2.3. Note that to cope with the advent of these heavy species calculations, the ‘year’ number conventions have been

25

updated, with all work derived from this heavy species baseline being allocated the number 40. Further improvements
later will be allocated sequentially higher numbers (41,42 etc). Superstaged data (see chapter ??) will be allocated
year numbers starting from 60 upwards.

(@)

10000
Xenon Z0:54
£ 1000 —
[
>
Q@
k]
g
£ 100 (—
=}
j=
10 [~
1 ' '
-10 0 10 20 30 40 50 60
ion charge
(b)
10
— Xenon ZO=54
” -
c
2 [
g L
3
2
“E —
o
o
S -
9]
Qo
S
>
= -
1
-10 0 10 20 30 40 50 60
ion charge

Figure 2.4: Projected structure calculation size for Xenon. The strategy was single electron promotions with An < 2,
I" < 2, for valence shells including promotion to inner empty shells. Three spectral regions of interest were delimited
spanning the usual XUV, VUV and visible spectrometer ranges. (a) Total number of levels included for each ionisation
stage. (b) Number of configurations included for each ionisation stage.

As the run_adas808.pro procedure executes, it provides lists of the configurations adopted and the configuration,
term and level count estimates for each ion, in the _paper file. These are produced even with the /only_ca keyword set
and the information is useful for assessing the overall size of the computations versus computer power and resources.
Figure 2.4 has been assembled from such information.

In practice, command line execution of run_adas808.pro with its sequential processing of elements and ions of
each element is most suited to initial surveys with moderate configuration sets and preliminary studies or exploration
of selected cases. Large scale calculations of all the ions of many heavy elements with large configuration sets and
level lists are naturally suited to distributed background processing.

run_adas808.sh
is a shell script to implement background processing. It is stored in the /home/adasjoffline _adasfadas8#4 directory It is
currently enabled for the JAC computers at the EFDA-JET Facility with LOADLEVELLER as the job submission and
management system, although it can also be called in standalone mode, or made to stop after generating the run scripts
to allow use of a different load balancing scheme. A typical execution command for the hydrogen-like to lithium-like
ionisation stages of magnesium is

> run_adas808.sh mg 12 magnesium 1 3 /home/<user>work
/home/<user>/adasfadf54/promotion_rules_mg_adf54.dat

26

adf54

promotion
rule data

run_adas808.sh

establish set of ions of
element required

—y loopthrough | _ _ _ _ _ _ _ _ .

ions /

prepares IDL procedure to > | b)
set env., parms.and call | _<el.symb.>
\ <ionchge.>.pro /
~ 7

run_adas808.pro /[/
| -_ _ -

|

|

I - - - = ~

| 7 tmp808_proced
|

/ .
w name extension

~ -

- ~
7 tmp808_batch®

|
|
I/ name extension

encase as batch }\ | n }
file for input to I <el.symb.>
IDL <ion chge.>bch 7/
~ e

7 tmp808_script
./ name extension
”1 <el.symb.> I

\ <ionchge>sh 7/

~ 7

/ - _ -

prepare shell script
for running
IDL offline

|
|
|
| - ~
|
Y
t
|

|
L -
| , 7 tmp808_submit \
prepare loadleveller I. " name extension

|
|
|
|
|
|
|
|
|
|
|
|
- - |
|
|
|
|
|
|
|
|
|
|
|
|
|

L 1q!
command file, incorp- | <el.symb.>
orating script file | « <ionchge> _
I - —

loadleveller /

Figure 2.5: Data sets, temporary files and principal loops in run_808_offline.sh

27

_ ~

7 ladfoa/

\" sub-directory
~N 7

specific
ion
datasets

sub-directory
N 7

\ forion /
~N e

-~

« forion

~ - -~ -

sub-directory datasets
N 7

ca,ls,ic

| -~ ~ - ~ - _ _ - ca,ls,ic
| 7 801_scripts 7 810_scripts
llows rerun

| allows rerun a - - = < :

\ I of adasg810 ! - specific
|, ofadasgol /adfa2/ > ion
|
|

~ —~

|
! [
! [
! [
! ; |
| - _ ca,ls, ic |
| - -
———————————————— B |
: /.../work | === specific [
| - - | I 7 jadfiy Y ion |
- ~ - ~ I L
| 7 tmp808_submit 7 tmp808_report® ! [\SUb dlrectory/ datasets I
1/ name extension /" name extension \ | ~__ - ca,ls,ic I
| <el.symb.> I\ <el.symb.> I | |
ior y \ <ionchge>.txt 7/ | | - = = N |
| « <ionchge> _ N P | - N specific
| ~_ - - 4~ - - - | | 7/ [adf15/ ion |
| \' sub-director
s N y/ datasgts |
| -_ _ - ca,ls,ic |
|
|
h | : T T TS N specific |
Ioadleve“er |—> / Iadf34/ on I
I\ sub-directory datasets |
N . -
| -_ _ - ca,ls,ic |
|
|
_______________ . : ST T TS N specific I
I J...iwork 7/ [ladf4o/ ion |
I\ datasets |
! [
! [
! [
! [
! |
! [

run_archive_808_scripts run_archive_808_adf
Transfer to archive.
Note archived rerun
scripts are reset to point
at final archive

transfer to archive with
matched directory renam-
ing inside scripts

permanent storage

in ADAS database

Figure 2.6: Organisation and disposition of data sets used and created in distributed off-line execution managed by
LOADLEVELLER

28

where the ordered parameters are

1. elsymb : element symbol (lowercase)

2. z0-nuc : nuclear charge of element

2. elname . element name (lowercase)

3. nelmin : number of electrons on first ion of element to be calculated.
4. nellmax : number of electrons on last ion of element to be calculated.

5. work.dir : working directory (full pathway); usually /home/<user>/work.
6. aSdfile : adf54 file (full pathway).

in addition there are other optional arguments. The position of these arguments is irrelevant:

-q —quiet :run quietly, surpressing paper file generation

-1 —loadleveller : run using loadleveller (JET specific)

-d —donotrun 1 stop after generating the inputs for 801/810
(useful for submitting jobs in non-JET systems)

-y —year <number> : year identifier for generated data (default = 40)

-c —caonly : run only ca calculation, not full caq, ic, Is set

-s —scale <number*5> : custom Cowan slater parameter multipliers in %
(eg: 95 94 90 85 95). Defaults usually sufficient.

-1 —idl <command> : custom idl command if required, default is idl”

If the loadleveller flag is set, the script has to prepare a number of temporary files leading finally to the LOADLEV-
ELLER submit file. These are shown in the schematic of figure 2.5. Finally figure 2.6 shows the organisation and
disposition of the various data sets associated with the distributed execution under LOADEVELLER. If the loadlev-
eller flag is not set, the same temporary files are generated (excluding the loadleveller submit file), and the code is
launched. This can take some time (several hours per stage X many stages) therefore the -d flag may be used to gener-
ate all the temporary files without launching them. The resulting codes can then be run on difference machines using
whatever load balancing method you have available.

In the example above, note the choice of adf54 data set from central ADAS. The ADAS database contains prede-
fined adf54 data sets for different elements and aimed at different sizes of computer. These may be helpful for the
ADAS user working on a laptop, moderate workstation or with larger distributed computational support, based on
experience at the EFDA-JET Facility. If a different data set is required, it is advised that the size optimising described
in the next section is utilised to obtain a good promotion rule set.

29

2.4 Optimised sizing for computer systems

It is immediately apparent in preparing adf54 data sets that computational limitations have to be taken into account.
For many stages it is easy to prescribe promotion rules which overwhelm computer resources, whereas for many others
the natural promotion rules produce small calculations, which can easily accommodate greater numbers of configu-
rations. Note that with the Cowan code the size of the computation rises almost linearly with the number of levels
(Is and ic resolution) or the number of configurations (ca resolution). For most purposes at the EFDA-JET Facility, a
calculation with approximately 1000 levels present will enable the calculation to run in a few hours and is usually large
enough to encompass the major radiating transitions. There are however certain situations where larger calculations
are necessary, in particular those ions with open 4f shells, where even a minimal calculation with only the ground and
one excited configuration will have over 3000 levels. The ideal structure/cross-section computation will capture as
much of the radiated power as possible in a reasonably sized calculation. It is of course insufficient merely to trun-
cate at such reasonably sized calculations. The radiated power deficit in the truncated calculation must be estimated
and the spectral regions where excluded transition arrays lie should be identified. In the ADAS heavy species pro-
vision, we seek to answer these problems by playing between ic, Is and ca resolutions, as described later in this section.

To enable custom limits to be placed on calculations, another set of routines have been designed for optimising the
databases of rules used in ADAS808. Originally it was hoped that the predefined rule sets could be used to hold
this data in its entirety, however it turns out that there are often differences in the optimum promotion rules between
different ions even when they share the same ground configuration. The reason for this is twofold: the computation
will automatically reject certain combinations of configurations which cause instability, which may differ between
isoelectronic sequence members; and the strongest radiating transitions can change from element to element along
an isoelectronic sequence. The principle on which the optimisation code operates is fairly straightforward. Since the
objective of the optimisation is to include the main radiating transitions, and the majority of the impurity emission
is line radiation from collisional excitation/spontaneous emission, the figure of merit has been chosen to be the ratio
PLT | Anjepers, that is the increase in total line power vs increase in number of levels.

Given a starting configuration, a reference 7, and N,, and the element and stage of interest, a minimal set of

ID Rule Change ID Rule Change
1 ony,, +1 13 ground complex 1
2 ony,, -1 14 fill v1 n shell 1
3 Oy, +1 fill same parity only 1
4 Oly,, -1 15 fill v2 n shell 1
5 Ony,,, +1 fill same parity only 0
6 ony,, -1 16 extra 4 f ground -1
7 Oy, +1 17 ony1,,,, +1
8 6lv2m,-,l -1 ol 01 max +1
9 61101”"” +1 18 5I’ZU2W” +1
10 ong, -1 Ol +1
1T 6ly,, +1 19 Oncl, +1
12 6ly,, -1 ol1,,, +1

Table 2.2: The changes to the promotion rules attempted in each interation of adas8xx_opt_promeotions_control.pro.

promotion rules is used. The code progresses iteratively, trying each of 16 different rule changes (listed in table 2.2).
For each rule which produces a new configuration set, the Cowan code is run in ca only mode (this mode is chosen
due to its rapid run time, measured in seconds, while ic and Is runs can take days with complex configuration sets),
and post-processed to obtain the PLT. Assuming this run is successful, the PLT/Anye s ratio is calculated and stored.
After all 16 changes have been attempted, the change which produced the largest ratio is chosen as the reference case,
and the process is repeated, using this data set as the initial conditions for the next 16 changes. This continues until
the number of levels reaches the target number chosen at the beginning. An example of the step by step nature of this
process is shown in figure 2.7,while the structure of the code is shown in figure 2.8. Once finished the code writes the
data to an adf54 file, allowing an ADASS808 run to be performed as before.

The optimisation calculation is executed by run_optimise_promotion_rules.sh, in the /home/adasjoffline_adasjadas8#4

30

number of levels
T IIIIIIII T T T TTTIIT

1071

max_dn_cl:2->3

max_dn_cl: 1->2

max_d1_cl:1->2
min_dn_cl:0->1
min_dl_cl: 1->0

max_dl_cl:0->1

7

max_dl_cl: 1->2

max_dn_v1:3->4

max_dn_v1:2->3

max_dn_v1:1->2

min_dl_v1:0->-1

max_dl_v1:0->1

max_dn_v1:0->1
max_dl_cl:0->1; min_dI_cl:0->1

5 10 15 20 25 30
number of configurations

Figure 2.7: The step by step nature of an adas8xx_opt_promotions_control run, for W*2° (ground configuration:
4d"°4£%). Starting from the ground configuration, promotion rules are amended gradually adding to the total number
of configurations. The dotted line indicates where a reasonably large ic or Is coupled calculation would have stopped.

directory. It a distributed task under LOADLEVELLER, initiated as

>run_optimise_promotion_rules.sh mg 12 magnesium 1 3 /home/<user>/work 1000
/home/<user>/adas/adf54/promotion_rules_magnesium_adf54.dat -1 -v

where the ordered parameters are

el_symb
z0_nuc
el_name
nel_min
nel_max
work_dir
size_tgt
aS4file

S G e

element symbol, lowercase.

nuclear charge of element (0 causes default zO_nuc set to be used).
element name, lower case.

number of electrons on first ion of element to be calculated.
number of electrons on last ion of element to be calculated.
working directory (full pathway); usually /home/<user>/work.
target calculation size for computer system.

adf54 file (full pathway).

in addition there are other optional arguments. The position of these arguments is irrelevant:

-v —verbose
-1 —loadleveller

Generate paper file with diagnostic information
run using loadleveller (JET specific)

-t —terms set to optimise in terms of number of terms, not levels
(in this case input #7 is the number of terms, not levels)

-y -—year <number> : year identifier for generated data (default = 40)

-1 —idl <command> : custom idl command if required, default is “idl”

Again, the -1 flag is provided for submitting each different stage to another machine on the JAC cluster. If not set, the
code will launch each stage sequentially. For heavy elements (e.g. tungsten) this procedure should complete within

about a day.

31

START
adas8xx_opt_promotions_control

A

Initialise minimal rules
adas8xx_opt_initialise_rules

FOR n closed shell rules

Expand closed shell rules
adas8xx_opt_expand_promotions

Calculate new configuration set
adas8xx_promotions

Check new configuration set is valid
adas8xx_opt_check_valid_promotion_set

FOR each possible
rule change

DO

Expand closed shell rules
adas8xx_opt_expand_promotions

Calculate new configuration set
adas8xx_promotions

Check new configuration set is valid
adas8xx_opt_check_valid_promotion_set

Calculate total line power
adas8xx_opt_get_total_line_power

R
I 7

Select best ruleset
d(PLT)d(n_levels)

Calculate total line power
adas8xx_opt_get_total_line_power

n_levels LT
n_levels_target
AND
n_configs LT
n_configs_target

TRUE

Procured 1 ruleset from each .
closed shell set. Select best. —)| Return promotion rules l_)| END |
Figure 2.8: The structure of the promotion rule optimisation code. The promotion rules applied during each iteration

of adas8xx_opt_expand_promotions are listed in table 2.2. In the first iteration, an electric dipole transition is forced
to occur to initiate the process

32

To complete this section, some studies with tungsten are illustrated using the above codes. All results are obtained
from the standard output PLT, PEC and FPEC data sets in the various resolutions, together with information from the
summary and paper data sets which log the execution of run_opt_808_offline.sh and run_808_offline.sh. It is hoped
that the user will find evident the benefits of production of useful data without extensive atomic knowledge, increased
chance of a stable outcome due to error checks on the Cowan code during the promotion rule selection and the ability
to manage the calculation size. To explore the physics, calculations for tungsten have been performed in two limits.
The first set was limited to 1000 levels, or 30 configurations, whichever limit was encountered first (called the normal
run). The second set was limited only to the 30 configurations, with an infinite number of levels allowed (called the
large run). The relative sizes of these calculations are shown in figure 2.9. Note that these are sizing calculations
which may be executed in ca_only mode.

1 E 3
@ ¢ E Tungsten 3
g 10 F E
- F normal 4
5 ‘Id1 large I
o E 3
e} /A0 W SO SRS SN U SSUTSUE W WU AUUUUUUER W, -
g 1? E | ?
z 10 F E
1 F 3

10 C . . .]
0 20 40 60 80

lon charge

s 30 E
(o)} =
€= =
c =
g 20 E
Y 3
S 3
S 10 Tungsten _;
g —— normal 3
—_— I E

=z O - arge 3
0 20 40 60 80

lon charge

Figure 2.9: The number of levels expected and configurations present in the data sets produced by the normal and
large runs of ADAS808. The dashed line in the upper graph indicates the target calculations size for the normal sized
run, 1000 levels. The normal sized run is executed to completeness in ic and /s approximation.

Both the integrated emission and the spectral emission of radiated light from individual stages are relevant. In the
former case, comparing the PLT calculations for different resolution is informative, shown in figure 2.10 for two
ionisation stages of tungsten. The PLT for different resolutions can vary quite widely, particularly in stages with open
d and f shells (about 14 stages of tungsten are affected). These discrepancies always follow the pattern of ic being the
most heavily reduced, then Is, then ca. The differences are attributed to the energy of the ground state in each model
being different. The energy of the ground configuration of the ca model is effectively the weighted mean of the levels
of the ic model for the same configuration. This leads to systematic differences in the radiated power for systems
where there is a large distribution of energies in the ground configuration. The ic calculation is the most accurate, and
is assumed to be the true radiated power for the included configurations. The difference between the large and normal
sized ca runs can be added to this to obtain a good estimate of the full radiated power.

It is therefore ideal to be able to produce a PLT for each element based upon this PLT;c + PLT cqiarge — PLT cq
combination. To aid production of these, a variety of IDL codes and scripts has been produced to produce the com-
pleted file. A sample set of commands to produce this could be:

> run_optimise_promotion_rules.sh mg 12 magnesium 1 12
/home/<user>/work/<normdir> 1000
J/home/<user>jadas/adf5S4/promotion_rules_mg_adf54.dat -1 -v

33

to generate the “normal” sized run, and then for the “large” run:

> run_optimise_promotion_rules.sh mg 12 magnesium 1 12
/home/<user>/work/<lrgedir> 999999
/home/<user>/adas/adf54/promotion_rules_mg_large_adf54.dat -1 -v

followed by running adas808 on all of these, firstly in both ic and ca mode for the “normal” size:

> run_adas808.sh -l mg 12 magnesium 1 12
/home/<user>/work/<normdir>
J/home/<user>/adas/adf54/promotion_rules_mg_adf54.dat

and then in ca only for the “large”:

> run_adas808.sh -l mg 12 magnesium 1 12
/home/<user>/work/<lrgedir>
/home/<user>/adas/adf54/promotion_rules_mg_large_adf54.dat

Once this has been done, it is desireable to create an ADF11 file for the whole element. To do this requires recalcu-
lating the individual PLTs for each stage on the same T,, N, grid. The IDL procedure adas8xx_opt_prep_make_adf11.pro
will adjust the ADF42 driver files which specify the temperature, density and wavelength ranges for the PLT. A default
temperature and density grid is provided, but a custom one can be used by specifying the plasma parameter, which is

a structure identical to that shown in section 2.2.
IDL > normdir="lhome/<user>/work/<normdir>’

IDL > largedir="/home/<user>/work/<lrgedir>’
IDL > z_nuc=12
IDL > adas8xx_opt_prep_make_adfl I, normdir=normdir, $
largedir=largedir, $
Z-nuc=z_nuc
plasma=plasma (optional)
Once this is finished, a Perl script will run adas810, to calculate the PLT for the 3 different couplings:
> run_optimise_plt.pl /home/<user>/work/<normdir> /home/<user>/work/<lIrgedir>
121
where the inputs are:
1 Directory where “normal” size runs were conducted
2 Directory where “large” size runs were conducted
3 Atomic number
4 Switch to use loadleveller (1=yes, 0=no)

Finally, once this is complete, the IDL routine adas8xx_opt_make_adfl1.pro will combine the ADF11 files to pro-
duce the finished PLT for the element.

IDL > normdir="/home/<user>/work/<normdir>’

IDL > largedir="/home/<user>/work/<lrgedir>’

IDL > z_nuc=12

IDL > adas8xx_opt_make_adf11, normdir=normdir, $
largedir=Ilargedir, $
Z_NUC=Z_NUC
al Ifile=al Ifile (optional)

34

By default the PLT file will be placed in /home/<user>/work/<normdir>/adf11/plt40/plt40_<elsymb>, but a new
name/location can be specified by using the “al 1file” keyword.

The ability to estimate approximately the wavelength of this missing emission in the more precise, but incomplete
ic calculations is helpful. An example is shown in figure 2.11, which compares the feature photon emissivity coeffi-
cient for ca and ic resolution in the normal calculation with that for the large ca calculation. The effect of the extra
configurations present in the latter can clearly be seen. While the ca approximation cannot be used for line spec-
troscopy, it can be used to gauge the approximate spectral regions in which spectral features are likely to appear and
potentially confuse interpretation.

The adf54 data sets following, archived for information in central ADAS

/homejadas/adas/adf54/promotion_rules_w.dat
/home/adas/adas/adf54/promotion_rules_w _large.dat

were prepared with run_opt_808_offline.sh for the normal and large studies of tungsten respectively.

1O'Z4§
A 107k we
5 o=l
% 10-27;_ — ic normal
~ —— Is normal
-~ 28 [— ca normal
1077 ¢ -
&~ 29§ ca large
107 L . . .
10° 107 10° 10* 10°
Te (eV)
S 10 €
5 107 E
S
~ — icnormal 3
'&} 27 [—— Is normal
10 3 —_canormal
F ca large
107 [. . .
10’ 107 10° 10* 10°

Te (eV)

Figure 2.10: The total radiated power calculations for different resolutions. For most stages there is good agreement
between the different resolutions as shown in the upper figure. However for those stages with open d andf shells, the
ca and to a lesser extent the /s resolutions overestimate. The difference between the large and normal ca calculations
remains a valid correction to the normal ic power.

35

ADAS-EU R(10)PU0O3

20 -9 — T T T T
: W+17 :
- — — - ca normal R
15 oL ca large —
- - ic normal g
o - |
;; !]
° 107]
& ' m
N r |
& of]
50 &]
0.0 [R R A %Y A A A |/"\ A N i

0 20 40 60 80 100
Wavelength R)

Figure 2.11: The feature emissivity coefficients obtained at the different resolutions and calculation sizes for W17 at

electron temperature 7, = 419 eV and electron density N, = 10'3 cm=.

36

Chapter 3

Ionisation state of heavy elements

Effective ionisation and recombination coefficients linking the ionisation stages of heavy species are required. Obtain-
ing these coefficients with precision, including their dependence on electron density as well as electron temperature,
is a major task. As elaborated in GCR - paper I, the task is correctly carried out within the population structure cal-
culations for each ionisation stage and requires the implementation of a representation of the infinite level atom. The
procedures of condensation and projection, coupled with the independent generation of high quality state selective
individual coefficients to very highly excited levels, are beyond the scope of the heavy species baseline. Following
the route of simplification of the full collisional-radiative complexity as outlined in section 1.2, a problem remains
in that the restricted number of key ionising and recombining reactions (such as the direct ionisation reaction from
the ground state of a complex ion) are difficult to calculate with precision. Again a path must be followed trading
universal coverage against precision. The ADAS heavy species provision in the ionisation and recombination case
has three precision layers, namely a basic level exploiting general parametric forms, an intermediate level of individ-
ualised calculations of moderate precision (with a capacity for global coverage in the medium term) and a high level
which will only be available for key selected ions (as identified in the procedures of chapter 4). We seek in the first
instance to build the effective ionisation and recombination coefficients for the basic level entirely from atomic data
available in the automatically generated adf04 files of chapter 2. Then additional ADAS data formats adf23, adf32 &
adf56 (for electron impact ionisation) and adf09, adf46 & adf55 (for dielectronic recombination) are introduced which
can take the modelling to the intermediate level. These are closely related to adf04, adf34 & adf54 (for structure and
emission) and the computational procedures for their creation will be seen to have strong resemblance and links to
those of chapter 2. Current manpower resources suggest that it will be sometime before intermediate level coverage is
global, but even following short of that goal, the intermediate results do enable optimised global scaling improvement
of the basic level results. The globally-scaled basic level data is the ADAS baseline for ionisation and recombination.
Discussion of the ADAS ambitions for reaching the highest level is reserved for chapter 5.

The construction of ionisation, recombination and power coefficients has been done extensively in the past, by ex-
ploiting simple parametric forms for key rates, such as the Lotz (1965, 1972,1973) formula for ionisation rates (based
on the scaled Thomson (1912) classical ionisation cross-section expression), the general formula for dielectronic re-
combination of Burgess (1965,1965) and the excitation formula of Van Regemorter (1962). Prior to the use of more
sophisticated, numerical tabulated, collisional- (and generalised-collisional-) radiative coefficients (for light elements),
impurity transport codes such as STRAHL(Behringer, 1984), SANCO (Taroni et al , 1995) relied exclusively on these
fomulae, which in turn required only relatively simple parameters such as oscillator strengths, ionisation potentials
and excitation energies. For quick estimates on unfamiliar species, such methods are still in use. Within the ADAS
Project, the old parameterisations are made available (see ADAS data format adf03 and the ADAS user manual) and
are called ‘Case A’ parameterisations. These parametric forms are of only modest precision in general, depending
partly on the quality of the parameters themselves, but are unsafe for medium/heavy species. They are the starting
point for the next subsections.

37

3.1 Ionisation

3.1.1 Parametric forms

The principal ADAS semi-empirical expression for the electron impact ionisation rate coefficient is that of Burgess
and Chidichimo (1983) § é’zg’d(z, x,¢;T.). viewed as a formula for the direct ionisation of an ion of charge z from a
quantum shell (shell direct ionisation, with generic name S ;) of ionisation potential y and number of equivalent

electrons in the shell, . The expression is

Sbekid = 2 \racay C {(Iu/x)"* (¢ /kT)"* x
Ey(x/kT)w 3.1

where w = {In(1 + kT, /x)}P"**7<0 and B = [{(100z + 91)/(4z + 3)}'/> — 5]/4. The constant 2 Vracai = 2.17 X
1078 cm® s7! and the multiplier C = 2.3 (as recommended by Burgess and Chidichimo). Although the expression
has similarities to the Lotz formula, which is called S i(;fj here, the latter was created before a proper recognition of
the contribution of excitation/autoionisation to net ionisation. Nonetheless ADAS has a legacy arising from the need
historically to reproduce the Lotz results. Some further comments on Lotz are appropriate here. The basic Lotz
expression is for shell-direct ionisation. However the default parametric form (a single multiplying parameter) was
modified for the special cases of ionisation of ions of charge state 0-3 with nuclear charges zo < 30. Also in application
of the formula, Lotz specified the shells to be included - restricting to at most three. ADAS called the use of Lotz,
Case A, and the ADAS data format adf03 (to be discussed later) has data for evaluation of ionisation in Case A.

Returning to the preferred 2, the IDL procedure is r8fbch.pro. It requires the ionisation potential in Rydbery
energy units (/) and the temperature in Kelvin, delivering the ionisation rate coefficient in units of cm?s~!. In fact,
ADAS also makes use of another expression, S ecip(z, X, ¢ T,), called the Exchange-Classical-Impact-Parameter ap-
proximation (Burgess and Summers, 1972) with IDL procedure r8necip.pro. For example, for ionisation from the
valence shell 2p? of O*2, type at the IDL command line

IDL>te=adas_vector(low=1.0e5,high=1.0e7,num=10)

IDL>iz =2
IDL>xi=4.038
IDL>zeta=2

IDL>result=r8fbch(iz = iz, xi = xi, zeta = zeta, te = te)
IDL>plot, te,result,/xlog,/ylog

IDL>result=r8necip(iz = iz, xi = xi, zeta = zeta, te = te)
IDL>oplot,te,result

SeciP is mostly reserved for ionisation out of the highly excited states of ions which matter in full collisional-radiative
modelling, and need not concern us further here. It is S" which has been examined and tuned for ionisation of
atoms and ions in their ground states. Since § f;gid (z,x,¢; T,) gives the direct ionisation rate coefficient out of one n/
shell, the total direct ionisation rate out of all the shells of a complex atom or ion in its ground configuration (state),

which is called the configuration shell direct ionisation, is
N

Sttaa = DS @xin G T (3:2)
i=1

Here the ground configuration is nll‘llI ~--nil?’ e nN:l‘](,”A“, {i = q; and y; is the binding energy of an electron in the
shell i. It is to be noted that such an expression is really only intended to apply to ionisation from the ground state
or possibly metastable states of an ion. Ionisation out of highly excited states is completely dominated by valence
electron loss alone to an adequate approximation. Also it has not been specified if the ionisation energy of the valence
shell electron is the ionisation potential of the ground state or the configuration average valence electron orbital binding
energy. Since the threshold region in temperature of the ionisation rate coefficient is important for ionisation balance,
in fact the ionisation potential is to be preferred for the valence electron shell, but the above formulation still has a
major omission, namely the contribution of excitation-autoionisation. The latter must be included before the total
ionisation rate coefficient is realistic for heavy species. The excitation-autoionisation contribution from the ground

38

state of an ion (ignoring multiple electron shake-off and shake-down) for promotion from a particular shell (generic
name S .,) can be written as

N,

Z T gt o A A, Zqﬂ)Bk (3.3)

where the sum is over resonance states k, with g, the excitation rate coefficient to resonance k from the ground state
and By is the branching ratio for autoionisation, assembled from A the autoionisation probability and A; the radiative
stabilisation probablility. For most ions, the details of equation 3.3 for all the contributing resonances are not available
or feasible to evaluate. It was a prescription for the inclusion of excitation/autoionisation in expressions of the same
form as equation 3.2 by Burgess et al (1977) (elaborated by Burgess and Chidichimo (1983)), which allowed simple
semi-empirical expressions to match higher quality results with significantly lower standard error. This is especially
important for heavy species ions for which the S., contribution often dominates shell direct ionisation. Burgess

CASEA - Lotz CASE BA - default Case B CASE BB CASE BC

Figure 3.1: Approaches to semi-empirical formula for ionisation from the ground configuration of ion. CASE A in-
cludes only shell direct ionisation and is evaluated in the Lotz approximation; CASE BA includes Burgess-Chidichimo
type ii autoionisation in shell direct ionisation by ¢ and y adjustment; CASE BB includes Burgess-Chidichimo type
i autoionisation in shell direct ionisation by ¢ and y adjustment; CASE BC separates Burgess-Chidichimo type i
into a lowest explicit resonance and the rest in shell direct ionisation by { and y adjustment. The explicit resonance
contribution (an excitation rate coefft. with finite threshold) is normalised to its equivalent type i ionisation share.
Additionally, the contribution of the type ii autoionisation is diluted for partially filled d and f shells of heavy species
ion since there are many series of rising thresholds - weakening the type ii assumption. CASE BC also includes the
option of global scaling of ionisation and resonance groups. The symbol ‘i’ or ‘r’, beside the black arrows, indicates
whether the contribution is handled as an ‘ionis.” group or as a ‘reson.” group - see later text. The continua available
to the directly ionised electron are shown in grey. Auto-ionising resonances replaced by equivalent continuum are
shaded in red. Green shows the lowest type (i) resonance and the equivalent continuum used to evaluate it.

et al (1977) distinguished two situations: (i) where the first autoioning resonance of a series lies well above the
first ionisation threshold - expected with excitations from deeper principal quantum shells than that of the valence
shell; (ii)where the autoionising series of resonances lie densely through the first ionisation threshold - expected with
excitations from the same principal quantum shell as the valence (orbital) shell; On the assumption of unit branching
ratio for all resonances and adopting a Correspondence Principle view, summations over resonances were replaced by
integrals over energy, leading simply to shell-direct-like ionisation coefficients but with modified threshold energies
X’ and numbers of equivalent electrons ¢’. Parametric forms in ADAS for heavy species extend the Burgess approach
as summarised in figure 3.1. Each sub-panel shows the ordinary and the type (ii) and (i) auto-ionising level structures.
The auto-ionising levels lie above the dashed first threshold line. ADAS Case BA, for historical reasons and to be able
to generate the S"C’;’i g €quivalent of S l”" _ g Deglected type (i). Case BB includes type (i) but only via an ionisation
threshold reduction. Both Cases BA and BB are evaluated as a simple sum of effective shell direct ionisations driven by
a list of shell occupancies and ionisation potentials (real or effective). The case distinctions are sinply ADAS working
practice. The new Case BC introduced here dilutes the number of equivalent electrons included in type (ii) for d and
f shells and includes an explicit excitation rate coefficient for the lowest resonance of each type (i) series. The latter,
evaluated in the spirit of the Burgess-Chidichimo assembling from shells, gives a contribution to the ionisation which

39

may be written as

Nser;;

Sty = D SEM X G T G
k=1

Note that this is not the whole excitation-auotionisation, most of which is subsumed in the modified shell direct part.
Finally the total ionisation rate coefficient from a configuration becomes

Ny Nser;;
Sttt = D SU X T+) S X G T (35)
i=1 k=1

To evaluate these parametric forms for an ion, the ground state configuration specification is required along with the
orbital binding energies for each of the shells of the configuration and the true ionisation potential. ADAS can provide
these data for any ion of any element. As has been discussed in section 1.1, configurations and ionisation potentials of
ground states of ions are in adf00 data sets accessible from IDL with read_adf00.pro. The shell ionisation energies are
obtainable with an additional procedure config_orbital_energies.pro. To complete the utilities in ADAS for ionisation
studies, attention is drawn to the procedure tev_alf_s.pro. This gives an approximate central electron temperature in
eV at which the ionisation rate coefficient for an ion is required in ionisation balance. More precisely it gives the
temperature at which the ionisation coefficient S(z — z + 1) is equal to the recombination coefficient a(z + 1 — z).
Precision in ionisation rate coefficients is important principally within one tenth and ten times this value. In illustra-
tion, at the IDL command line type

IDL>z0=73)

IDL>z_ion =6
IDL>read_adf00,z0=z0,z_ion=z_ion,config=config,ionpot=ionpot
IDL>print,’config=",config
IDL>config_orbital_energies,z0,z_ion,fulldata=fd
IDL>print,’fd.config=",fd.config
IDL>print,’fd.config_n=",fd.config_n
IDL>print,’fd.config_I=",fd.config_l

IDL>print, ’fd.config_energy=",fd.config_energy
IDL>tev=tev_alf_s,z_ion,ionpot
IDL>print,’tev=",tev

Note that config_orbital_energies.pro has an optional config keyword parameter for input of a configuration of the
user’s choice. It overrides acquisition of the ground configuration from the appropriate adf00 data set.

Expression 3.5 may be applied to any heavy element ion and is suitable for the ADAS baseline data production. It
gives a significant improvement for heavy species ions over earlier approximations. In subsection 3.1.2 we consider
more sophisticated (but currently less complete) ab initio calculation of ground state ionisation coefficients. Before
doing so, it is clear that comparison of S f;Z’_d . With the results of refined calculation might suggest improvements. In
particular we might expect some further adjustment of the multiplying constant C in equation 3.1 as a function of zy, z
and shell. It is appropriate and safest to limit such adjustments at this stage. In ADAS we introduce grouping of shells
in shell direct ionisation and of type i autoionising resonances which we call ionis. groups and reson. groups with an
adjustable multipler for each group. The resulting approximate form, as given in equation 3.6 below, is suitable for
optimised fitting to improved data.

approx _ bchid ror
Scfg—tot - chzsshd (Z’Xi’é’i’TL))
i€l

1
+)R) S, 4, T (3.6)

R keR

where the summations are over the set of quantum shell ionis. groups I and quantum shell reson. groups R and the
members of each group, where the extra scaling parameters ¢; and cg are expected to be of of order unity. In practice
in central ADAS, we limit to two ionis groups, namely the valence shell and all other shells, and to one reson. group.

40

The principles discussed above are perhaps clearer from two examples. Consider an ion, such as W*!2, whose ground
state has the outer electron configuration 5s>5p. The ionisation potential for the 5p electron is /5, and for a 55 electron
is Is;. The initial shell direct equivalent electron assignments are {5, = 1 and {5, = 2 at these ionisation potentials
respectively. However autoionising levels of the form SsSpnl lie densely through the 5s? ionisation threshold and on
into the 5s% + e continuum. Excitation of a 5s electron to such levels leads to auto-ionisation into this continuum with
almost unit branching probability. The effect can be included in the shell direct part by setting the effective ionisation
potential for the 5s electron to I5,. This is the case ii situation. Case A parameterisation includes only the outer
two shells, however the illustrative ion has the complete shell structure 1525?2p®35?3p®3d'%4524p%4d'%4 f1355%5p.
The shell direct part from the inner shells, especially 4> and 44'° have a large ¢ weighting and must be included.
The first auto-ionising configuration from promotion of a 4f electron is 4f'255>5p? and it is noted that it lies sub-
stantially above the 55 ionisation threshold. It might be appropriate to include such auto-ionisation by reducing the
ionisation potential of the 4f electron from I4f to Iy — Is,. This is the case i situation and Case B implementation.
On the other hand, ionisation cross-sections are zero at theshold whereas excitation cross-sections (for ions) are finite
at threshold. Detailed experimentally measured ionisation cross-sections show steps at discrete auto-ionising level

energies. For a more precise description within the Case C parameterisation, we include an Sf‘f";i_dea contribution from

4f135525p — 4£1255>5p? and then put autoionising configurations 4 f'25s25pnl with n > 5 into the shell direct part
at effective ionisation potential Iy — I.

An IDL procedure shehid_cfg_tot.pro evaluates equation 3.5. An example is shown below for W*!2

IDL>z0_nuc=74)

IDL>z_ion = 12

IDL>tev=tev_alf_s,z_ion,ionpot
IDL>low=11605.4%tev/100
IDL>high=11605.4%*tev*100
IDL>te=adas_vector(low=Ilow,high=high,num=21)
IDL>sbchid_cfg_tot,z0_nuc,z_ion,te=te,coef=coef
IDL>print,’te=",te

IDL>print,’ coef=",coef

sbchid_cfg_tot.pro has a number of other non-positional parameters. These include specifying the initial configu-
ration, a non-default case and so on. Such a more directed illustration is given below. The full specification is in
Appendix B.

IDL>z0_nuc=74)

IDL>z_ion =12

IDL>config_orbital_energies,z0,z_ion,fulldata=fd

IDL>config_z=fd.config[z_ion]

IDL>config_zI=fd.config[z_ion+1]

IDL>ionpot_z=fd.ionpot[z_ion]

IDL>excpot_z1=0.0

IDL>case_ionis=‘case bc’

IDL>civ=1.1

IDL>cr= 0.9

IDL>tev=tev_alf_s,z_ion,ionpot

IDL>low=11605.4%*tev/100

IDL>high=11605.4%*tev*100

IDL>te=adas_vector(low=Ilow,high=high,num=21)

IDL>sbchid_cfg_tot,z0_nuc,z_ion,te=te,coef=coef,
ionpot_z=ionpot_z, excpot_zl=excpot_zl, case=case,ci_v=ci_v,cr=cr

IDL>print’te=",te

IDL>print,’coef=",coef

41

3.1.2 Configuration average distorted wave ionisation

The ADAS Project, in collaboration with Auburn University (Dr. Stuart Loch), has had in development for some time
more sophisticated calculations of electron ionisation rate coefficients. The most powerful methods (see chapter 5) are
still limited to few electron systems and so the distorted wave method is the main ab initio method which can assist
in a first ‘lift’ of the heavy species baseline. The development of the method in the configuration average ca approach
by Pindzola, Griffin and Bottcher is particularly valuable. It has reasonable economy of computation, while allowing
acccess to complex, multi-electron ions, highly excited states, excitation autoionisation and radiative damping. That
is to say it is able to evaluate the four key constituent reactions, namely, shell direct ionisation

()" kil; — (nl)T kel krly,

with differential(in ejected electron energy) cross-section

dO’i(m _ 32
de — Kkky

(g1 +1) Z QL + D@L + D@L + DM(ef; 1i); 3.7
Lideody

the shell excitation
()T ()2 kil; — (ni1)? (nalh) ks Ly,

with cross-section g
JT -
Cexcit = W(Cll + 1D)(4hL +3 - ¢q2) Z(2li + D@L+ M5 10); (3-8)
iNf Lily

the Auger breakup
(m)" (Nl (n313)% — (ni 1)1 (nalp) 2~ (n303) 4 kL,

with autoionisation rate coefficient

q @4l +2—-q)@h +2)M(1e;23)
3 b

A =q . (3.9)
and finally the competing radiative damping
(1)1~ (nalp)® — (1) (mply) =",
with spontaneous emission coefficient
r_ 8V @2(4h +3 - g2)D(12) (3.10)

T 32 (Al +2)4h +2)

which are assembled to yield expressions for S .sg—snq and S cr4—cq (see equations 3.2 and 3.3) with appropriate integra-
tion over ejected electron and final colliding electron energies and Maxwellian averaging over initial projectile elctron
energy. In the above k;, ky and k. denote initial and final projectile wave numbers and ejected electron wave number
respectively. M(14;23) denotes the squared two-body Coulomb matrix element and D(12) the one-body dipole matrix
element. Other notation is conventional.

The broad procedural approaches of section 2.1 are applicable but the promotional rules for determining ionisa-
tion and excitation-autoionisation configurations and the computational procedures for the quantal structure (Cowan)
and cross-section calculations are sufficiently different to necessitate a parallel system. The underlying configura-
tion average distorted wave code is executed online by the code ADAS802 (paralleling ADAS801) and offline by
ADASS8#2. Drivers belong to ADAS data format adf32. Although these drivers appear as concatenations of adf34
drivers, the control parameters are differently organised and there is some additional information present. An adf32
data set will not work with ADAS801. The drivers can be prepared using promotional rules. The promotional rules
for ionisation/excitation-autoionisation for all possible ground states of ions of elements are in data format adf56
(equivalent to adf54 for structure). An adf56 data set is read in IDL by read_adf56.pro and the specific rules for

42

run_adas813 IDL

cycle through
elements and ions

adas8xx_ionis_promotions_rules

adfoo
element
ground
configs.

adf56
customised
rule
set

read_adf00 read_adf56 [€

v

adas8xx_ionis_promotions

generates configuration set

v

adas8xx_ionis_create_drivers

adf32

composite
driver

category

ca#

Driver archiving allows independ-
ent submission of adas802,
and adas8#2and runs

v

Ve N
/ \ adf23
I temporary \ » adas8xx_create_ca_adf23 category
\ datasets , ca#
\

~ - 7

process_adf23_adf07

adf0o7

category
ca#

Figure 3.2: Schematic of run_adas813.pro program flow for complete sequential heavy species calculation from
the IDL command line. The various temporary and permanent data sets created are indicated. Note that the
adas8xx_create_ca_adf23.pro step spawns an offline_adas script. As shown, the simpler directly usable ADAS format
adf07 of cfg-tot ionisation rate coefficients may be created from an adf23 data set.

43

an element extracted by adas8xx_ionis_promotion_rules.pro. The procedure adas8xx_ionis_promotions.pro estab-
lishes the actual configurations for both direct ionisation and excitation-autoionisation and the drivers are created by
adas8xx_ionis_write_drivers.pro. Running adas8xx_ionis_promotion_rules.pro calls all three IDL procesdure to
generate the adf32 file. After this calling the PERL routine adas8#2.pl generates the final adf23 data set.

In practice, large scale calculations are initiated with the run_813_offline.sh shell script which distributes the com-
putation amongst many processors for offline execution. This is managed at JET by LOADLEVELLER.

index[] . index of ground configuration of each ion of element in adf56 file

configl] : ground conf[Jiguration for each ion of element

n_ell] : number of electrons for each ion of element

no_v_shi[] : number of shells to treat as valence shells. Max. 2 relevant to relating ion and parent.
vi_shl[] : first valence shell position in adf56 configuration specifications.

v2_shl[] : second valence shell position in adf56 configuration specifications. zero if none defined.
drct_eval v[] . evaluate direct ionisation from the valence shell(s).

drct_eval_cl[] . evaluate direct ionisation from other non-valence (closed) shells.

min_shl_cl[] . lowest closed shell to include (position in adf56 configuration specifications).

exca_eval _v2[] . evaluate excitation/autoionisation from second valence shell if identified.

max_dn_v2[] : maximum change in v2 n-shell to be included.

min_dn_v2[] : minimum change in v2 n-shell to be include.

max_dl_v2[] : maximum change in v2 l-shell to be included.

min_dl_v2[] : minimum change in v2 I-shell to be include.

exca_eval_clf] . evaluate excitation/autoionisation from other non-valence (closed) shells.

max_dn_cl[] : maximum change in closed n-shell to be included.

min_dn_cl[] : minimum change in closed n-shell to be included.

max_dl_cl[] : maximum change in closed I-shell to be included.

min_dl_cl[] : minimum change in closed I-shell to be included.

exst_eval[] . evaluate ionisation from excited states.

exst_adf00_prt[] : assume parent for building excited states is as present in the adf00 data set for the ion.
exst_prt_hole_shl[] : specify position of shell in ground configuration to form parent if not from adf00 above.
max_n_exst(] : maximum n-shell for excited states to be included.

max_l_exst[] : maximum l-shell for excited states to be included.

drct_eval_exst_v[] . evaluate direct ionisation from excited state valence shells.

drct_eval_exst_cl[] : evaluate direct ionisation from excited state non-valence (closed) shells.
exca_eval_exst_v[] : evaluate excitation/autoionisation for excited states from valence shells (vl and v2 above).
exca_eval_exst_cl[] : evaluate excitation/autoionisation for excited states from non-valence (closed) shells.

To make full use of these capabilities, we note the following and draw attention to the close similarity to section
2.3. The reference promotion rule set, as archived in an adf56 data set, is again handled as an IDL structure ref_rules
(with vectors of length 180 spanning all possible ground states). In the ionisation case, it is defined as shown above
along with the meaning of each rule. The rules are somewhat different from those of adf54, especially the role of
valence shells. In the ionisation context, two valence shells are used to deal with ground configurations (and assigning
parents) of neutral and near-neutral ions where an active single active shell may be ambiguous. For inner shell direct
ionisation and excitation/autoionisation of excited states, the rules apply as for the shells of the ground state. This
maintains proper consistency with ground state ionisation.

The plasma structure contains only electron temperature data in the ionisation rate coefficient case since there is
no density or spectrometer data required. It is defined below

thetaf | : electron temperature vector(K)

indx_thetaf[] . index vector sub-selection from full theta vector

unscaled_theta : 1 (or set)=> temperatures theta are not scaled with z;
0 (or not set) => temperatures theta are scaled with z;

The ADAS standard for data set naming in the ionisation case is as shown in table 3.1.2. The temporary datasets and
principal loops in execution of the offline run_813_offline.sh script are entirely equivalent to those of run_808_offline.sh
shown in figure 2.5. The organisation and disposition of the data sets are of course different and are summarised in
figure 3.3. In the following we illustrate the various capabilities at the IDL command line. Firstly we read an adf56

44

Figure 3.3: Organisation and disposition of data sets used and created in distributed off-line execution managed by

LOADLEVELLER

"' J...;work

- ~
7 tmp813_submit

- ~
7 tmp813_report®
name extension

. <elsymb> ! ‘\ <el.symb.> /I |
 <ionchge> _ Sion Chge‘>.txt/ |
T=-=7 PR I

|
|
1
| name extension
|
|
|

~ - RN specific
loadleveller |—>‘ /7 ladf32/ ion
|\ sub-directory datasets
N 7
| -_ _ - ca
|
________ L e e — - - -
: /.../work :
| PN |
| 7 802_scripts \\ |
| allows rerun | |
| of adas802 |
~ forion 7
L e e e - - - = 1
A4 A 4

run_archive_813_scripts

transfer to archive with
matched directory renam-
ing inside scripts

/.../lwork
- T = specific
/ ladf23/ ion
\ sub-directory datasets
N _ e ca

run_archive_813_adf
Transfer to archive.
Note archived rerun

scripts are reset to point

at final archive

permanent storage

in ADAS database

45

adf no.

subdir.

subsubdir.

datasets

adf07/

adf23/

adf32/

scripts/

copmm#<nuc.chge.> /

<class>06

<elem.name> /

<elem.name> /

ca#<el.symb.><ion chge.>.dat
ca#<el.symb.><ion chge.>_t1.dat
Is#<el.symb.><ion chge.>.dat
ic#<el.symb.><ion chge.>.dat
<class>06_<el.symb.>_<prt.layer>.dat
Is#<el.symb.><ion chge.>.dat
Is#<el.symb.><ion chge.>.dat
<el.symb.><ion chge.>.dat
<el.symb.><ion chge.>_inst.dat
<el.symb.><ion chge.>_ls_pp.dat
<el.symb.><ion chge.>_ic_pp.dat
<el.symb.><ion chge.>_1s_801 _script
<el.symb.><ion chge.>_ic_801 _script
<el.symb.><ion chge.>_ca_810_script
<el.symb.><ion chge.>_1s_810_script
<el.symb.><ion chge.>_ic_810_script

Table 3.1: text required

data set of the ionisation promotion rules set :

IDL>
IDL>
IDL>
IDL>

The actual ADF32 driver file for a specific case are obtained as:

IDL>
IDL>
IDL>
IDL>
IDL>

aS6file = 'Jhome/adas/adas/adf56/promotion_rules_large.dat’
read_adf56,file=a56file,ref_rules=ref_rules
print,ref_rules.config[0]

print,ref_rules.min_l_cl[0]

znuc=36
aS6file =
z_ion=13

"/homefadasfadasjadf56/promotion_ionis_rules_large.dat’

wkdir=<working_directory>

adas8xx_ionis_promotion_rules,

Znuc = znuc,
aS6file = a56file,

z_lon = z_ion,
wkdir = wkdir

Finally the adf23 data set is created using the adf32 driver, through the Perl script, adas8#2.pl

> adas8#2.pl

<adf32file> <adf23file>

3.2 Recombination

It can be assumed that radiative recombination and dielectronic recombination are independent processes for heavy
species modelling with negligible error in comparison with other atomic structure and rate coefficient uncertainties.
Also because of the strong z-scaling of effective electron density for collisional-radiative effects and sensitivity to
electron temperature (~ T, o) three-body recombination (the inverse of electron impact ionisation) is also negligible,
except possibly for neutral species at very low temperatures. So the effective recombination coefficient may be written

as

(z+1>7) _ d
@ = gy + Xypp

46

Instead of detailed modelling of redistribution and ionisation from excited states, which reduces particularly the effec-
tive dielectronic rate coefficient in finite density plasma (radiative recombination is predominantly to low levels and
so is less affected), a cut-off n-shell, n,, may be introduced (Wilson, 1960).

n, = [5.57x 10" (cm™ /NS KT, /1)"/*1"7 (3.12)

Captures to levels below n, are assumed to populate ultimately the ground level and so contribute to the effective
coefficient, whereas captures to levels above n; do not. n, depends on electron density and it is this which causes the
finite density collisional-radiative effects. This is acceptable for heavy species ions at normal tokamak densities and in
fact, again because of the z-scaling of effective electron density, the effective recombination coefficient is quite closely
converged on its low density limit under such conditions. We return to this point in section 3.3

3.2.1 Radiative recombination

The effective radiative recombination coefficient is a sum over capture to ground and excited state quantum shells up
to the cut-off principal quantum shell n,. That is

n

a/;ff = Z a;yl + Z a, (3.13)

121, n,n>ngll<n

where the basic shell-selective free-electron capture rate coefficient is

@, (Te) =

Satc 82y @I+1 1
= [OH} ()fph<g"l>e"”/kT”El(Inz/kTe) (3.14)

3 \/gnao kT, nzvil

v, 1a the effective principal quantum number for the nl-shell, I,; = z%IH / vﬁ, is the ionisation potential for the shell
and f,;, is a ‘phase factor’ taking account of the shell occupancy (or fractional parentage factors). We introduce the
Maxwell exponential averaged bound-free Gaunt factor defined as

00 11 ,—x

gnle
Ei(Lu/kTe) Ji kr, X

(o) = dx, (3.15)
where gfl 5 is the usual bound-free Gaunt factor. We adopt a pure configuration, one-electron transition approximation -
as for ionisation. Parametric forms result from the choice of f,; and v,; and the treatment of (gfj ». Commonly (gf; y=1
(‘no Gaunt factor’), (g'1) = (¢"")y (‘hydrogenic Gaunt factors’) and (g!) = (g"})pw (distorted wave Gaunt factors’ -
one-electron transitions in an adjustable model potential) are made. Also, with the assumption that v,; is independent
of [, the ‘bundle-n’ approximation may be adopted. That is

21+ 19"
gl = > = (3.16)

7 n

Parametric forms

ADAS evaluates the above approximations using the methods of Burgess and Summers (1987). Two procedures are
available for use at the IDL command line, namely alf_r_bdn.pro and alf_r_bdnl.pro for ‘bundle-n’ and ‘bundle-
nl” approximation respectively. Keywords include approx with character values no-gf, h-gf and dw-gf (dw-gf is not
allowed for alf_r_bdn.pro). alf_r_bdnl.pro in ‘dw-gf” mode requires a screening configuration, keyword: config, as a
string in Cowan, standard or Eissner form. An electron temperature vector, Te, is required as an input parameter. An
illustration is given below. The full specification of the procedures is in appendix B.

47

IDL> z0_nuc=36

IDL>z_ion=10

IDL>zI _ion=z_ion+1

IDL>n=20

IDL>tev=tev_alf_s,z_ion,ionpot
IDL>low=11605.4%*tev/100
IDL>high=11605.4%*tev*100
IDL>te=adas_vector(low=Ilow,high=high,num=21)
IDL>alf-r_bdn,z0_nuc=z0_nuc,z_ion,n=n,te=te,coef=coef
IDL>print,’n=",n

IDL>print,’te=",te

IDL>print,’coef=",coef

IDL>

IDL>n=4

IDL>I=0
IDL>config_orbital_energies,z0_nuc,z_ion,fulldata=fd
IDL>config=fd.config[z1 _ion]
IDL>ionpot=fd.ionpot[z_ion]

IDL>approx="dw-gf
IDL>alf-r_bdnl,z0_nuc=z0_nuc,z_ion,n=n,l=1,te=te,coef=coef,
config_zl=config_zl,ionpot_n=ionpot_n,approx=approx
IDL>print’n=",n

IDL>print’l=",1

IDL>print,’te=",te

IDL>print,’coef=",coef

The complete effective radiative recombination coeflicient, & 7 Ay be assembled from these partial coefficients. The
procedure is alf_r_tot.pro, which takes in an electron temperature vector, fe, and an electron density vector, dens, and
returns the coefficient array, coef. ADAS has historically provided case A and case B approximations for o/ e These
are set by the keyword case_rr which takes values basic, case_a, case_b and case_c. It is to be noted that all the ground
configuration and shell ionisation potentials for heavy species are available from config_orbital_energies.pro and so
the parameters of alf_r_tot.pro can be quite simple. They include keywords z0_nuc, z_ion and case_rr. If the electron
density vector is omitted, the complete zero-density n-shell sum is returned. The definitions of the cases are as follow:

case A: ‘bundle-n’ for n > n; Y, from adf00 ion. pot.; f,; = 1; no-gf

case B: ‘bundle-n’ for n > ng; v,, from adf00 ion. pot.; fy, = 1 — gy, /né;
h-gf.

case C: ‘bundle-nl’ for n = ny; v, ; from adf00 orb. ergys. & ion. pot.;
Jon =1 =qni/ 2L+ 1); dw-gf for n = ng; ‘bundle-n’
for n > ng; h-gf forn > n,

case basic: currently = case B

IDL> z0_nuc=36

IDL>z_ion=10

IDL>z1 ion=z_ion+1
IDL>config_orbital_energies,z0_nuc,z_ion,fulldata=fd
IDL>config=fd.config[z1 _ion]
IDL>ionpot=fd.ionpot[z_ion]
IDL>tev=tev_alf_s,z_ion,ionpot
IDL>low=11605.4%*tev/100
IDL>high=11605.4%*tev*100
IDL>te=adas_vector(low=Ilow,high=high,num=21)
IDL>alf-r_tot,z0_nuc,z_ion,case _rr=case_a,te=te,coef=coef
IDL>print,’te=",te

IDL>print,’coef=",coef

48

Parametric radiative recombination coefficients may have additional adjustment parameters to optimise their fit to
higher precision results. Such adjustments are only appropriate for recombination to the ground n-shell and are best
handled as a multiplier, ¢, and electron temperature gradient shift, de,,. The adjustable form is

n

@ =y (I, [T,) Z ay, + Z o, (3.17)

121, n,n>ng;ll<n

The procedure alf r_tot.pro has the capacity for using ¢, and de,, parameter in case C. The ADAS Project has in
progress high precision radiative recombination coefficient production using the multi-electron, multi-configuration
structure and radiative transition code AUTOSTRUCTURE. These state-selective (both initial and final state) data are
archived in ADAS data format adf48. In principle, the case C parameters c,, and de,, will be optimised with respect to
these latter data. It will however be some substantial time before the adf48 data base is complete enough for relevance
to heavy element ions. It should finally be noted that radiative recombination is increasingly revealed to be a minor
process compared with dielectronic recombination even at very low temperatures. The present procedures are likely
to be adequate for most fusion purposes.

3.2.2 Dielectronic recombination

Unlike radiative recombination, dielectronic recombination is strongly dependent on the atomic structure and tran-
sitions of the recombining ion, called the parent ion or the core. Also the effective recombination is dominated by
capture to higher n-shells although this dominance becomes less at very high z. In effect the dielectronic recombina-
tion contracts towards lower n-shells as the recombining ion charge z increases. It is usual to distinguish situations
where the resonant capture part of the composite dielectronic process involves an n-changing core transition, An > 0,
or not, An = 0. In the An > 0 case, capture is to lower n-shells and the lowest resonances of this type influence the
very low temperature behaviour of dielectronic recombination. In the An = 0 case, capture is into higher n-shells
and this type of core transition is in general most influential on dielectronic recombination near ionisation balance
in electron excited thermal plasmas such as those of concern in fusion. For dielectronic recombination therefore, the
termination of the capture sum to higher n-shells (via an n, or collisional-radiative population modelling) is a critical
matter for modelling finite density plasmas. For recombination of heavy species ions, the precision of dielectronic
coeflicients depends directly of the quality of the relevant transition energies, resonance capture collision strengths,
Auger break-up coeflicients and radiative stabilisation transition probabilities. As has been found in earlier chapters,
the complexity of heavy element ions limits what can be achieved. We write

n n

a'gff = ZZ Z a’i.lc,ncl{.;nl + Z Z Z ailﬁn(’.l;;nl (3.18)

ne,le I nlil<n Neyle nlnl>nell nylll<n

distinguishing the transitions n.l. — n.l, of the active core electron from the ground state of the recombining ion and
the An. = 0 and An, > 0 cases. nl is the high orbital into which the free electron is captured. It is helpful to note that

a? , takes the form
nelenllsnl

2 P2 apr
naoly} wnll,nl) AA o E/T. (3.19)

d
(04 Py —
nelenillinl [kTg (,L)(i’lclc) ZAa + ZAr
where A and A" represent the combinations of Auger and spontaneous emission coefficients delivering the final
stabilised recombined state via the n.l.;nl resonance configuration , the w denote statistical weights and E is the

c’er

energy of the recombining electron for the resonance.

Parametric forms

Dielectronic recombination calculation for plasmas has been hugely influenced by the Burgess general formula (Burgess,
1965). It provides a simple expression for

00

d _ d
Q1 nlstor = Z @y 1t inl (3.20)

n,l:l<n

49

This is for the total dielectronic recombination for a particular core transition at zero density. It takes as parameters
the upward oscillator strength of the core transition n./. — n.l. (only dipole allowed transitions are permitted) and
the transition energy. It is available as an IDL procedure alf_d_bgf where the acronym bgf denotes Burgess general
Sformula. This formula can be applied to complex ion recombination providing the relevant core transition and energy
data are available. It is to be noted though that the formula specification has a range of recombined ion charge z;,, < 26
although the formula is freely used beyond this range. The formula has no capability for truncating the n-shell sum at
an n,, however an empirical density dependent reduction factor is often used.

D

n,/(200 + n,) for An, = 0
0.0015[(z; + Dn,J%/(1 + 0.0015(z; + Dn,]?) for An, > 0 (3.21)

where z; is the recombining ion charge and n, comes from equation 3.12. This was inferred from very early studies of
dielectronic recombination for He* and Ca* and has no generally demonstrated applicability for heavy species (the full
GCR calculations for light elements bypass this problem). In ADAS, the approach using the bgf'is called Case A. The
underlying FORTRAN subroutine for bgf is xxdrbf.for. It does not include the above density dependent correction,
but the latter can be introduced via keywords in the IDL procedure alf_d_bgf as illustrated below.

IDL> z0_nuc=2

IDL>z_ion=0

IDL>deij=3.0

IDL>fij=0.416

IDL>z1 _ion=z_ion+1

IDL>tev=tev_alf-s,z1 ion,ionpot

IDL>low=11605.4%*tev/100

IDL>high=11605.4%*tev*100
IDL>te=adas_vector(low=Ilow,high=high,num=21)
IDL>alf-d_bgf,z0_nuc,z_ion,deij=deij,fij=fij, te=te,coef_tot=coef_tot
IDL>print,’te=",te

IDL>print,’coef_tot’,coef_tot

IDL>dens=1.0el4

IDL>delta_nc=1

IDL>alf-d_bgf,z0_nuc,z_ion,deij=deij,fij=fij, te=te,dens=dens,delta_nc=delta_nc,coef_tot=coef_tot
IDL>print,’ dens’,dens

IDL>print,’coef_tot’,coef_tot

Some of the immediate deficiences of bgf are resolved by the code called the Burgess General Program or bgp for
short. This evaluates the separate contributions of capture to nl-shells and the partial sums over 1 and then n. Introduc-
tion of an n, truncation is possible in bgp. A more sophisticated improvement is also possible. bgp calculates dipole
nl-selective resonance capture in the Bethe approximation via a Correspondence Principle argument. This relates the
Auger rate coefficients to Bethe approximation excitation collision strengths at threshold. Low partial wave corrections
to the Bethe approximation values are the key to enhanced accuracy. bgfis a functional fit to extensive bgp calculations
at zero density. The latter used a fixed set of Bethe correction factors based on cross-section data available at the time.
An improvement is to use sets of correction factors for various types of parent transitions. These were obtained for
medium weight elements by (Summers et al , 1987). The IDL procedure alf_d_bgp provides the bgp approximation
at the command line for a single parent transition. It provides the total zero-density recombination coefficient at a set
of electron temperatures. Optionally a density dependent reduction may be imposed based on the simple n, cut-off
above. The procedure also can return the partial n-shell coefficients on a representative n-shell set and force the use of
a particular set of Bethe correction factors. There are several optional parameters and extensive use of deafult values.
The underlying FORTRAN subroutines are xxdrbp.for and gxdrbp.for. The former gives the recombination to an
n-shell and its 1-subshells. The latter provides the total, density corrections and results for representative n-shells. It is
illustrated below and corresponds to the ADAS Case B.

50

IDL> z0_nuc=2

IDL>z_ion=0

IDL>ep=3.0

IDL>fp=0.416

IDL>np=2

IDL>Ip=1

IDL>ng=1

IDL>Ig=0

IDL>z1 ion=z_ion+1

IDL>tev=tev_alf_s,zI _ion,ionpot

IDL>low=11605.4%*tev/100

IDL>high=11605.4%*tev*100

IDL>te=adas_vector(low=Ilow,high=high,num=21)
IDL>alf-d_bgp,z0_nuc=,z0_nuc,z_ion=z_ion,ep=ep,fp=fp,np=np,lp=Ip,ng=ng,lg=Ig,te=te,coef_tot=coef tot
IDL>print,’coef-tot’,coef_tot

IDL>cor=[{0.05,0.3,0.7,0.9]

IDL>nmin=2

IDL>dens=1.0el0
IDL>alf-d_bgp,z0_nuc=,z0_nuc,z_ion=z_ion,ep=ep,fp=fp,cor=cor,nmin=nmin,te=te,dens=dens, coef_tot=coef_tot
IDL>print,’te=",te

IDL>print, dens’,dens

IDL>print,’cor’,cor

IDL>print,’coef_tot=",coef-tot

IDL>nrep=[2,3,4,5,6,7,8,9,10,12,15,20,30,40,50,60,70, 100, 150,200,250,300,400,500,600,700,800,900,1000]
IDL>alf-d_bgp,z0_nuc=,z0_nuc,z_ion=z_ion,ep=ep,fp=fp,cor=cor,nrep=nnrep,te=te,coef_n=coe_n,coef_tot=coef_tot
IDL>print,’nrep’,nrep

IDL>print,’coef_n(nrep(10),te)’,coef-n(10,*)

Alternate Auger channels open extra loss channels competing with stabilisation and can be included in the bgp formu-
lation to some extent. To a good approximation, it can be assumed that once an alternate channel is open then there is
unit branching ratio in its favour. Thus an n-shell cut-off, n,, may be introduced based only on energetics. In practice,
the lower of n; and n,, is applied. All necessary data for the above two aspects can be obtained from ADAS adf04
files.

The ADAS Project has had in progress, for a number of years, high precision dielectronic recombination coefficient
production using the multi-electron, multi-configuration structure and radiative transition code AUTOSTRUCTURE -
the ‘DR Project’(see DR - paper I). These state-selective (both initial and final state) data are archived in ADAS data
format adf09. Project results have to-date been completed up to the Mg-like iso-electronic sequence and are used
in the GCR models of light elements. It is expected that these calculations will continue to progress towards heavy
element ions, but it is evident that the scale of the calculations and the data storage requirement of the dielectronic
recombination database are becoming unbalanced. A modified strategy is in progress to solve these issues which is
usefully described here.

The precision of the DR Project calculations, and its divergences from gbp, arise from the inclusion of non-dipole
as well as dipole excitations from the parent ground state in the resonance formation, the exact inclusion of alternative
Auger and radiative branching channels for resonance decay, stabilisation via outer electron transition into the core
and the specificity of the collision data used. Additionally, detailed attention is given to the lowest lying resonances
which determine the low temperature behaviour. In the latter context DR Project calculations for an ion are generally
resolved into parts with titles such as ‘2 to 3, capture to 3’ or ’2 to 3, capture to n’ meaning core transitions from
ne. = 2 to n., = 3 with captured electron entering principal quantum shell » = 3 in the first case and with the captured
electron entering any principal quantum shell » > 3 in the second. These are written in shorthand as 2-3,3 and 2-3,n
respectively. The first case is the sort which spans the difficult low lying resonances, but are quite limited in number.
The second case generates the infinite series of resonances and the very large data sets for heavy species ions. This
latter case is amenable to economised calculation by an extension of gbp which we call bbgp. It is the new bbgp which

51

adfoo

element

run_adas708
cycle through

elements and ions

ground
configs.

7 - ~N
/
| temporary
\ datasets !
\

~ 7

adas7xx_diel_promotions_rules

read_adf00

adf55

customised

read_adf55 i1

v

adas7xx_diel_promotions

generates configuration set

v

adas7xx_diel_create_drivers

rule
set

adf27
z+1and zion

Driver archiving allows independ-
ent submission of adas701,
and adas7#1 runs

v

run_adas701 |
parent & recombined ions separately

adas7xx_diel_create_adf46 |

drivers
categories
ca#, Is#, ic#,

adf46
categories

parent & recombined ion data merging |

v =

| process_adf46_adf09 I:

ca#,Is#, ic#

adfo9

category
ca#,Is#,ic#

g8bbgp.for
Direct state selective
DR entry into
population codes

ADAS-EU R(10)PU03

Figure 3.4: Organisation and disposition of data sets used and created in offline execution of ADAS708

52

we introduce here and which and allows us to move the baseline data for dielectronic recombination to Case C.
cor; = Z Q((S,,L;,J;,)k’l’, (S,,L,,J,,)k|:ol)/
l/

D QPRSI (SpLypd p)Kl=oD) (3.22)
1/

In principle, the cases B and C can have adjustable parameters ¢y, and dey- which may be optimised with respect to
available high quality data, from the DR project, iso-electronic sequence by iso-electronic sequence. These parameters
are introduced most effectively as a scaling and an effective transition energy shift. Up to two parent transition
groups corresponding to An, = 0 and An, > 0 may be used, as indicated in the equation below. The factor a =
1.0+ 0.015[1% /(z1 + 1)?], which compensates for the energy shift of resonance energies from associated core transition
energies, is helpful and is taken from the GF specification.

Calculation of promotion rules for DR

Calculation of the DR rates utilising the autostructure code requires that suitable input files are generated. A set of
promotion rules has been devised to determine the correct configurations to include. These rules are stored in an
ADFS55 file, and are identical to those in an ADF54 file, with the addition of the spectator electron n-shell and the
maximum l-shell to be considered for capture of the electron.

The addition of the spectator electron increases the calculation size considerably compared to the structure calcu-
lations considered in section 2.2. Therefore the number of configurations may need to be reduced. It is therefore
once again worth operating the promotional rules code, with a smaller target size. Since the Autostructure code op-
erates in LS coupling, the taraget calculation size is best optimised for the number of terms, not the number of levels
as before. This is done by altering the last parameter from a 1 to a 2, and changing the number of terms appropri-
ately. The following commands will run this optimisation for a target size of 200 terms for h-like to li-like magnesium:

>run_opt_808_offline.sh mg 1 3 /home/<user>/work 12 magnesium 1 200
<ADASDIR>/adas/adf54/promotion_rules_medium_adf54.dat 2

Once this ADF54 has been generated, the updated rules can be copied to an ADFS5S5 file with the command:
IDL> adas8xx_recom_merge_adf54_adf55, a55file="my_adf55 file.dat’,$
a54file="my-adf54_file.dat’

3.3 Finite density heavy species collisional-radiative coefficients

The parameters required to calculate the Case A and Case B approximations to S*~**! and o**!™7 are conveniently

stacked together for z = 0,---,zo — 1 in ADAS data format adf03. As has been described earlier, these parameters
may be extracted from the set of adf04 data sets for all the ionisation stages of an element. The code ADAS407
performs this process. Then the code ADAS408 generates the tables of the coefficients, essentially by running the ap-
propriate procedures of sub-sections 3.1.1, 3.2.1 and 3.2.2, as required for application in ADAS format adfI1. These
are collisional-radiative coefficients with a limited density dependence arising from the n, cut-off. This approximation
means that the coefficients are valid at low to moderate scaled electron densities spanning most of the tokamak relevant
regime (excluding the lowest few ionisation stages and super-high densities. These steps may be executed at the IDL
command line as

53

IDL>te=adas_vector(low=Ilow,high=high,num=21)
IDL>run_adas407

IDL>print,’te=",te

IDL>print,’coef=",coef

IDL>run_adas408

IDL>print,’te=",te

IDL>print,’coef=",coef

As described in sub-sections 3.1.1, 3.2.1 and 3.2.2, Case B and Case C methodogies have implicit n-shell resolution
of the radiative recombination processes. So a population model within the bundle-n approximation is possible. The
ADAS Project has a substantial capability for this. The code ADAS316 is particularly suited to the baseline heavy
species situation. It handles an effectively infinite number of n-shells, evaluating representative n-shell populations
and the collisional-radiative recombination and ionisation coefficients. The latter include stepwise processes with
matched forward and reverse processes. Thus stepwise ionisation and three-body recombination are included in its
evaluation of $*>%*! and “*!>%. The calculations are valid to very high densities converging correctly on the local
thermodynamic equilibrium limit. We have provided a capbility for execution of ADAS316 at the IDL command line,
enabled to write directly the adfI] data files. This is illustrated below.

IDL>te=adas_vector(low=Ilow,high=high,num=21)
IDL>alf-d_bgf,z0_nuc,z_ion,case=case_a,te=te,coef=coef
IDL>print,’te=",te

IDL>print,’coef=",coef
IDL>alf-d_bgp,z0_nuc,z_ion,case=case_a,te=te,coef=coef
IDL>print,’te=",te

IDL>print,’coef=",coef

54

Chapter 4

Superstages and flexible partitioning

In the generalised-collisional-radiative picture, an element in a plasma is described by the abundances of all the
metastables of every ionisation stage, by the effective recombination and ionisation coefficients which link them to-
gether and by the emission coefficients which are quasi-static with respect to and driven by these metastables. The
complete set of populations, which are then in principle tracked in dynamic transport modelling, is large. However, not
all populations are of equal importance and so grouping of populations may be appropriate. This is called a conden-
sation and it reduces the problem to tracking the group populations with their equivalent effective recombination and
ionisation coeflicients and emission coefficients. The specification of a grouping is called a partition. More precisely,
introduce a parent partition with n, members indexed as

{i:i=0,---,n,}, 4.1)

then we can define a child partition with n, members, indexed as

{(7:7=0,---,n} 4.2)
by a range vector
{rj:j=0,---.ncc (4.3)
so that
{jle = {Rj-1,---,Rj—1}, 4.4)
where R; = Z)ﬁ:o rjand R_; = 0. The r; determine the contiguous ranges in the parent partition index to be grouped

into the child partition members j. For example a parent partition with six members may be grouped into two child
partition members with r; = 2 and r, = 4 so that {1}, = {1,2}, and {2}. = {3,4,5,6},. We can envisage a particular
partition having parent and grandparent partitions and so on in layers back to a root partition. This is the basic idea,
but it can be made more complete and consistent with earlier work in both the CR and GCR pictures.

Consider the metastables of carbon in the GCR picture, as shown schematically in figure 4.1a. The complete set
of thirteen metastables (including the bare nucleus) comprise the members of a partition. If the metastables of each
ionisation stage are grouped together, then the child partition is composed of members which are the ionisation stages.
Then further grandchild partitions can be formed as illustrated. There are really two starting points for partitioning,
called the #00 or #01 root partition layers depending on whether we are in the GCR picture of resolved metastables or
the unresolved CR picture. For computation, a partition specified by {j,r; : j = 0,--- , n} is conveniently written as a
string, so that the two root partitions layers for carbon appear respectively as

//#00// p00/ 00/p01/ 01/p02/ 02/p03/ 03/p04/ 04/
p05/ 05/p06/ 06/p07/ 07/p08/ 08/p09/ 09/
p10/10/p11/ 11/p12/ 12/p13 13/
4.5)

55

(@)

Root partition layer #00: Number of partitions = 14
Connection vector =[4,2,2,1,2,1,1]
h tables as: 0001020304 0809101112

as’ap? %)

[Pas220? To)]| [[ci2s

2

=]
cHBstas’ %) S— c*(’s)

(25" 25" 3] cHas'as! 3s)

2

251 %]

P | [T
COL2$‘293 551

Form child partition #01 defined by
/p00/ 00 01 0203/ pO1/ 04 05/ pO2/ 06 07/ pO3/ 08/ P04/ 09 10/ pOS/ 11/ 06/ 12/

Root partition layer #01 Number of partitions =7
Connection vector =[1,1,1,1,1,1,11

o | [e [e][e] e J[s][e

Form child partition #02 defined by
/p00/00/ P01/ 01 02 03/ p02/ 04 05/ P03/ 06 /

Partition layer #02 Number of partitions = 4
Connection vector =[1,1,1,1]

0 el 2 o

c

Figure 4.1: (a) Metastables of carbon in the resolved GCR picture. The child partition grouping to form the stage
to stage picture is shown as the boxes enclosing the metastable sets. The connection vector specifies the metastables
which are close-coupled. It corresponds in this particular illustration to the child partition grouping. (b) The general
partitioning picture with independent child partition groupings and parent connection vector. Note that the child
connection vector is determined from the child partition definition and the parent connection vector.

56

and

//#01// p00/ 00/p01/ 01/p02/ 02/p03/ 03/p04/ 04/
p05/ 05/p06/ 06/

(4.6)
The child #01 stage-to-stage partition of carbon for computation from the #00 root partition is
//#01// p00/ 00 01 02 03/p01/ 04 05/p02/ 06 07/
p03/ 08/p04/ 09 10/p5/ 11/p6/ 12/
4.7

It should be noted that the metastables are not all on the same footing. Unlike ionisation stages which are each
(usually) only coupled to the two adjacent stages up and down, the metastables are in groups which are close-coupled
(for example the first four and the next two and so on). This close coupled grouping is specified by the connection
vector, a name which will be familiar to those who have worked with ADAS GCR data. The connection vector for
carbon in the #00 root partition is {4,2,2,1,2, 1, 1}. The connection vector is similar to a range vector and the range
vector for grouping into the #01 stage-to-stage partition from the #00 root partition is the connection vector. Introduce
a new name superstage for the members of a partition which are close coupled as specified by the connection vector.
In the special case of the #01 partition of carbon, the superstages are simply ordinary stages. The connection vector
and range vector of a child partition are in the general case independent items. So a child partition can be formed
from the #00 root partition which subdivides connected metastables into different child partition members and leaves a
non-trivial connection vector for the child partition. This general case is illustrated in figure 4.1b. With light elements,
in usual plasma conditions, ionisation is a single electron loss process from ionisation stage A*? to A***!. For heavy
element ions, multiple electron loss through shake-down and shake-off is more likely. This would result in non-trivial
connection vectors and superstages. The heavy element baseline has the the root partition layer #01 and in child
partitions, the connection vector is trivially all ‘ones’.

Consider then the evolution of populations of members of a partition of an element in a plasma. For an element A
of nuclear charge zy, in the unresolved picture, the populations of the superstages of the #01 partition are denoted by

NFOL@ . — 1 . pi#o1] 4.8)

and their time dependence is given by the equations

AN o '
— N,§ [#o11=1- pyi#011G=1)
— (S HOUG=+1) G [#011G—i=1)) pfHOLIG)
+N, #0110 0L+ (4.9)

The coeflicients are the #01 partition collisional-radiative coefficients, corresponding to the usual stage to stage co-
efficients S &% and !Z7%" since the superstage index i is the same as the charge state z. Consider now the child
partition layer ‘#02’. Without loss of generality suppose that the members of layer #01 between index values iy and i

map into member j of #02. Then
N#0210) — Z N1 (4.10)
i=io

and summing the time dependent equations

ANF021()

w7 _ NeSEﬁ()l](iu—l—»io)N[#()l](io—l)

N, #01Gio—io=1) \y#011Gi)
_NeSE:Ol](iI —i) +1)N[#01](i1)

+Nea[#()l](i|+14>i|)N[#01](i|+1) (411)

cr

57

Impose a quasi-static equilibrium for the #01 partition members populations iy to i; so that

N#O1Go) |eq _ (agOl](z‘UH—»io)/SE_#;Ol](ioaioﬂ))N[#Ol](i0+l) |eq
N#OLGo+1) |€q _ (0[1301](50+2ai0+1)/5lﬁm](50+14i0+2))N[#01|(i0+2) 'eq
NG |gq _ (aEﬁOl](z‘]—»il—l)/S?:Ol](i]—1—»1‘,»))N[#01](i1) |eq (4.12)

subject to the normalisation
i
NFHO2I0) — Z NHOLI® |eq (4.13)
i=io

Then finally define the effective recombination and ionisation coefficients for the #02 partition as

aL#;OZ](jaj—l) — aE#:Ol](ioﬁio—l) (N[#Ol](io)/N[#02](j)) |eq
SL?OZI(/‘HHI) — SEﬁOI](il—mH) (N[#Ol](i1)/N[#02](j)) |gq (4.14)

When there is no confusion, the #<nn>1 partition layer label in the superscripts can be omitted leaving the familiar older
p Y p p g
notation.

For the general case, there may be more than one partition member in a superstage and the population are written
as N})#<”">](’) where i is the superstage index and p the member index within the superstage. The vector of populations
of members of a superstage, is written in script character N#<">1)_To achieve a parent to child condensation in the
general case, it is helpful to work with the matrix of equilibrium fractional populations in the parent partition layer,
renormalised separately to fractional populations within each child partition member as (without loss of generality
suppose the parent partition is #00)

[Fwoonerot1o 01,1 O .0
F- 0 [Froorerory wor,] - 0
0 0 - [Foonemoriy, o1y,]
(4.15)
where the [?[#oohe[#01]j,[#o1]‘,] represent column vectors with elements
Frwooerpor oy, = NFOO NEOLD
— N[#OO](i)/ Z \1#001(k) (4.16)
ke[#011;
and the similar matrix
[Troo)er#o11o, 140131 O .0
I 0 ooyt iwor,] - 0
0 0 [Tpoonersonny, o1y,]
“4.17)
where the [3[#00],-e[#01]_,,[#01],] represent column vectors with unit elements
Jmooyesor;wor;, = 1 (4.18)

Also assemble the collisional-radiative matrix formed from submatrices of dimensionalities those of the parent
superstage connection vector values as

e[#OO](O—»O) Ne iR[#O()](l—>0)
Neg[#OOJ(OHI) G[#OOJ(IHI)
N, S([#00]1—>2)

C=
4.19)

58

Note that the on-diagonal elements of the collisional-radiative matrix must be formed correctly so that the column
sums are zero. Then the child partition collisional-radiative matrix is D = ITCF. This must be written in the submatrix
structure of the child superstages following the child connection vector element values as

e[#()l](O—»()) Ne :R[#Ol](l—>0)
Nes[#OO](Oﬁl) e[#OO](lal)

D= N, gl#00]1-2)

(4.20)
from which the individual collisional-radiative coefficients of the child partition layer may be ‘unpicked’.

The issue of thermal charge exchange recombination has not been addressed. The condensation process is non-
linear for linear combinations of ‘acd’ and ‘ccd’ adfll data. In the present work the condensation is carried out
using only the free-electron electron driven recombination, that is R excludes charge exchange recombination as does
the quasi-static ionisation balance of matrix F. Thus the child ‘ccd’ data must be obtained by forming separately a
CX matrix as for C above but including only the neutral hydrogen driven charge exchange sub-matrices R¢X. The
condensation and unpicking is as for C above. In the light of this approximation, if there is strong charge exchange
to a particular ionisation stage, then this stage should be isolated as its own superstage in condensations. In terms of
these new coefficients, which include recombination, ionisation (and cross-coupling in the general case) , the usual
form of the time dependent equations for the #02 superstage populations (and the superstage partition members in the
general case) are obtained. In practice, superstage condensation (bundling) is influenced by the shell structure of the
element. There are two situations of interest at this time. Firstly there is aggressive condensation (bundling) aimed at
enabling heavy elements to be handled with the same ecomomy as light elements in sophisticated 2-d or 3-d transport
codes. Secondly, there is condensation related to spectroscopy and the occurrence of quasi-continuum. It is in these
contexts that the additional classes in the adfl 1 data format and those in the adfl5 and adf40 formats are determined
for the child partition in the following two sub-sections.

4.1 The natural partition and spectroscopy

Ions with closed shell configurations have an extended region of existence (in electron temperature) in a plasma. They
and adjacent alkali-like ions are significant radiators of a resolvable line spectrum of diagnostic value. Sets of ions
associated with a partially filled shell, particularly for heavy species, give a complex overlapped spectrum which is
difficult to identify and resolve. They are usefully grouped. A map of the fractional variation of ionisation potential
2(I+1 — I)/(I;+1 + I,) between successive ions of every element, as shown in figure 4.2, highlights the shell structure.
We select ions corresponding to peaks and their immediate neighbours as individuals in a partition and group the
others. Setting a fraction of the a running mean as a variance for stage individualsing allows automatic partitioning.
We call this the natural partition.

It is useful to be able to preview the natural partition and its approximate implications for the temperature distri-
bution of superstages before executing the substantive generation of a complete ADAS data for a new child partition
layer. An IDL procedure

preview_natural_partition.pro
accomplishes this. At the IDL command line type

IDL>z0=73
IDL>sigma = 1.5
IDL>plot_no = 4

IDL>preview_natural_partition,z0=z0,sigma=sigma

The textlines of the parent and child partition layers, as required for driver scripts, are written to the screen and
the figure is displayed. There are keywords to send the textlines and graphs to files. Use the form

IDL>preview_natural_partition,z0=z0,sigma=sigma,/postscript,/save_partition”

The files names are predetermined and placed in the IDL launch directory as

59

(@)

15 T T T T T T
L TANTALUM z0= 73 4
° 4
o
5 1.0 -
<
© .
s
a 4
<
kel 4
© 4
c
2
G 0.5 |
2
= 4
0.0 . . . I . ; " 1 . A h i ! . .
6] 20 40 60 80
ion charge
(b)
102 \ \ \
L TANTALUM z0= 73 Te(K)= 9828400.0 4
100 -
o
|4
3
e L 4
S
°
2
ER
2 10772 -
=}
©
c L| 4
Q2
=
S
£ 074 N
c
Q2
= L 4
h
I3
> -6
10 m —
1078 L ‘ ‘ ‘ ‘
0 20 40 60 80
ion charge

Figure 4.2: (a) Fractional variation of ionisation potential for the ions of tantalum. The peaks indicate the quantum
shell boundaries. The natural partition criterion is set at the 30~ level and the individualised stages and bundles are
indicated by dots and bars respectively above the graph. (b) Quasi-equilibrium fractions for each ionisation stage
within a bundle with respect to the whole bundle.

60

preview_fig<fig. no.>_<elem. symb.>.ps
preview_partition_stack_<elem. symb.>.txt

Plots available are 1: ionisation potential variation, 2: quasi-equilibrium fractions within a superstage, 3: stage-to-
stage ionisation balance, 4: superstage ionisation balance. The output temperature used for fractional abundances
within a superstage for the plot of type 2 is representative.

(@

\\\\\\\\\

g

e
vvvv

nmm \

.mm..uww: 1:;.:\‘s
'

0" n, """"
"W’\ i

E AL AL AL T
£ TANTALUM ~ z0= 73
wooz
B wo”:
o £ i \»\’ \
5 b yul
S 1072} M'.
8 1073 ’
10’45
10’57
4

HNN ik mc{l,,,z, m,:

eeeeeeeeeeeeeeeeeee

o,c \\

“ ""«"'l' W
M’"‘ i

(b)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\V "o,\\\

’W\/ W//\\.es’//f“'

eeeeeeeeeeeeeeeeeee

Figure 4.3: Ionisation balance for tantalum vs electron temperature. (a) Equilibrium fractional abundances with
unresolved individualised stages corresponding to the //#01/ partition. (b) Equilibrium fractional abundances for
ionisation stage bundles in the natural partition of figure 4.2a.

For the spectral interval [0, 1], the envelope feature photon emissivity function vector is

i1
5!‘9(‘]—'_]\[[#02][0,1](]) — Z ggm[#m“&l](l) (N[#Ol](l)/N[#Oz](J)) |eq
io

421

In practice, a number of conventions have been introduced. The baseline modelling, in so far as it does not distinguish
metastables of ionisation stages is called the standard unresolved case. Conventionally , the root partition of individual
states is called the #01 partition. Also, partition members are indexed starting at zero. Thus the ion charge and the
partition index are equivalent for the standard unresolved #01 partition and

?S‘JN[#OI][O’”(Z) — g:pge[&H(z) 4.22)

Commonly, the envelope feature emission function for an element in full ionisation balance is required. Starting from

61

the standard unresolved root partition, the required function is

ggm[#OZ][O,l](O) — Z ggm[#OI][O,ll(z) (N(z)/N[#OZJ(O)) |eq (4.23)

4.2 Superstage condensation and plasma transport models

As discussed earlier, a main advantage of the condensation is in economising complex transport calculations without
severe loss of accuracy.

From the equilibrium stage population solution, the radiated power function for the child partition is P,[f?zl('i) and

is calculated as

i

[#02](j) _ [#01](i) [#011(0) ; A7[#02]1(j)
pl# = D PIRNO (NWOHO N H21D) |

o

i [PE#;)H([) " P[];#gl](i)] (N[#Ol](i)/N[#OZ](j)) |eq (4.24)

io

with separate radiated power function contributions arising from low level line power and the recombination-bremsstrahlung-
cascade power.

However there are some new issues which must be addressed first before superstages are compatible with transport
models. A superstage, which is a composite of several ionisation stages has a superstage charge which depends on
electron temperature and electron density. It is a collisional-radiative quantity. In fact fluid transport models make use
of the ion charge, squared ion charge and ionisation potential in addition to familar quantities such effective ionisation,
recombination, radiated power and electron energy loss coefficients. The adfi1 classes must be extended with these
extra quantities, which in superstages are all collisional-radiative quantities. In ADAS, these are given the mnemonics
zcd, yed and ecd. ADAS codes and data structures have been adjusted accordingly and there is a revised specification
of adfl1. The definition and computation of zcd and ycd are straightforward.

Z[#Oz](j)cr — Z Z[#Oll(i)gr (N[#Oll(i)/N[#Oz](j)) |eq
icp
Z (Zz)[#m](i)sr (N[#Ol](i)/N[#OZ](j)) |eq (4.25)

[#02]
i

@),

iep

ecd is more subtle. Consider a lowest superstage which is a condensation of low ionisation stages in addition to the first.
Then from the point of view of energy conservation, the superstage has a birth energy associated with its appearance
in the plasma. In the usual (simplified) ionisation stage picture, a neutral has zero birth energy, which is implicit in
the computer codes. For consistency then, there is a 0" block in the adf11/ecd dataset which is the birth energy of the
lowest superstage. The #01 root partition has all zeros in this block. In fact this problem is already present in the GCR
picture, since the energy of metastables of the lowest ionisation stage are usually ignored. A properly formed ecd in
the GCR picture should contain excitation energies from the lowest metatable (the ground state) to higher metastables
of the same stage as well as ionisation potentials to the metastables of the next stage. These data are available for
selected elements within ADAS under data format adf00 in data sets of the form

<el.symb.> _lIs.dat

<el.symb.> _ic.dat
for Is and ic cases in addition to the usual unresolved form

<el.symb.>.dat
The FORTRAN subroutine xxdata_00.for returns extra information on the metastables, including their configurations.
The IDL procedure can also acquire these data if the keyword /Is or /ic is appended to the call.

62

Form an augmented excitation/ionisation energy matrix as
0 EHooI-1-0)
el#001(0-0) g [#001(0—1)
o elH00I(1>1) e [#00](1-2)
E = o) £l#0012-2)

(4.26)

The submatrix E#1-1=9 contains the initial formation energies of the members of the superstage 0 in the plasma.
So if connection vector commences {3,2 - - -} then
S [#00)(-1-0) _ [gHO0I=1-0) o [#001(-1-0) o [#00)(~1-0)]

1-1 1-2 1-3
(4.27)
and
[#00100) ¢ [#001(0-0) ¢[#00](0-0)
1—)& l—>& l—>(')§
l#0010-0) _ | ¢[#0010-0) o [#0010-0) o [#0010-0)
B t0d10-0) oT#00100) o [#0010—0)
834>1 83%2 83%3
(4.28)
contains excitation energies between members of the superstage. The elements Sl[ﬁ(;,]w_’o) are nomally zero, the ele-
ments 85#32(0%0) with o > 1 are excitation energies which come from the tabulations in resolved adf00 files of type Is
or ic and all other elements of the matrix may be filled in, noting that efﬂ(}!@*m = —EL#E?T](O_’O). The matrix
[#0010=1) ¢ [#00](0-1)
El#001(0-1) _ 8[‘5&](0-»1) 8[‘%’ 0-1)
- 8[2%(}](04) 6%@3}(%1)
3-1 352

(4.29)

contains ionisation energies between members of adjacent superstages. The element E[ﬁ(;](o_’l) comes from the tabu-
lations in resolved adf00 files of type Is or ic and all other elements of the matrix may be filled in once the matrices
EH0I0=0) apd g#0I0=D have been determined. If the submatrices are filled in this manner so that they span the range
of the child #01 connection vector then the production of the child excitation/ionisation energy matrix is straightfor-
ward. Prepare an augmented G fractional abundance matrix as

o[¥

Then the child matrix is GTEG which may be unpicked as before to form the compact child ecd file.

(4.30)

As the historical ADAS adfl1 database does not contain zcd, ycd and ecd, a PERL script is available to create them
as

/home/adas/offline_adas/adasd#1/scripts/generate_adf11_classes_10-12.pl
By default this scans the /home/<user>/adas/adf11 subdirectory for the various year numbers (in fact it looks for
plt classes since these are most suitable as templates for the new classes) and creates matching zcd, ycd and ecd
classes for that year number back in /home/<user>/adas/adf11. It will overwrite zcd, ycd and ecd data already
there. Both resolved and unresolved classes are handled and a running commentary is provided on progress and
problems encountered. Two arguments may be given in the call to generate_adf11_classes_10-12.pl to alter the input
subdirectory and the output subdirectory respectively.

4.3 Generating the superstage

condensation The creation of a data for a new child partition is largely automatic. It is in the province of ADAS416
and makes use of a script driver dataset located in /home/<user>/adas/scripts416/. The script driver design is stan-
dard and illustrated in figure 4.4. The main calculations are done by a FORTRAN code adas416.for in Offline-ADAS

63

tungsten

92

unresolved

parent pathways

gcr
pec
gtn
f-pec:
f-gtn:

/home/summers/adas/adf11/***92/***92 w_01.dat
/home/summers/adas/adf15/pec89%4%w_01/pec89%w_01_pjufne**.dat
/home/summers/adas/adf13/gtn89#w_01/gtn89%4w_01_pju#ne**.dat
/home/summers/adas/adf40/fpec89#w _01/fpec89#w 01 pju#ne**.dat
/home/summers/adas/adf42/£fgtn894#w_01/fgtn89#w 01 pju#ne**.dat

partition specification

p02/ 06 07 08 09 10 11 12/

p03/ 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27/

p04/ 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45/
p05/ 46 47 48 49 50 51 52 53 54 55/

p06/ 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74/

//#01/p00/ 00/p01/ 01/p02/ 02/p03/ 03/p04/ 04/p05/ 05/p06/ 06/p07/ 07/

p08/ 08/p09/ 09/p10/ 10/pll/ 11/pl2/ 12/p13/ 13/pl4/ 14/pl5/ 15/
pl6/ 16/pl7/ 17/pl8/ 18/p19/ 19/p20/ 20/p21/ 21/p22/ 22/p23/ 23/
p24/ 24/p25/ 25/p26/ 26/p27/ 27/p28/ 28/p29/ 29/p30/ 30/p31/ 31/
p32/ 32/p33/ 33/p34/ 34/p35/ 35/p36/ 36/p37/ 37/p38/ 38/p39/ 39/
p40/ 40/p4l/ 41/p42/ 42/p43/ 43/p4d/ 44/pa5/ 45/p46/ 46/p4T/ 47/
p48/ 48/p49/ 49/p50/ 50/p51/ 51/p52/ 52/p53/ 53/pS54/ 54/p55/ 55/
p56/ 56/p57/ 57/p58/ 58/p59/ 59/p60/ 60/p61/ 61/p62/ 62/p63/ 63/
p64/ 64/p65/ 65/p66/ 66/p67/ 671/p68/ 68/p69/ 69/p70/ 10/p71/ 11/
p72/ 72/p73/ 713/p74/ 74/

ADAS-EU R(10)PU03

"pir'

child pathways

gcr /home/summers/adas/adf1l/***92/***92 w_02.dat

pec /home/summers/adas/adf15/pec89 02#ne/pec89 02#ne_pju#ne**.dat

gtn /home/summers/adas/adf13/gtn89_02#ne/gtn89_02#ne_pju#ne**.dat
f-pec /home/summers/adas/adf40/fpec89_02#ne/fpec89_02#ne_pju#ne**.dat
f-gtn /home/summers/adas/adf42/fgtn89_024#ne/fgtn89_02#ne_pju#ne**.dat

Com o
C sample scrip4l6 file

C

C Notes:

c (1) '"***' in gcr pathway denotes 'acd', scd' etc

c (2) '"***' in pec, gtn, f-pec and f-gtn pathways denote 'llr',

c or pju.

C (3) '"**' in pec, gtn, f-pec and f-gtn pathways denote partition
c member index. This is the ion charge for the #01 root
c partition. The indexing begins at 00

C (4) Leave pathways which are not needed as blanks

c (5) Choices at line 4 are 'resolved' or 'unresolved'

C (6) Partitions are given in decreasing level order, that is

C child before parent. This is the same rule as is used in

c adfll files with partition blocks and is required by the

c partition block reader xxrptn.for.

Cc

c

C Author: Hugh Summers

C Date : 24 august 2005

C

Figure 4.4:

64

initiated from the IDL command line as

IDL> z0=74
IDL> class_list = [‘acd’ ’scd’ plt’]
IDL> adas416_script = ’$ADASHOME/adas/scripts416/partition_02_tungsten_1992.dat’
IDL> run_adas416, 70=20, adas416_script=adas416_script
or
IDL> run_adas416, z0=z0, adas416_script=adas416 _script, $
class_list=class _list
or
IDL> run_adas416, z0=z0, adas416_script=adas416 _script, $

class_list=class_list,/adf1 I _only

where the second form restricts the adfI1 classes handled and the third restricts to adfl ! data only, omitting adf15 and
adf40 processing. This overrides the script driver. Note that the procedure will terminate if the adflI classes acd and
scd are not present in the unresolved case (or acd, scd, gcd, xcd in the resolved case - that is when the connection
vector is non-trivial. The parameter z0 is merely a check if the script driver does name the element explicitly.

Some technical details should be noted. ADAS data format specifications, especially adfl1, adfl5 and adf40
have been modified to cope with heavy elements and superstage condensation. Additional information on connection
vectors and partition layers is present and some adjustment in field mnemonics and field use has been made. Updated
access codes

xxdata_11.for

xxdata_15.for

xxdata_40.for
read the new datasets and all older versions transparently to the user. The reading routines fill in by inference and
context the extra information for older data sets. Particularly, redundant or limited content fields in the transition
header line of adfl5 files are used more fully. This is clearly desirable, since for example, a spectrum line associated
with a superstage is well defined for computational spectral modelling and simulation by its numerical values and
superstage but the spectral analyst may still wish to know what actual charge state that line is from. Also, the tail
comment lines of ADAS data sets are written automatically and contain extensive information. The information has
been associated with keywords. This means that the modern heavy element files have comment sections which can
be read and analysed automatically. Extra subroutines, such as xxremt_15.for are now present in the ADAS libraries
to do this. Automatic scanning for the preparation of tag files for OPEN-ADAS is also facilated by these changes.
It is recommneded that ADAS users switch over to the new access routines as soon as possible. Details are in the
appendices to this technical note.

65

Chapter 5

Lifting the baseline

The calculation of the atomic structure of an ion underpins all estimates of the radiation emitted from the element and
its interaction with the plasma. Accurate structure data is thus an essential key ingredient of the prediction of emission
from the plasma. The present work is concerned with establishing the infrastructure of atomic modelling for all heavy
species. It must therefore be able to supply the appropriate derived data for any required species on a timescale
matching the short period variations of fusion interest and need. This may be achieved by a carefully considered
layered approach, trading coverage against precision. The picture pursued here is of moderate quality data with full
coverage, restricted span data of higher precision targeting important diagnostic iso-electronic sequences and fiducial
data for individual key ions. The infrastructure is required to support the seamless substitution of these improved
approximations as and when they become available. In this work, these layers are called baseline, level 1 and level
2. Coordinated, collaborative work by others, outside the scope of this thesis, but under the umbrella of the ADAS
Project, seeks to ensure that level 1 and level 2 data is correctly targeted and flows in appropriately. In chapters 4 and
5 of this work the targeting will be described in more detail. In this section, a brief overview of structure calculations
is given, showing how they fit into this picture.

Ideally, energy levels, their quantum number labelling and transition probabilities would come from experimental
measurements. For the present situation of heavy species, there is a paucity of such data and, even for a single
targeted ion, they are generally incomplete (from the point of view of deducing total radiated line power). Also, such
observational data, from a collisional perspective, only supplies information on the asymptotic behaviour of dipole
allowed cross-sections. So the primary atomic structure inputs must come from theoretical calculations.

There are many atomic structure codes and particular preferences in various collaborating groups such as AU-
TOSTRUCTURE (University of Strathclyde, University College London and collaborators), HULLAC (Hebrew Uni-
versity Jerusalem, Lawrence Livermore National Laboratory), CIV3 (Queen’s University Belfast), COWAN (Los
Alamos National Laboratory, Oakridge National Laboratory, Auburn University, Strathclyde University and collabora-
tors), GRASP (Oxford University, Queens University Belfast, Strathclyde University and collaborators), FAC (Harvard
University and astrophysical collaborators), MCHF (Vanderbilt University), other MCDF (various). These various
codes have characteristics which make them more or less suitable for the present purposes. As one progresses to
higher ionization stages of a heavy species such as tungsten, the importance of the relativistic terms in the Hamil-
tonian increases with respect to the electrostatic and kinetic terms. Also, the angular momentum coupling schemes,
appropriate for population and ionization state modelling, change in parallel.

In consequence, the COWAN code has been selected for the baseline production of the present work. Atomic
structure codes can be readily extended with a free electron wave function calculation capability. This means that such
codes can supply resonance capture/Auger data (within the independent resonance approximation) and the free-bound
matrix elements required for radiative recombination without the complexity of a full collisional code. AUTOSTRUC-
TURE has been specially developed for these purposes, with dedicated post-processors for radiative and idelectronic
recombination coefficients. It has been selected for production of data at level 1 and level 2 for the ADAS Project.
Additionally AUTOSTRUCTURE sets up targets for level 1 and level 2 collision calculations (RMATRIX see section
2.2.2) and GRASP sets up targets for level 2 relativistic collision calculations (DARC see section 2.2.2) for the ADAS
Project.

66

Code Method Usual application Precision (E%, A%) Comments

AUTOSTRUCTURE | Multi-config, Breit-Pauli, General + Auger rates + (~2,~5) typically Recently extended to multiply- occupied f-shells.
Thomas-Fermi and Slater- Born integrals dependent on Extended experience of use up to M-shell.
type parametric potential Cl scope. Limited coupling scheme information.

Specially tuned for dielectronic and radiative
recombination. Can separate term and level
resolution calculations. A preferred code for

ADAS.
COWAN Multi-config, Breit-Pauli, General + Auger rates + (~2,~5) typically Handles multiply-occupied f-states.
Hartree-Fock potential. Born dependent on Cl Extended experience in many complex systems.
scope and tuning. Flexible coupling scheme information. Easy access

to configuration average information. Executes
level resolution calculation and averages to terms.
A preferred code for ADAS.

Multi-configuration, Dirac General, but extensive use [(~2,~5) typically Proprietary code package; structure code part
HULLAC Hamiltonian; j-j coupled with EBIT measurements. dependent on Cl matched to distorted wave collision code and
basis, Breit and QED scope. collisional-radiative modelling.
FAC As for HULLAC General, but mostly astro- | (~2,~5) typically Public domain variant of HULLAC. Use
physics. dependent on Cl increasing and experience building up.

scope and tuning.

High grade code, but MCDHF not always able

GRASP Multi-configuration, Dirac/ | General. (<1,<3) al. Tuned to DARC
Breit Hamiltonian; MCDHF with extensive ;ollcon\;erg? on polgntla%Rune ‘to Jlisi d
or parametric potential; core/ valance Cl. ully relativistic version of R-matrix collision code.

A preferred code for ADAS level 2 in

various couplings and A A
relativistic region.

optimizations.

Figure 5.1:

Electron impact excitation and ionization are summarized together, reflecting both physical situations in plasmas
and computational developments. For ions of heavy species, with closed quantum shells in the valence n-complex
and/or the adjacent lower n-shell, excitation to auto-ionising resonances is a major (and usually dominant) pathway to
ionization. The direct ionization (inner and outer shell) is therefore often a smaller part of the total. Typically, such
ions are dynamic influx ions, displaced to a thermal plasma regime above their natural stationary equilibrium location.
Thus inner-shell excitation/ionization is futher favoured. From a theoretical point-of-view, precision calculations
of excitation cross-sections take account of initially bound-electron ‘flux losses’ to the continuum. Modern close-
coupling calculations seek to address this with pseudo-states and complete pseudo-state expansions. The latter allows
deduction of the ionization cross-section and so the usual calculational separation into excitation and ionization is not
appropriate.

It is convenient to introduce some notation for excitation and ionization at this point. Although excitation data is
often presented as cross-sections, the more convenient quantity (and more immediate from the reactance matrix) is
the dimensionless collision strength,Q;; , symmetric between initial state i and final state j and the Maxwell averaged
collision strength 1;;(T,) . With projectile electron of energy ¢; and €; with the target in initial (lower energy) and final
(upper energy) states respectively, and AE;; the transition energy, then €; = €; + AE;; . Tabulations of collision strength
are usually in terms of ‘threshold parameter’ X with the threshold. Then Y;; and has similar symmetry properties
and the same threshold value as €;;. The familiar excitation cross-section, de-excitation cross-section , excitation rate
coefficient and de-excitation rate coefficient are then given by

It is noted that the collision strength from accurate theoretical calculation generally shows an elaborate resonance
structure superposed on a smoother background. Typically many thousands of energy points are required to delimit
fully the resonances. The Maxwell-averaging smoothes over the resonances to gave a reasonably slowly varying
interpolable and moderate tabulation density suited to application in plasmas. Tabulations of collision strengths in
principle allow calculation of rates for non-Maxwellian distributions. Unfortunately, collision strength tabulations in
the general literature often have undefined implicit averaging over resonances. This is a flawed situation, which is
avoided by tuning interval averaged collision strengths to the energy scale lengths of the distribution functions - a
practice possible only with the fully delimited resonance structure of detailed cross-section calculations. It is noted
that all electron collision strengths for fusion plasma application are total collision strengths, averaged over collision
directions. The electron - ion collision processes in fusion plasma can be treated reliably as isotropic.

Excitation-autoionisation rates are simply excitation rates multiplied by an Auger yield branching factor. This
factor can come from the atomic structure calculations, enabled for Auger rates described in the previous section.
Direct ionization rates are integrated over the energy (possibly a weighted sum over continuum pseudostates) of the
ejected electron and averaged over the energy of the incident electron. It is convenient for tabulation of ionization
excitation rates to use a reduced rate coefficient which excludes the exponential factor and multiplies by the initial ion
statistical weight. This makes a slowly varying interpolable quantity similar in character to the.

67

Code

Method

Usual application

Precision (%)

Comments

AUTOSTRUCTURE/
COWAN

CCC/CCCR

DARC/ DRMPS

HULLAC/FAC

RM /RMPS

RM - ICFT /RM-II

RM-RD / DARC-RD

TDCC

UCL-DW/JAJOM

Born with modified
threshold region.

Convergent close-coupling.

Relativistic R-matrix
close-coupling / with
pseudo-states.

Distorted wave.

R-matrix close-coupling /
with pseudo-states.

R-matrix close-coupling
with interrnediate-coupling
frame transformations/
R-matrix close-coupling
with IC inner region.

R-matrix close-coupling
with radiation damping.

Time-dependent close
coupling.

LS distorted wave with IC
transformation.

Low - medium/ high z.

Low - medium/ high z;
1-2 valence electrons

Low - high z.

Medium - high z.

Low - medium z.

Medium - medium/ high z.

Medium - high z.

Low z; 1-2 valence electrons,|

Medium -medium/ high z.

(<40%)

(<5%)

(~5-10%)

(~20%)

(~5-10%)

(~5-10%)

(~5-10%)

(<5%)

(~20%)

Very general, stable and enabled by all structure
codes with a free electron wave-function
generator. No spin change. LS and IC coupling.
Suitable for ADAS

baseline.

Highest precision, inefficient for very many
energies and delimiting resonances. Limited
ion scope. Currently being extended to Dirac
relativistic.

Very high precision, tuned to GRASP
structure and shared algebra. Resonances
included. Recent pseudo-state extension
increases heavy element near neutral scope.
Use also for ionization. Intermediate coupling.
Suitable for ADAS level 2 at low and high z.

Intermediate coupling, includes spin

change, no resonances. Efficient algebra - but
now used universally. Matched to HULLAC
structure part.

High precision, tuned to AUTOSTRUCTURE and
shared algebra. Resonances included. Use also
for ionization. Implemented for isoelectronic
sequences with scripts. LS coupling. Parallelized
versions. Suitable for ADAS level 1,2 medium-
scale mass production.

As for RM, but extends to higher zions in
intermediate coupling. Suitable for ADAS level 1,
2 medium-scale mass production. R-matrix
inner region IC gives improved higher z treat-
ment. Suitable for ADAS level 2 and bench-
marking of RM-ICFT.

As for RM, but extends to high z ions with
significant radiative/ Auger branching of
resonances. Suitable for ADAS level 1,2.

Highest precision. Benchmark for low-z
ionization. Used for ADAS level 2.

Matched to AUTOSTRUCTURE. Extension to IC via
algebraic transformation. Includes spin change.
No resonances. Can isolate calculation of cross-
sections starting with selected metastables.

Now inefficient and falling out of use in
comparison with RM.

* depends on precision of multi-configuration multi-electron structure calculation and/or close-coupled set and/or
pseudo-state span and completeness.

Figure 5.2:

68

Turning to the actual calculations of electron impact cross-section and rate coefficient data, consider firstly ioniza-
tion. In so far as ionization resembles a binary-encounter classical collision, there has been extensive use of variants
of the Thomson Classical formula to provide a universal capability. The variants are typically based on a sum of
Thomson-like shell contributions with adjustable parameters. These methods are surprisingly successful, especially
those which adjust for classical exchange, non-classical (logarithmic) high energy behaviour and have a considered
and flexible approach to effective shell ionization potentials and equivalent electrons. On top of such parametric form,
global scaling is used to adjust results to match available higher quality data. ADAS baseline uses such methods, but
is currently moving towards an improved baseline as large scale configuration-average distorted wave results are now
becoming sufficiently comprehensive. This is discussed further in the more detailed ionization/recombination of the
baseline description in a later chapter. In this brief review, it is the methods which can advance the description to level
1 and level 2 by substitution or as scaling fiducials which are of concern and to which we seek to draw attention. It
is noted that that there are now four high precision method which can provide such fiducials, namely CCC (Flinders
University), RMPS (Drake University, Belfast University), DRMPS (Strathclyde University) and TDCC (Auburn Uni-
versity). These are identified in Table 2 below. All achieve this within a close-coupling formulation, the first three
through the completeness of a discrete orthogonal continuum-spanning pseudo-state basis, within an excitation code
formulation. Participants and collaborators of the ADAS Project are developers of some of these methods and are
selectively building the level 1 and level 2 ADAS base. Current computational power allows only one or two va-
lence electron systems. But, as will be shown later, this is well suited to the key ionizations states for diagnostics
distinguished in a superstage approach.

For excitation, Born, distorted wave and R-matrix methods are available. As is well known, excitation codes
are linked to atomic structure codes, which provide the target ion description, and precision of the target is a pre-
requisite for precision of the cross-sections. Thus, the plane-wave Born approximation is of quite acceptable accuracy
for the high-coverage baseline of the present work and very satisfactory for extended configuration average top-up
when linked to codes such as COWAN and AUTOSTRUCTURE. As described earlier, the Born approach works
better as we move to heavier species and higher charge states. This is because of the ionization balance shift and
because the Born no spin change character is ameliorated by intermediate coupling spin system breakdown. It is also
straightforward for all structure codes to return the Bessel integrals required for a Born approximation. Then more
sophisticated calculations can be substituted for individual diagnostic ions and diagnsotic iso-electronic sequences.
Table 2 summarizes some of the methods and their relevance for lifting the ADAS baseline of the present work to
level 1 and level 2. The distorted wave methods (HULLAC, UCL-DW) improve on BORN, through their partial wave
resolution and the associated ability to force unitarity, and by enabling spin changing transitions. Nonetheless, the
inability to deal with resonances remains a problem and does not, for the ADAS Project purposes, lift the method
sufficiently above Born. So ADAS looks to close-coupling methods for its higher precision cross-sections. The
R-matrix method stands out because of its handling of resonances and its great efficiency in obtaining results at
the very many energies required to delimit them. For heavy species and their range of ions, three effects matter.
Moving to higher charge state, the relativistic terms in the Hamiltonian become more important and there is a shift to
intermediate coupling. This effect is significant for precise fine structure wavelengths before it significantly changes
fine-structure components cross-sections from their statistical proportions, the latter coming into play by z 18. Then
two variants (RM-II and RM-ICFT) become relevant, the former being the complete intermediate-coupling model
(within the Breit-Pauli formulation) and the latter an efficient approximation. The fully relativistic, that is Dirac/Breit
approach is necessary for z;50 provided by the DARC variant. For near-neutral charge states, the so-called flux loss
to the continuum matters and the pseudostate methods RMPS, DRMPS and CCC come into play. DRMPS supports
collisions with low charge states of very heavy species where the core is relativistic.

5.1 Global extensions to baseline data

The COWAN atomic structure code has proved very satisfactory for the ADAS heavy element baseline and has al-
lowed easy engagement with many other specialised researchers on atomic structure and transition probabilities who
use COWAN as a support vehicle. COWAN is however in an essentially frozen non-developmental state and has
only the limited plane-wave-Born (PWB) extension into the collisional domain. In other aspects of ADAS, especially
dielectronic recombination, ADAS uses the AUTOSTRUCTURE code. AUTOSTRUCTURE remains a developing
code and has much stronger connection with the collisional domain. AUTOSTRUCTURE and CIV3 in Europe and the
USA are probably the most preferred routes into R-matrix cross-section calculations. R-matrix alone can ultimately
provide the collision cross-section precision to which ADAS aspires. In this section, exploitation of AUTOSTRUC-

69

TURE for global improvement of atomic structure and cross-section data is the main objective. Progess in specific
targetting of key heavy elemnt ions is deferred to the subsequent section. In addressing theoretical atomic structure, it
is universally recognised that, ab initio, spectroscopic precision of predicted transition wavelengths is not obtainable.
It is this issue which inhibits the direct use of ADAS theoretical data in spectral wavelength analysis. The complexity,
specificity and time consuming character of theoretical to experimental wavelength matching has not as yet been han-
dled by a global expert system. In this section, consideration is given to some small steps in this direction. Although
these considerations are global, that is usable for any element, to maintain the relevance of the central ADAS database
to fusion and astrophysical applications, actual data tabulations in ADAS data formats are restricted to subsets of ele-
ments, which are called the light, medium, and heavy element sets as follow:

Light element set: Hydrogen - Zinc, inclusive.

Medium element set: Krypton, Molybdenum, Silver, Tin, Xenon, Cesium, Barium, Lanthanum, Neodymium,

Gadolinium, Ytterbium.

Heavy element: Hafnium, Tantalum, Tungsten, Rhenium, Platinum, Gold, Lead, Radon.

These sets may be modified and/or extended according to changing relevance and need.

5.1.1 Ionisation potentials

For ionisation potentials, ADAS recognises the tabulations of the National Institute of Standards and Technology
(NIST) Atomic Spectra Database ! as its primary source for spectroscopic precision energy level data. Unadjusted
theoretical atomic structure codes cannot match the precision of assessed NIST data. ADAS ionisation potentials are
archived in ADAS data format adf00. Historically these datasets held simply the ionisation potentials of each ion, that
is from the ground level (not term) of one ion to the ground level of the next higher ion, along with the full configura-
tion specification of the ground level as a simple list against ion charge. It is convenient for other purposes now to add
the outer quantum numbers (multiplicity, total L and total J). Thus for example in the tungsten data set w.dat the line
of entry for W*!! in the data set appears as:

11 2.31602473d+02 152 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f13 552 5p2 (4)3(3.5)

comprising ion charge, ionisation potential, full configuration and outer qauntum numbers. Concerning previous
versions of adf00 datasets, the default data in adf00 were taken from Carlson et al (1970) [?]. These data for light
elements from hydrogen to neon and for selected other species have included for some years revisions from NIST. In
particular the neutral and singly ionised stages of most elements were revised using NIST data in 2006. Then, NIST
where available, was incorporated for the ions of elements aluminium, argon, calcium, chlorine, cobalt, chromium,
copper, gallium, germanium, krypton, manganese, sodium, nickel, phosporus, scandium, sulphur, selenium, titanium,
vanadium and zinc in 2011, from the work of Foster. It has been convenient for the present work to extend the NIST
substitutions for all elements up to radon. In cases where NIST data on the ionisation potential are missing, the Carlson
values are used. Where NIST does not specify the quantum numbers of the ground level, default (high Z) values are
taken from adf00_extension_ground_level_list.dat which resides in the adf00 directory. The comment section at the end
of an element adf00 dataset records the gaps and fill-in in a truth table and so is more informative than the previous
updates (see appendix A for more details).

This updating of adf00 will now be repeated periodically, perhaps every few years, as further NIST spectral asses-
ments are completed. ADAS updating by hand is not feasible for the complete set of elements up to radon, so the
procedure has been automated. The procedures are not appropriate for interactive ADAS, nor are they likely to be of
interest to the general ADAS user. The procedures fit suitably into ‘OFFLINE-ADAS’ and are stored there. Access
will normally be permitted only for collaborators in central ADAS update, but for completeness, they are described
here. The ADAS/ NIST ionisation potential upgrade capability is implemented as PERL scripts in
/homejadas/offline_adasjadas 1#1/scripts

Two scripts provide the required functionality. The first of these is concerned with acquisition of NIST data from the
internet. Besides the immediate need for ionisation potentials, in the next section NIST data will again be required for
more substantial energy level upgrading of adf04 datasets. NIST energy level data is subject to frequent revision, so it
is appropriate for ADAS to take a snapshot of required NIST data which is archived locally. This snapshot provides the
NIST source up until completion of the next ADAS release, whereupon a fresh snapshot can be taken. The snapshot
is held by element and coupling, that is level (ic) or term (Is), in non-public ADAS space as

Uhttp://physics.nist.gov/PhysRefData/ASD/levels_form.html

70

lonisation potentials - Krypton

2E ' ' ' ' ' ' E
x 15— ° —E
o F E
o = =
s E ° ® =
o =) ® =
S OF®0006000--000000000, o~ - - %0 ---" - o
kel o b o ® 3
s E 3
gk .
2E L L L L L L E
0 5 10 15 20 25 30 35
lon charge

Figure 5.3: Comparison of revised and old krypton ionisation potential data. For ionisation stages Kr’ to Kr*®, the
old data already included NIST revisions. For ionisation stages Kr*'” to Kr*'¢, there are no NIST data.For ionisation
stages Kr*!7 to Kr*3, the old data already included NIST revisions. There are some modest changes in the NIST data
since these earlier revisions.

/homejadas/nist_energy_level tables/<element>/<coupling>#<ion>.dat.
The page for each ion is a cleaned simple ascii facsimile of the original NIST data. Subsequent action on this archive
extracts the ionisation potentials and ground level quantum numbers for the base adf00 element datasets. The scripts
implementing these steps are
nist_get_data.pl procures the NIST energy level data for an element from the internet, organises it for
ADAS and archives it. A control parameter coupling taking values Is or ic determines
if the extracted data is of term list or level list type (see section 5.1.2 for further
discussion).The associated dataset names are Is#<ion>.dat and ic#<ion>.dat with
with a arbitrary postfix such as Is#<ion>_hps.dat if required for distinguishing.
Usually both Is and ic forms are produced at the same time. It is the level list form
which is required for base adf00 form production.
process_nist_to_adf00.pl processes required NIST ic data for the ions of an element from the ADAS archive,
obtains necessary fill-in information, prepares a complete adf00 dataset in the revised
format and files it in the ADAS database.
Typical calls, carried out by an updating person <uid> are

nist_get_data.pl ——nistroot=/homejadas/nist_energy_level_tables/ ——userpostfix=<uid> ——coupling=ic
——element=tungsten

nist_get_data.pl ——nistroot=/home/adas/nist_energy_level_tables/ ——userpostfix=<uid> ——coupling=Is
——element=tungsten

process_nist_to_adf00.pl ——nistroot=/homejadas/nist_energy level_tables/ ——userpostfix=<uid>

——element=tungsten
The revision, after verification, would be copied into central ADAS for general use and issued at a subsequent ADAS
release. The PERL scripts require some tuning for a specific user’s local Unix environment, firewalls etc. (see ap-
pendix D).

5.1.2 Atomic structure and energy levels

Although, as discussed earlier, ADAS recognises NIST as its primary source for spectroscopic precision energy level
data, there are some problems. NIST energy level data are not complete and therefore cannot be mapped simply,
one-to-one, as corrections, onto those from purely theoretical sources. Both NIST and the theoretical codes do not in

71

Figure 5.4: Analyis and comparison stages in adf04 dataset merging.

general give complete quantum number specifications of their levels. Also, configuration interaction and breakdown
of coupling schemes mean that most of the quantum numbers used are not exact. Cross-matching of energy levels
between NIST and theoretical codes and indeed between various theoretical calculations themselves, especially in the
complex systems of the present work, is fraught. Recently the capabilities of the AUTOSTRUCTURE code have been
extended to include production of plane-wave Born (PWB) and distorted wave (DW) collision cross-sections, and to
work with kappa-averaged orbitals in the semi-relativisitic regime. These items, coupled with AUTOSTRUCTURE’s
close linkage/interfacing to ADAS and the ADAS data formats make a powerful addition to the tools for lifting the
heavy element baseline. The collisional aspects will be discussed in the next sub-section. Here the point of note is
that AUTOSTRUCTURE is the key code whose energy level outputs are to be aligned with NIST data and with other
codes, especially COWAN. A programme of work has been initiated to that end. ADAS uses the data format adf04 for
energy level and transition data. As a first step towards energy level cross-matching between NIST, AUTOSTRUC-
TURE and COWAN, it is helpful to obtain the NIST energies for an ion in adf04 format. A further script provides this
functionality:
process_nist_to_adf04.pl processes the required NIST data for the ions of an element from the ADAS/NIST
archive, prepares an adf04 dataset for each ion and files it in the ADAS database.
The control parameter coupling is again present and the generated adf04 data sets are
of the form Is#<ion>.dat and ic#<ion>.dat. The processing is done by element.
Note that the NIST adf04 datsets contain no collisional rate coefficient datalines and
so cannot support a population calculation.
Typical calls, carried out by an updating person <uid> are

process_nist_to_adf04.pl ——nistroot=/home/hps/nist_energy_level_tables/ ——coupling=ic
——userpostfix=hps —element=chlorine
process_nist_to_adfO04.pl ——nistroot=/home/hps/nist_energy_level_tables/ ——coupling=ls

——userpostfix=hps —element=chlorine

By default, the data are stored in the directory /home/<uid>/adas_dev/adas/adfO4/nist#<nuclear charge>/. A number
of difficulties may arise due to incompleteness of the original NIST data or because of the coupling schemes used
for quantum number allocation in NIST. The latter problem is typified by the Ne-like ions, for which NIST may use
(j.j) coupling assignments. ADAS adf04 datasets, presently available in the database, and their access codes such as
xxdata_04.for in FORTRAN, assume LSJ assignments. The process_nist_to_adf04.pl script in ic operation on encoun-
tering a (j,j) coupled level assigns blanks for the 25+ and L in the adf04 dataset. In the Is case, there are only terms
and no J, so a (j,j) coupled term would result in no entry for that term in the /s adf04 dataset. A remedial action is
required which can be simply a by hand’ editing of the adf04 datasets, but more global semi-automatic action takes
us to a new sophisticated merge_nist_adas_adf04.pl script and the Fortran codes associated with it. The process of
merging NIST energy level data from a NIST adf04 ic dataset with a comprehensive theoretical adf04 calculation for
the same ion, if successful, in principle identifies the LS quantal assignments.

The scripted package merge_nist_adas_adf04.pl has been set up to analyse, compare and attempt to merge adf04
datasets. This package serves a number of purposes in ADAS. Here, its use is only directed at the energy level lists
of adf04 datasets and not at the comparison and merging of transition lines. Pairwise comparisons of NIST/ AU-
TOSTRUCTURE, NIST/ COWAN and AUTOSTRUCTURE/ COWAN are of interest. As indicated in the schematic
of figure 5.4, comparison is done progressively for parents, orbitals, configurations and levels. The first two, which
are linked to structure code constructs, are not fully supported by NIST adf04 datasets. It is the configuration and level
matching steps which are of principal concern and both are more difficult and subject to more substantial doubt in the
NIST/ AUTOSTRUCTURE and NIST/ COWAN conparisons than in the AUTOSTRUCTURE/ COWAN case. It is
necessary to take advantage of the completeness of the theoretical calculations and their symmetry ordered level en-
ergies and configuration averaged energy centroids to identify gaps in the NIST data and their approximate locations.
Then no-crossing rule assumptions may be made within a J — 7 symmetry for matching. These strategies are built
into the key FORTRAN subroutines g5cmch.for and g5Imch.for using information from g5alyz.for (see figure 5.4). A
downward progression from high to low J assists in the level assignments to terms and configurations. A last strategy
is the ordering of terms of partially filled shells, which again can come from the theoretical structure calculations of
parents, grandparents and so on. One of the outputs from the package is a text file summarising the analysis and
matching. It is important that this output be reviewed before confidence is placed on the matching. Focussing now on

72

NIST in comparison with AUTOSTRUCTURE calculations, with successful matching, the ADAS strategy is for NIST
energy level substitution to form a new composite adf04 dataset which adopts the radiative and collisional transition
data from the AUTOSTRUCTURE adf04 dataset, but with energy level precision improvements from NIST. Details
of the AUTOSTRUCTURE collisional rate advances from the ADAS baseline follows in the next sub-section. The
concern here is the energy level structure. A typical call, carried out by an updating person <uid> is
process_merge nist_adf04.pl ——nistroot=/home/hpsjadas_dev ——adasroot=/home<uid>/adas_dev
——source=autos ——collision_type=pwb ——coupling=ic
——userdircode=cophps ——ion=cl7
This example of the neon-like ion CI*7 is informative and may be usefully compared with the neighbouring iso-
electronic sequence member S*0. The top of the information text file, placed in the user’s /adas/pass directory in and
called merge_nist_adf04 _cl7.txt, commences with a summary of the names and the presence or otherwise of the var-
ious sectional contents of the two adf04 datasets. Then the parents, from the top line of the adf04 datsets are compared.

filel: /home/hps/adas_dev/adas/adf04/nist#17/ic#cl7.dat
file2: /home/hps/adas_dev/adas/adf04/cophps#ne/pwb/ic#cl7.dat

llpref: T
ltpref: F

adf type: 3 3
no.of parents: 1 1
no.of levels: 16 89
no.of temps: 0 14
no.of trans: 0 3785

parents set:
frac prntge set:
orbitals set:
e-trans present:
p-trans present:
r-trans present:
h-trans present:
i-trans present:
s-trans present:
1-trans present:

oo

File 1 - file 2 parent cross-matching

Master Parent Filel Energy (cm-1) File2 Energy
index config. index index Deficit
1 (1s) 1 2809100.0 1 -180.0

The next section is a comparison of the configurations present. Note the configurations are given in Eissner nota-
tion for compactness. The NIST data set in fact has very few levels, such that in no case are all the expected levels of a
configuration present. On the other hand the theoretical dataset is complete in all configurations. Thus, although there
should be an energy deficit from the NIST dataset for every configuration, apart from the ground level, the script can
not assess a mean shift of any of the configurations between the first and and the second data sets. So the shift is set
to zero and a warning is given that net configuration shifts for matching cannot be done. Only an average level shift
is possible from matched levels and this is noted in a further warning. Note that the '# symbol indicates where one
dataset includes a configuration but the other does not.

73

File 1 - file 2 configuration cross-matching

Master Eissner Energy (cm-1) Level Filel File2 Energy level ct.
index config. count index index deficit deficit
1 521522563 0.0 1 1 1 0.0 0
2 521522553514 1696905.0 2 2 2 0.0 -2
3 521522553516 1996720.0 3 3 4 0.0 -9
4 521522553517 2248100.0 2 4 5 0.0 -2
5 521522553519 2362685.0 2 5 8 0.0 -10
6 521512563515 2386675.0 2 6 10 0.0 -2

7 52152255351D 2541556.4 3 7 #

8 52152255351E 2553249.0 1 8 #

9 521522553515 1835442.8 10 # 3 0.0 -10
10 521512563514 2272597.3 2 # 6 0.0 -2
11 521522553518 2311936.6 10 # 7 0.0 -10
12 52152255351A 2391600.4 12 # 9 0.0 -12
13 521512563516 2570045.0 4 # 11 0.0 -4
14 521512563517 2825861.7 2 # 12 0.0 -2
15 521512563518 2872502.2 4 # 13 0.0 -4
16 521512563519 2933019.1 4 # 14 0.0 -4
17 52151256351A 2952099.2 4 # 15 0.0 -4

Level count deficit between dataset 1 and dataset2 from configuration list =-21
No configuration shift applied to levels

Mean level shift = -14527.7 applied to non-NIST levels

Contrast this with the corresponding table for Ar*® shown below, where there are matching complete configurations
between NIST and the theoretical dataset. From these matched configurations, a mean shift is evaluated which is

applied to those PWB configurations not present in NIST and to those configurations where NIST is incomplete.
File 1 - file 2 configuration cross-matching

Master Eissner Energy (cm-1) Level Filel File2 Energy level ct.
index config. count index index deficit deficit
1 521522563 0.0 1 1 1 0.0 0
2 521522553514 2036018.7 4 2 2 -15317.0 0
3 521522553515 2181173.2 10 3 3 -15845.5 0
4 521522553516 2371317.8 12 4 4 -18736.3 0
5 521512563514 2627280.3 2 5 5 -45054.3 0
6 521522553517 2707355.8 3 6 6 -22812.7 -1
7 521522553518 2763770.5 6 7 7 -22812.7 -4
8 521512563515 2788737.7 3 8 8 -22812.7 -1
9 521522553519 2833622.9 12 9 9 -19110.4 0
10 52152255351A 2854523.6 9 10 10 -22812.7 -3

11 52152255351B 29817060.3 4 11 #
12 521512563516 2992998.0 1 12 11 -22812.7 -3
13 52152255351C 3018343.7 3 13 #
14 52152255351D 3042472.1 10 14 #
15 52152255351E 3057371.0 9 15 #
16 521512563517 3340440.9 2 # 12 -22812.7 -2
17 521512563518 3393617.8 4 # 13 -22812.7 -4
18 521512563519 3462048.9 4 # 14 -22812.7 -4
19 52151256351A 3485341.8 4 # 15 -22812.7 -4

Level count deficit between dataset 1 and dataset2 from configuration list = 14

Mean configuration shift applied to levels

Finally the level match is made as shown below. The 25+/ and L quantum numbers for the NIST levels (up to 12)
come from the AUTOSTRUCTURE dataset. Levels 13 and 14 in NIST are (j,j) coupled but are from a comfiguration
not included in the AUTOSTRUCTURE case. Levels 15 and 16 in NIST are given as ic coupled but again the config-
uration is not included in the AUTOSTRUCTURE case. Remaining levels are in the AUTOSTRUCTURE dataset, but
not in NIST. Their energy levels have the mean level shift applied.

74

File 1 - file 2 level cross-matching

Master Level Eissner Filel Energy (cm-1) File2 Energy

index 2S+1 L J config. index index Deficit
1 1 0 0.0 521522563 1 0.0 1 0.0
2 3 1 1.0 521522553514 2 1689450.0 3 -14394.3
3 1 1 1.0 521522553514 3 1704360.0 5 -15315.7
4 3 1 1.0 521522553516 4 1972396.0 17 -16801.2
5 3 2 1.0 521522553516 5 19970460.0 23 -18202.2
6 1 1 1.0 521522553516 6 2020730.0 27 -24030.2
7 3 1 1.0 521522553517 7 2242000.0 29 -17254.7
8 1 1 1.0 521522553517 8 2254200.0 32 -17327.5
9 3 1 1.0 521522553519 9 2356820.0 45 -6723.1
10 3 2 1.0 521522553519 10 2368550.0 51 -6556.4
11 3 1 1.0 521512563515 11 2371580.0 65 -27740.5
12 1 1 1.0 521512563515 12 2401770.0 71 -9986.2
13 1.0 52152255351D 13 2521750.0 # 0.0
14 1.0 52152255351D 14 2534080.0 # 0.0
15 1 4 4.0 52152255351E 15 2553249.0 # 0.0
16 1 3 3.0 52152255351D 16 2553249.0 # 0.0
17 3 1 2.0 521522553514 # 1683554.8 2

18 3 1 0.0 521522553514 # 1696589.2 4

19 3 0 1.0 521522553515 # 1790799.7 6

20 3 2 3.0 521522553515 # 1810966.2 7

21 3 2 2.0 521522553515 # 1812386.4 8

22 3 2 1.0 521522553515 # 1816952.7 9

23 3 1 2.0 521522553515 # 1822509.6 10

24 1 1 1.0 521522553515 # 1827019.3 11

25 3 1 0.0 521522553515 # 1830135.6 12

26 1 2 2.0 521522553515 # 1831326.7 13

27 3 1 1.0 521522553515 # 1832541.4 14

28 1 0 0.0 521522553515 # 1912993.4 15

29 3 1 0.0 521522553516 # 1973012.5 16

91 3 3 3.0 52151256351A # 2937499.2 87

92 3 3 4.0 52151256351A # 2937536.0 88

93 1 3 3.0 52151256351A # 2937756.5 89

Level count deficit between dataset 1 and dataset 2 from level list = 4

Config. level count deficit mismatch with actual level count deficit

The script also produces the final merged adf04 dataset, with ordered energy levels, following NIST when avail-
able or with the adjusted theoretical energies otherwise. The transition data comes from the theoretical dataset. Levels
present in NIST but not present in the theroretical dataset are omitted. The dataset is written to the user’s /adas/pass
directory as merge_nist_adf04_cl7.dat for inspection and archiving if acceptable.

Returning to the issue of the adf00 datasets of the section 5.1.1, there are two more complex variants of the base adf00
data class. These are designed to support generalised collisional radiative (GCR) studies. They contain ionisation
potentials and quantum number assignments of both ground and metastable states of ions. They occur in both Is and ic
variants with dataset names of the form <elem. symb.>_Is.dat and <elem. symb.>_Is.dat. With the NIST adf04 archive
available with ic quantum numbers given, two scripts can prepare these additional adf00 datasets as follow:
make_nist_ic_adf00.pl
make_nist_ls_adf00.pl
Typical calls, carried out by an updating person <uid> are

make_nist_ic_adf00.pl ——nistroot=/home/<uid>/adas_dev/adas/ ——userpostfix=<uid>
——element=chlorine
make_nist_ls_adf00.pl ——nistroot=/home/<uid>/adas_dev/adas/ ——userpostfix=<uid>

——element=chlorine

The above scripts operate on NIST adf04 datasets and cannot go correctly to completion if any one of these datasets
does not include the required metastables and/or their quantum numbers. This may be the case especially for low
charged members of the neon-like and argon-like sequences. Such NIST adf04 datasets in central ADAS have been
modified sufficiently to provide this completeness as far as argon, using the information from the merge’ analysis
above. Without these modifications, the script and adf00 dataset production will occur, but the number of identified
metastables, for example for the neon-like ionisation stage, could be incomplete. It is important therefore to inter-
pret the information correctly in /s and ic resolved adf00 datasets. Consider the unmodified /s dataset for argon
below

75

argon -18 2 2 4 3 4 2 2 1 2 2 4 3 4 2 2 1 2 1/uf=0.00001/

0 1.58187697d+01 1s2 2s2 2p6 3s2 3p6 C DOC 0.0
1 0.00000000d+00 1s2 2s2 2p6 3s2 3p6 C DOC 6.0)

1 2.76380961d+01 1s2 2s2 2p6 3s2 3p5 2)1C 2.5
1 0.00000000d+00 1s2 2s2 2p6 3s2 3pS (2)1C 2.5
2 1.63656692d+01 1s2 2s2 2p6 3s2 3p4 3dl C42C 9.5

2 4.06674166d+01 1s2 2s2 2p6 3s2 3p4 C3DIC 4.0)
1 0.00000000d+00 1s2 2s2 2p6 3s2 3p4 (3)1C 4.0)
2 1.66942360d+00 1s2 2s2 2p6 3s2 3p4 D2C 2.0)
3 4.05682479d+00 1s2 2s2 2p6 3s2 3p4 C DOC 6.0)

3 5.97531254d+01 1s2 2s2 2p6 3s2 3p3 COC 1.5
1 0.00000000d+00 1s2 2s2 2p6 3s2 3p3 C40C 1.5
2 2.62450980d+00 1s2 2s2 2p6 3s2 3p3 2)2¢ 4.5
3 4.33611158d+00 1s2 2s2 2p6 3s2 3p3 2)1C 2.5

4 7.48555059d+01 1s2 2s2 2p6 3s2 3p2 (3)1C 4.0
1 0.00000000d+00 1s2 2s2 2p6 3s2 3p2 C3D1IC 4.0
2 1.84949204d+00 1s2 2s2 2p6 3s2 3p2 CD2C 2.0)
3 4.52925416d+00 1s2 2s2 2p6 3s2 3p2 C DOC 6.0)
4 1.02566544d+01 1s2 2s2 2p6 3sl 3p3 C50C 2.0)

16 4.12066549d+03 1s2 C DOC 6.0)
1 0.00000000d+00 1s2 C DOC 6.0)
2 3.10414847d+03 1s1 2sl (3)0C 1.0

17 4.42622267d+03 1sl C2)0C 0.5
1 0.00000000d+00 1s1 (2)0C 0.5

€ m o o

c

¢ New updated adf®0® 1ls format dataset with current NIST values.

c Replaces earlier dataset of same name.

c

c Sources: /home/hps/adas_dev/adas/adf04/nist#18/ 1s and ic forms

c /home/hps/adas_dev/adas/adf00/ base form

c Code: make_nist_ls_adf00.pl

¢ Producer: hps

c Date: 03-Sep-2012

c

c Expected metastables are not satisfied by NIST adf04 datasets for ionisation stages:

c Ion charge Deficit

c 0 1

c 2 1

c

The top line (lines if there are more than 18 ionisation stages) vector following the (signed) nuclear charge gives
the expected number of metastables for each ionisation stage. This is according to the ADAS GCR prescriptions as
given by the IDL proecedure metastable.pro and the PERL function metastable.pm. The actual metastables present,
that is found in the NIST adf04 datasets, are indexed in the body of the dataset. In the comments section of the dataset,
an advisory message gives the deficient ionisation stages, if any, and the deficit. A further point to note is the wf= entry
on the top line of resolved adf00 datasets. The zero energy reference point is the lowest level of the neutral ionisation
stage of an atom. In the base adf00 datasets, the ionisation energy of the neutral atom is with respect to this energy and
is to the lowest level of the singly ionised atom. By contrast, in the Is resolved adf00 dataset, the ionisation energy of
the neutral is from the lowest term (not level) of the neutral to the lowest term of the singly ionised stage. Consistent
energetics means that there is a *work function’ to deliver the neutral ground term atom to the plasma. This is the
wf= entry and is non-zeo for Is type adf00 datasets. Full description of the extended format metastable resolved adf00
datasets are given in appendix A.1.

5.1.3 Collision cross-sections

The AUTOSTRUCTURE code of Badnell, one of the key fundamental codes underpinning ADAS, now has a capabil-
ity for electron impact excitation cross-section calculation within the plane-wave-Born (pwb) and distorted wave (dw)
approximations. This is an important development. AUTOSTRUCTURE has long been familiar to ADAS users as the
source of the very extensive adf09 database of state-resolved dielectronic recombination data. Less familar may be the
matching radiative recombination coefficients (adf48), photo-excitation data (adf38) and photoionisation data (adf39).
AUTOSTRUCTURE is also one of the preferred structure codes which front-end R-matrix calculations. With the new
collisional extensions, AUTOSTRUCTURE covers the capabilities of the COWAN code for the ADAS adf04 baseline
(pwb), but takes ADAS forward into more refined collisional cross-section data in a manner fully consistent with much
other data in ADAS. It is this exploitation of AUTOSTRUCTURE for ADAS as a global ’lift’ of the database which
is followed through here. As in the previous subsections 5.1.1 and 5.1.2, the machinery is operated through scripts

76

which, in this case, reside in the offline ADAS package /home/adas/offline_adasjadas7#3/.

ADAS already has some precedents for mass data production using AUTOSTRUCTURE. The data format adf27 is
used to archive driver input datasets for AUTOSTRUCTURE runs with subdirectories /dr, /rr. /pe and /pi for dielec-
tronic recombination, radiative recombination, photoexcitation and photoionisation. Nested sub-directories within
these categories are firstly by iso-electronic sequence and then usually by producer/year number as, for example
Jadf27/dr/nelike/nrbO0#ne with final individual driver dataset named by ion, coupling (and possibly other parameters)
such as mo32ic23-3.dat. For this new development,additional sub-directory categories /dw, pwb and dw_bbgp are
introduced, for the three methods (dw, pwb and dw_bbgp) of concern here, with a similar pattern of further nested
sub-directories. Thus the dataset ~/adf27/dw/silike/cophps#sific#culS.dat is the driver for an AUTOSTRUCTURE dis-
torted wave calculation for Cu*!® in intermediate coupling (ic) approximation. It is helpful for large scale production
to execute similar calculations for all members of an isoelectronic sequence, so that continuity of behaviour with ion
charge, z, can be verified and exploited interpolatively. It is convenient to store template drivers for each sequence
in the same lowest level directory as the final drivers for the sequence. In the above silicon-like case, these are tem-
plate_ls and template_ic as shown below. The templates are prepared by hand editing following the presciptions of
the AUTOSTRUCTURE online guides. Note the fields delimited by <> brackets. These fields are substituted by
actual parameters to obtain the fully specified driver dataset. In the case of the dw templates shown, the results of
the AUTOSTRUCTURE pwb runs final adf04 datasets are required in advance, from which certain of the parameter
fields are extracted. Attention is drawn to the NMETA and NMETAJ parameters in the s and ic templates respectively.
These specify the highest term (level) up to which collisonal data are generated. This information is not known a
priori before a structure run. An initial AUTOSTRUCTURE pwb run is made with these values set to 1 for a single
ion. Inspection of the output adf04 datasets shows the total number of terms (levels) which may be substituted in the
templates. These values apply to all members of the isoelectronic sequence.

A.S. Si-like <ion> structure - energies + radiative rates + dw adf®4 type 5
&SALGEB RUN="DE’ CUP='LSR’ KCOR1=1 KCOR2=1 NMETA=325 MXCONF=18 MXVORB=9 &END
20 21 30 3 32 40 41 42 43

2 0 0

[¥]

1
2
1
1
1
1
1
3
2
2
2
2
2
1
4
3
2
3

NNNNNMNNNNNNNNNDNN
(%2) e I W) Be) Be) Mo B e) W) Mo) B o) B) I« Mo Mo) o)}
N@@@R KRR kREERERNNNNDN
D@ NFHRINOLHOR —
oo~

oo

(== — I — R — R = R I = =N = N]

(== = N — = = R = — - — I = =~ =]

2 5 2 2 1 0
&SMINIM NZION=<iz@> ORTHOG='NO’ JPRINT=-33 MAXE=<maxe> &END
&SRADCON MENG=-14 EMIN=<emin> EMAX=<emax> NDE=3 MENGI=-1 &END

<ndelist>

77

A.S. Si-like <ion> structure - energies + radiative rates + dw adf®4 type 5
&SALGEB RUN="DE’ CUP="ICR’ KCOR1=1 KCOR2=1 NMETAJ=725 MXCONF=18 MXVORB=9 &END
20 21 360 31 32 40 41 42 43

2 6 2 2 0 0 0 0 0
2 6 2 1 1 0 0 0 0
2 6 2 1 0 1 0 0 0
2 6 2 1 0 0 1 0 0
2 6 2 1 0 0 0 1 0
2 6 2 1 0 0 0 0 1
2 6 1 3 0 0 0 0 0
2 6 1 2 1 0 0 0 0
2 6 1 2 0 1 0 0 0
2 6 1 2 0 0 1 0 0
2 6 1 2 0 0 0 1 0
2 6 1 2 0 0 0 0 1
2 6 1 1 2 0 0 0 0
2 6 0 4 0 0 0 0 0
2 6 0 3 1 0 0 0 0
2 6 0 2 2 0 0 0 0
2 5 2 3 0 0 0 0 0
2 5 2 2 1 0 0 0 0

&SMINIM NZION=<iz@> ORTHOG='NO’ JPRINT=-33 MAXE=<maxe> &END
&SRADCON MENG=-14 EMIN=<emin> EMAX=<emax> NDE=4 MENGI=-1 &END
<ndelist>

Output datasets for AUTOSTRUCTURE require further processing, for example to convert cross-sections to rate
coefficients. From the ADAS point-of-view, the final deliverables are fully specified adf04 datasets. In this case,
the sub-directory structure is simpler than for adf27. The producer/year number sub-directory name appears first
then below that lie the same sub-directory categories /dw, /pwb and /dw_bbgp as for the adf27 drivers as for example
/homejadas/adasfadf04/cophps#al/pwb for the aluminium-like sequence. The actual datasets then follow. The ADAS
adf04 dataset with which the typical user is familiar is properly called adf04 type 3. There are other types, namely
1, 3, 4, 5 and 6. which hold different kinds of collisional data. An AUTOSTRUCTURE run of pwb, dw or dw_bbgp
method produces different adf04 types. Thus pwb produces type 1 (containing collisions strengths as a function of
final energy) and type 3 (the normal rate parameter type). dw produces type 5 (containing collision strengths as a func-
tion of initial energy) and type 3. dw_bbgp produces type 6 (partial wave collision strengths a function of /). Normal
ADAS notation is to postfix the type to the dataset name for types 1, 4, 5 and 6 and to omit it for type 3. So final type
3 data sets such as ic#sil.dat, Is#sil.dat, ic#sil t1.dat and Is#sil _t1.dat result for the aluminium like ion Si*! in an
AUTOSTRUCTURE pwb calculation.

Turning to the actual processing, relevant PERL scripts are in the /home/adas/offline_adas/adas7#3/scripts sub-directory
as follow:

setup_isoseq_pwb_adf27.pl prepares fully specified pwb drivers from template.
setup_isoseq_dw_adf27.pl prepares fully specified dw drivers from template.
setup_isoseq_dw_bbgp_adf27.pl prepares fully specified pdw_bbgp drivers from template.
process_ion_pwb_adf27 to_adf04.pl perform AUTOSTRUCTURE pwb run for an ion using its driver.
process_ion_dw_adf27 to_adf04.pl perform AUTOSTRUCTURE dw run for an ion using its driver.
process_ion_dw_bbgp_adf27 to_adfo4.pl perform AUTOSTRUCTURE dw_bbgp run for an ion using its driver.
adas7#3 _pwb_llbatch.pl run AUTOSTRUCTURE pwb distributed batch processing for

all the ions of an isoelectronic sequence.
adas7#3_dw_llbatch.pl run AUTOSTRUCTURE dw distributed batch processing for

all the ions of an isoelectronic sequence.
adas7#3 _dw_bbgp _llbatch.pl run AUTOSTRUCTURE dw_bbgp distributed batch processing for

all the ions of an isoelectronic sequence.

A description of each script and how to use it is given in comment text at the head of the script. An AUTOSTRUC-
TURE adf04 calculation for a multi-electron ion, dependent on the actual configurations included, can be quite
large and time-consuming. For example, a phosphorus-like ion could take a week on a typical machine. It is
appropriate therefore to distribute the processing for the members of an iso-electronic sequence over many ma-
chines. LOADLEVELLER provides this capability on the JAC Linux workstations at the EFDA-JET Facility. The
last set of three scripts set up and launch these jobs in parallel. LOADLEVELLER notifies by email message
when each ion of the sequence completes and routes the adf04 output datasets to the ADAS database. A summary
(adas7#3_<method> _llbatch_<ion>.out) and error information (adas7#3_<method>_llbatch_<ion>.err) is sent to the
user’s /pass directory, . It is important to check that the .err file is empty. The AUTOSTRUCTURE code produces
very extensive information (the so-called .olg file), including advice on re-dimensioning if insufficient space has been

78

allocated for the calculation, but in distributed batch processing, this is lost. A typical series of command line calls
might then be
setup_isoseq_pwb_adf27.pl ——adasroot=/home/hpsjadas_dev ——userdircode=cophps ——isoseq=al
——element_category=light
to set up the individual adf27 drivers for pwb, followed by
process_ion_pwb_adf27 to_adf04.pl ——adasroot=/home/hpsjadas_dev ——userdircode=cophps ——isoseq=al
——ion=s3
for the single aluminium-like ion S*3, so obtaining the total level counts NMETA and NMETAJ from the output datasets
/home/hpsjadas_devjadasjadfO4/cophps#aljpwb/ls#s3.dat and
/home/hpsjadas_devjadas/adfO4/cophps#alpwbfic#s3.dat respectively.
These are edited into the aluminium-like adf27 pwb, dw and dw_bbgp templates. Then the commands
setup_isoseq_pwb_adf27.pl ——adasroot=/home/hpsjadas_dev ——userdircode=cophps ——isoseq=al
——element_category=light
adas7#3 _pwb_llbatch.pl ——adasroot=/home/hpsjadas_dev ——userdircode=cophps ——isoseq=al
regenerate the fully specified pwb drivers and set the pwb batch processing going offline. Successful completion then
allows the dw processing as
setup_isoseq_dw_adf27.pl ——adasroot=/home/hpsjadas_dev ——userdircode=cophps ——isoseq=al
——element_category=light
adas7#3_dw_llbatch.pl ——adasroot=/home/hpsjadas_dev ——userdircode=cophps ——isoseq=al
firstly to generate the drivers and then set the batch processing going offline. If required the dw_bbgp commands may
then be executed in the same way. This is our normal mass production procedure. The scripts are tuned to working
with LOADLEVELLER at EFDA-JET. Retuning of the scripts for batch processing on different systems is required.

5.2 Targetted extensions to heavy element baseline data

79

Bibliography

[1] A. Thoma, K. Asmussen, R. Dux, K. Krieger, A. Herrmann, B. Napiontek, R. Neu, J. Steinbrink, M. Weinlich,
U. Wenzel and the ASDEX Upgrade Team. ‘Spectroscopic measurements of tungsten erosion in the ASDEX
Upgrade divertor’. Plasma Phys. Control. Fusion, 39(9) (1997) 1487-1499. doi:10.1088/0741-3335/39/9/
014

[2] J. Spence and H. P. Summers. ‘The recombination and level populations of ions. III. The role of charge exchange
from neutral hydrogen’. J. Phys. B, 19(22) (1986) 3749-3776. doi:10.1088/0022-3700/19/22/018

[3] P.C. Souers. Hydrogen Properties for Fusion Energy. University of California Press (1986). ISBN 0-520-05500-4

[4] H. P. Summers (2007). Atomic Data and Analysis Structure User Manual. Available from: http://www.adas.
ac.uk

[5] H. P. Summers, W. J. Dickson, M. G. O’Mullane, N. R. Badnell, A. D. Whiteford, D. H. Brooks, J. Lang, S. D.
Loch and D. C. Griffin. ‘Ionization state, excited populations and emission of impurities in dynamic finite density
plasmas: 1. The generalized collisional-radiative model for light elements’. Plasma Phys. Control. Fusion, 48(2)
(2006) 263-293. doi:10.1088/0741-3335/48/2/007

80

http://dx.doi.org/10.1088/0741-3335/39/9/014
http://dx.doi.org/10.1088/0741-3335/39/9/014
http://dx.doi.org/10.1088/0022-3700/19/22/018
http://www.adas.ac.uk
http://www.adas.ac.uk
http://dx.doi.org/10.1088/0741-3335/48/2/007

Appendix A

ADAS data formats

A.1 adf00: configurations and ionisation potentials

The basic data sets, of stage-to-stage form provide the ground configurations and ionisation potentials of every ion
of every element up to lead. There is a second category of metastable resolved LS type which include metastable
configurations and excitation energies between metastables as well as ionisation energies.

Data mnemonic:

Data root: [home/adas/adas/adf00/
Last update: Jan 18, 2007

Utilising subroutines: xxdata_00.for

Formatted files to adf00 specification:

Element Members Datasets Quality
<elem. symbol> H -Pb <elem. Symbol>.dat medium/high
<elem. symbol> H-Ne, Ar <elem. Symbol>_Is.dat high

Notes: The format leaves open the opportunity for a intermediate coupling, J-resolved metastable form as <elem.
symb>_ic.dat. GCR modelling in ADAS at this time only extends to LS resolved. The presently extended format
is designed to support the needs of ‘superstaging’. Spread sheet analyses of the metastable definitions and energy
determinations are available and may be provided on request in the /adf00 directory.

81

Data lines (stage to stage form):

Data lines Format
ELEMENT, 1Z0S 1al6,1i5
for I1=0,|IZ0S|-1
if (1Z0S.1t.0) then
1Z, EION(I1+1),CFG(I+1) i2,1f16.8,1a120
else
1Z,CFG(I1+1) i2,1a120
endif
endfor
Variable identification:
Name Meaning Comment
ELEMENT element name
1Z0S signed nuclear charge <0 => data lines include ionisation potential
>0 => data lines do not include ionisation potential)
1Z ion charge
EION() ionisation potential eV
CFG() configuration string note precise formatting with 5 character space

allocation to each shell

Sample 1. /home/adas/adas/adf00/ne.dat

neon -10
.15650000d+01 1s2 2s2 2p6
.09640000d+01 1s2 2s2 2p5
.34600000d+01 1s2 2s2 2p4
.70800000d+01 1s2 2s2 2p3
.26220000d+02 1s2 2s2 2p2
.57930000d+02 1s2 2s2 2pl
.07280000d+02 1s2 2s2
.39100000d+02 1s2 2sl
.19583000d+03 1s2
.36221000d+03 1s1

(=]

O 00N VT i WDN =
R R NNRFRROOOADN

Ionisation potentials : R L Kelly, J. Phys. Chem. Ref. Data,
vol. 16, Suppl. 1, 1987

pdate : Martin O’Mullane
ate : 10-09-2003

g o

82

Data lines (metastable resolved LS form):

Data lines Format
ELEMENT, IZ0S (ICNCTV(k),k=0,|]IZOS|-1) 1al6,1i5,30i3
for I=0,]IZ0S|-1
1Z, EION(I+1),CFG(I+1) i2,3x,116.8,1a120
for IM=1,ICNCTVIZ+1)
IM.EXM(I+1,IM),CFGM(1+1,IM) 2x,i3,116.8,1a120

endfor
endfor
Variable identification:
Name Meaning Comment
ELEMENT element name
1Z0S signed nuclear charge <0 => data lines include ionisation potential
>0 => data lines do not include ionisation potential)
ICNCTV() connection vector number of designated metastables in each ionisation stage
1z ion charge
EION() ionisation potential eV
CFG() configuration string note precise formatting with 5 character space
allocation to each shell
M metastable index
EXMC(,) metast/excit energy relative to lowest metastable (the ground)of the stage (eV).
CFGM(,) configuration string precise formatting with 5 character space allocation to each shell.

Sample 2: /home/adas/adas/adf00/ne_ls.dat

neon -10 2 2 4 3 4 2 2 1 2 1
0 2.15967924d+01 1s2 2s2 2p6
1 0.00000000d+00 1s2 2s2 2p6
1.66470225d+01 1s2 2s2 2p5 3sl
1 4.09699588d+01 1s2 2s2 2p5
0.00000000d+00 1s2 2s2 2p5
2.71747667d+01 1s1 2s2 2p4 3sl
6.33840596d+01 1s2 2s2 2p4
0.00000000d+00 1s2 2s2 2p4
3.16459061d+00 1s2 2s2 2p4
6.87319961d+00 1s2 2s2 2p4
3.83810996d+01 1s2 2s2 2p3 3sl
9.72103044d+01 1s2 2s2 2p3
0.00000000d+00 1s2 2s2 2p3
5.11466800d+00 1s2 2s2 2p3
7
1
0
3
7
1
1
0
1
2

B W N R [N

w N =

.74145333d+00 1s2 2s2 2p3
.26230662d+02 1s2 2s2 2p2
.00000000d+00 1s2 2s2 2p2
.66216556d+00 1s2 2s2 2p2
.83077556d+00 1s2 2s2 2p2
.08614956d+01 1s2 2s1 2p3
.57822833d+02 1s2 2s2 2pl
.00000000d+00 1s2 2s2 2pl
.24081333d+01 1s2 2sl 2p2
.07270600d+02 1s2 2s2

B W N =

[y

83

1 0.000000004+00
2 1.39122533d+01
7 2.39096900d+02
1 0.00000000d+00
8 1.19582200d+03

1 0.00000000d+00
79.0507720d+02

9 1.36219860d+03
1 0.00000000d+00

Excitation energies

Update : Hugh Summers
Date : 05-01-2007

NN NONDONOOONN

1s2
1s2
1s2
1s2
1s2
1s2
1s1
1s1
1s1

Ionisation potentials :

: NIST

2s2
2sl 2pl
2sl
2sl

2s1

NIST

http://physics.nist.gov/

PhysRefData/ASD/levels_form.html

http://physics.nist.gov/

PhysRefData/ASD/levels_form.html

A.2 adf03: recombination, ionisation and power parameters

Files contain sets of parameters of approximations to radiative recombination, dielectronic recombination, collisional
ionisation, total radiated line power and specific line power coefficients for the ions of an element. These are sufficient
to establish the ionisation state of an element in a thermal plasma. For each ion there are five coefficient sub-blocks
and up to three different approximations may be used, namely, case a, case b and case c. For the ionisation part, case
b is subdivided into case ba, case bb, and case bb. Approximations to the different coefficients may be in different

cases in the one data set. The blocks are as follow:

Sub-block Identifier Case Approximation reference
radiative recom. CRRC RRC#A Abels van Maanaen
RRC#B this document: eqn. 3.15
DRC#C this document: eqn. 3.15
dielectronic recom. CDRC DRC#A Summers and Dickson
DRC#B This document: eqn. 3.22
DRC#C This document: sec. 3.2.2
collisional ionis. CCIO CIO#A Abels van Maanaen
CIO#B Summers and Dickson
CIO#BA This document: eqn. 3.5, fig.3.1
CIO#BB This document: eqn. 3.5, fig.3.1
CIO#BC This document: eqn. 3.5, fig.3.1
line radiated power CPLT PLT#A Summers and Dickson
PLT#B Summers and Dickson
PLT#C Summers and Dickson
specific line power CPLS PLS#A Summers and Dickson
PLS#B Summers and Dickson
PLS#C Summers and Dickson

Data mnemonic:

Data root: /home/adas/adas/adf03/

84

Last update: 27 November 2008
Utilising subroutines: adas408.for

Formatted files to adf03 specification:

Element Prefix Library Comments Quality
al,ar,b,be,c,cl,cr,f,fe,h,he,li, vm atompars JET ~ 1985 low

ne,ni,o

ar,c,cl.kr,li,n,ne,s,xe mm atompars JET post 1989 low/medium
b,be.f fe,ni ms atompars JET post 1989 low/medium
ag,ar,kr,sn,w,xe ca,ls,ic baseline heavy species 2009 low/medium/high

Notes: mm and ms use atomatic file preparation from adf04 specific ion files of ss or mm type with the code ADAS407.
vm parameter compilations were prepared at JET in the 1985 period. They have been reformatted to adf03 specifica-

tion and are available for backward reproducibility of early work.

85

Data lines:

Data lines Format
170 ,1ZL ,1ZU ,ISW1 ,ISW2,ISW3 , ADFID 3i5,10x,3i5
for iz=1ZL,IZU
- al0
ZR ,1ZD , 171 ,1ZT ,1ZS 5i5
CRRC , NRRC, ISRRC lal1,i4,i5
(A)NZ , KSI 10x,2i5
(B) NOR , VOR , PHFACR, EDISPR, SCALER 10x,15,4f10.3
CDRC , NDRC, ISDRC lal1,i4,i5
for idrc=1,NDRC
(A)DE,F,G,DN,MS 10x,3f10.3,2i5
(B) ITYPD, NOD, NCUT, VOD , PHFACD, CRFACD 10x,3i5,3f10.3
(B) EPS1J, F1I , EDISPD, SCALED 15x,4£10.3
endfor
CCIO , NCIOS , NCIOR , ISCIO lal1,i4,2i5
for icios=1,NCIOS
(A)P,A,B,C.,Q 10x,4£10.3,i5
(B, BA, BB, BC) ZETA, EION, CI 10x,3f10.3
endfor
for icior=1,NCIOR
(BC) WGHT, ENER, CR 10x,3f10.3
endfor
CPLT, NPLT , ISPLT lall,i4,i5
for iplt=1,NPLT
(A)DE,F,G,DN 10x,4£10.3
(B)DE, F, SPYLT 10x,3f10.3

endfor
CPLS , NPLS , ISPLS , LINFO
for ipls=1,NPLS
(A)DE,F,G,DN
(B)DE, F, SPYLS
endfor
endfor

86

1all1,i4,i5,f10.2

10x,4£10.3
10x,2£10.3

al0

Variable identification:

case (A) variables :

Name Meaning Comment

120 nuclear charge

1IZL lowest included ion

1IZU highest included ion

ISW1 - not used -

ISW2 - not used -

ISW3 - not used -

ADFID ADAS data file type code

IZR recombining ion (rad. recom.)

1ZD recombining ion (diel. recom.)

171 ionising ion (coll. ionis.)

1IZT radiating ion (total line power)

1ZS radiating ion (specific line power)

CRRC radiative recom. code

NRRC - notused -

ISRRC - notused -

CDRC dielectronic recom. code

NDRC number of transitions following

ISDRC - notused -

CCIO collisional ionis. code

NCIOS number of shell values following

NCIOR number of reson. values following

ISCIO - not used -

CPLT total line power code

NPLT number of transitions following

ISPLT - notused -

CPLS specific line power code

NPLS - not used -

ISPLS - not used -

LINFO wavelength of specific line for naming purposes
Name Meaning Comment
NZ lowest accessible shell for rad. recom.
KSI number of electrons in shell
DE transition energy (eV)

F oscillator strength
G Gaunt factor
DN delta n for transition
MS Mertz switch (O=off, 1=0n)
P shell ionisation potential (eV)
* N.B. The outer valence shell must occur first
A Lotz parameter
B Lotz parameter
C Lotz parameter
Q equivalent electrons in shell

87

case (B, BA, BB, BC) variables :

Name

Meaning

Comment

NOR
VOR
PHFACR
EDISPR
SCALER
ITYPD
NOD
NCUT
VOD
PHFACD
CRFACD
EPSIJ
FIJ
EDISPD
SCALED
ZETA
EION

CI
WGHT
ENER
CR
SPYLT
SPYLS

lowest accessible princ. quantum shell for rad. recom.
effective principal quantum number for shell

phase space occupancy availability for shell

energy adjustment in lowest shell rate coefficient (ryd)
multiplier for lowest shell rate coefficient

Type of dielectronic transition

lowest accessible princ. quantum shell for diel. recom.
cut-off princ. quantum shell in general program
effective princ. quantum number for lowest access. shell
phase space occupancy availability for lowest shell
adjustment for Bethe corrections in general program
z-scaled parent transition energy (ryd)

oscillator strength for transition

energy adjustment in Burgess general formula (ryd)
multiplier on Burgess general formula

number of equivalent electrons for shell

ionisation energy for shell (ryd)

multiplier for Burgess-Chidichimo rate for shell
weighting factor for excitation to resonance

excitation energy for transition to resonance (ryd)
multiplier on excitation rate expresssion

multiplier of Van Regemorter P factor in total power
multiplier of Van Regemorter P factor in specific line

88

Sample 1. /home/adas/adas/adf03/atompars/vm#be.dat

PLT#A

CIO#A

PLT#A

CIO#A

PLT#A

CIO#A

PLT#A

=R N

0

9.

(= —]

.0

320

115.00

2

0

.277

7.462

_= N

124.
140.

154

123.
140.

123.

= 2 W

163.
193.

218.

.277

S D =

.939
.864

.200
.000

.859
.963

.959

S =, 2N

191
719

.000

662
382

662

1.360
0.021
2349.30
1.360

0.499
0.096

4.400
4.500

0.507
0.080
3131.50
0.507

0.592
0.152

4.500
0.547
0.149

100.30
0.547

0.415
0.079

4.500

.700
.600

.032
.157

.026

.478
.123

.000
.400

.534
.135

.478

.088
.073

.300

.271
.225

.088

.201
.252

.000

0.500
0.600

89

ADFQ3

163.367 0.414 0.258 1

193.611 0.079 0.324 1
PLS#A 1 0 75.900
163.367 0.414 0.201 1
Data source : Abels-van Maanen - A package for non-coronal impurity

data JET-DN-T(85)28 (ppl3-15).

Alterations : (??/7?/89) Janeschitz
- Extension to include specific
line parameters.
(13/12/90) Summers - Reformatted to ADAS data format

convention ADF03.
Reassembled and reassessed for
consistency with van Maanen.
NB. Mertz correction is not
activated on H-like and He-like
unlike Abels-van Maanen.

(27/ 2/91) Summers - DRC, PLT & PLS in table below

+ommm—o- e ettt e T e +
+ Ion + Specific ion data source + Analysing + Matching Te +
+ + + code for + for PLT Gaunt+
+ + + parameters + factors +
Fommmm - e e e e Tt e omm oo +
+ Be+ O + JETSHP.BELIKE.DATA(FBBH91BE) + POWERFIT + 0.86eV +
+ + + +-473% @ 86eV +
+ + + + +32% @ 0.43eV+
+ + + + +
fommmm - e e e L LTt e it TR +
+ Be+ 1 + JETSHP.BELIKE.DATA(WJD91BE) + POWERFIT + 6.9eV +
+ + + +-363% @ 345eV +
+ + + + +35% @ 1.7eV +
+ + JETXLE.COPDT#BE.DATA(SS#BE1) + EXP90 + +
fommmm - e e e L LTt e it TR +
+ Be+ 2 + JETSHP.BELIKE.DATA(HPS9OBE) + POWERFIT + 15.5eV +
+ + + + -90% @ 388eV +
+ + + +-120% @ 1.6eV +
+ + JETXLE.COPDT#BE.DATA(SS#BE2) + EXP90 + +
Fommmm - e e E E L e e Fommmm oo +
+ Be+ 3 + JETSHP.BELIKE.DATA(HPS9OBE) + POWERFIT + 30.0eV +
+ + + + -60% @ 300eV +
+ + + + +8% @ 10eV +
+ + JETXLE.COPDT#BE.DATA(SS#BE3) + EXP90 + +
Fommmm - e e e LT e e e it +
Formatting : Defined in member ADFQ3

Usage : Formatted for access by subroutine NCRATNT

90

A3

adf04: resolved specific ion data collections

Provides all required energy level and rate coefficient data for specified low levels of an ion. The data set is complete
for a low level population calculation. Specific level selective free electron recombination, ionisation and charge ex-
change recombination are included. Formatting conventions and variable storage are given below. Note that current
preferred data for important elements are grouped into isonuclear libraries of the form adas#.

Data mnemonic: specific ion file
Data root: [home/adas/adas/adf04/
Last update: 17 March 2007
Utilising subroutines: xxdata_04.for

Formatted files to adf04 specification:

Sequence Members Library Comments Resol. Quality

H-like H,He,Li,Be,B,C,N,O,F,Ne copha#h Anderson (n=1,2,3,4,5) n&nl high

He-like Li,Be,B,C,N,O,F Ne copha#he Anderson (n=1,2,34,5) 1 high

Li-like Be,C,N,O,Ne,Mg,Al,Si,S,Ar coppm#li McWhirter (n=2,3,4,5) j high
Ca,Ti,Fe Ni

Be-like C.N,0,Ne,Mg,AlSi,S,Ar, copjl#be Lang (n=2,3)] high
Ca,Ti,Fe,Ni

C-like Ca,Fe,Mg,Ne,O,S,Si clike Monsignori-Fossi(n=2) j assessed

N-like Ar,Ca,Mg,S,Si nlike Landini(n=2)] assessed

O-like Ne,Mg,ALSi,S,Ar, olike Lang/Summers (n=2)] best available
Ca,Ti,Fe,Ni

Notes:

1.

copha#h directory has four groups of members (a) prefix bn#h => n-shell, high temperature set (b) prefix
bn#l=> n-shell, low temperature set (c) prefix hah => nl-shell, high temperature set (d) prefix hal=> nl-shell,
low temperature set.

. cophathe directory members have prefix sm#=initial data based on Sampson calculations. Improved data then

introduced where available.

. There are many specific ion files individually assessed for ions of light elements and ions of special fusion

interest in the ADAS database. These are in iso-electronic sequence sub-directories with members named by
date and originator as

/<seq>like/<seq>like_<source><year><el>.dat where <seq> is the ioslectronic sequence symbol, jsource;
is the orginators initials, <year> a two digit year number and <el> the element symbol.

. Lang has prepared a detailed document on adf04 files for matching to SOHO/CDS specific needs as detailed by

the Blue Book. This is available in the datastatus section of ADAS documentation on the web.

91

Sequence Members Library Comments Resol. Quality
Li-like Be,C,N,O,Ne,Mg,Al,Si,S,Ar copsm#li Sampson/Zhang(n=2,3,4,5) j medium
Ca,Ti,Fe,Ni
Be-like C,N,O,Ne,Mg,AlSi,S,Ar copsmitbe Sampson/Zhang(n=2) j medium
Ca,Ti,Fe,Ni
B-like C,N,O,Ne,Mg,AlSi,S,Ar copsmitb Sampson/Zhang(n=2,3)] medium
Ca,Ti,Fe,Ni
C-like N,O,Ne,Mg,ALSi,S,Ar copsm#c Sampson/Zhang(n=2,3) j medium
Ca,Ti,Fe,Ni
F-like Ne,Mg,AlSi,S,Ar copsmitf Sampson/Zhang(n=2,3) j medium
Ca,Ti,Fe,Ni
Ne-like Mg, Al,Si,S,Ar copsm#ne Sampson/Zhang(n=3,4) j medium
Ca,Ti,Fe,Ni
Na-like Mg,ALSi,S,Ar copsmi#tna Sampson/Zhang(n=3,4,5) j medium
Ca,Ti,Fe,Ni
Sequence Members Library Comments Resol. Quality
Li-like Be,C,N,O,Ne,Mg,AlSi,S,Ar copss#li SS/dip i.p.(n=2,3,4,5)] low
Ca,Ti,Fe,Ni
Be-like C,N,O,Ne,Mg,Al,Si,S,Ar copss#be SS/dip i.p.(n=2)] low
Ca,Ti,Fe,Ni
B-like C,N,O,Ne,Mg,Al,Si,S,Ar copss#b SS/dip i.p.(n=2,3) j low
Ca,Ti,Fe,Ni
C-like N,O,Ne,Mg,ALSi,S,Ar copssi#c SS/dip i.p.(n=2,3)] low
Ca,Ti,Fe,Ni
F-like Ne,Mg,ALSi,S,Ar copss#f SS/dip i.p.(n=2,3) j low
Ca,Ti,Fe,Ni
Ne-like Mg,AlSi,S,Ar copss#ne SS/dip i.p.(n=3,4)] low
Ca,Ti,Fe Ni
Na-like Mg, AlSi,S,Ar copss#na SS/dip i.p.(n=3.4,5)] low
Ca,Ti,Fe,Ni
Sequence Members Library Comments Resol. Quality
Hisonuc. all ions adas#1 OMullane Is&n preferred
He isonuc all ions adas#2 OMullane ic&ls preferred
Liisonuc all ions adas#3 Ballance Is, bd-n preferred
Cisonuc. all ions adas#6 OMullane ic &ls preferred
Nisonuc. allions adas#7 Dux ic&ls preferred
O isonuc. allions adas#8 Broooks ic&ls preferred
Ne isonuc all ions adas#10 OMullane ic&ls preferred
Arisonu Ar+18 only adas#18 Whiteford ic preferred

92

Sequence Members Library Comments Resol. Quality

Hisonuc. all ions copmm#1 Cowan/Born(n=1-5) j&ls low
He isonuc. all ions copmm#2 Cowan/Born(n=1-5) j&ls low
Liisonuc. all ions copmm#3 Cowan/Born(n=2,3) Is low
Be isonuc. all ions copmm#4 Cowan/Born(n=2,3) j&ls low
B isonuc. all ions copmm#5 Cowan/Born(n=2,3) j&ls low
Cisonuc. all ions copmm#6 Cowan/Born(n=2,3) j&ls low
Nisonuc. all ions copmm#7 Cowan/Born(n=2,3) j&ls low
O isonuc. all ions copmm#8 Cowan/Born(n=2,3) j&lIs low
F isonuc. all ions copmm#9 Cowan/Born(n=2,3) j&lIs low
Ne isonuc. all ions copmm#10 Cowan/Born(n=2,3) j&ls low
Siisonuc. all ions copmm#16 Cowan/Born(n=2,3) j&ls low
Clisonuc. all ions copmm#17 Cowan/Born(n=2,3) j&ls low
Arisonuc. all ions copmm#18 Cowan/Born(n=2,3) j&lIs low
Fe isonuc. all ions copmm#26 Cowan/Born(n=2,3) j&ls low
Ni isonuc. all ions copmm#28 Cowan/Born(n=2,3) j&ls low
Krisonuc. all ions copmm#36 Cowan/Born(n=2,3) j&ls low
Xe isonuc. all ions copmm#54 Cowan/Born(n=2,3) j&ls low

Notes:

1. adas sub-libraries contain the currently preferred data for the ions of the element. The prefix Is indicates the LS-
coupled data complete with all recombination contributions for full generalised-collisional-radiative population
calculations. The prefix ic indicates intermediate j-resolved data with spectroscopic quality energies. The latter
data sets do not have the recombination contributions. The prefix n indicates n-shell bundled data and is relevant
only to the hydorgen-like stage. When a change of preferred data is made, the formerly preferred data is moved
back into isoelectronic data collections with an advisory note as to when they were the preferred data. 24 Oct.
1999 revision includes new datasets in /adas#7 and /adas#8 from the GCR project and updates to /adas#2 and
Jadas#6.

2. copss files contain dipole collision rate coefficients only. They are often used for supplementation of higher
quality data sets which lack dipole allowed transitions between higher levels.

3. copmm files contain dipole and non-dipole non-spin change collision rate coefficients only. Exchange collisions
are not present.

4. copmm & copss files are useful for initial survey and radiated power assessment in ADAS series 4 codes.

5. copss & copmm files are generally created with Eissner form configuration notation for automatic initial set up
of metastable resolved collisional-radiative recombination/ionisation calculation with ADAS series 2 codes.

Data lines:

93

Data lines Format

SYM , 12,120,121 , STRGI1 1a3,i2,2i10,1a75
until IND = -1 i5, 1a95
IND, CFG, IS, IL , C8, STRG2 i5,1x,1a18,1x,il1,1x,i1,1a8,1a56
-1, STRG3
ZEFF ,ITYP, STRG4 £5.1,15,6x,1al12

until INDU = -1 and INDL = -1
until INDU = -1

CCODE, INDU , INDL , STRGS ilal,li3,i4,1a128
-1 4x, 1i4
-1-1 2i4
C+++ERROR specification start++++++ 1a35
C
C TCLASSI la2,1a
C
C IL-IU ERROR la2,1a,-1a, -,fm.n
C
C TCLASS2 la2,1a
C
C IL-IU ERROR la2,1a,-,1a, -,fm.n
C

C+++ERROR specification end++++++++ 1a35

Variable identification:

Name Meaning Comment

ELEMENT element symbol in form ##+

1z charge of the ion

120 nuclear charge

171 ion charge + 1

STRG1 ion. pot. string fwordl(cwordl)fword2(cword2)- - - where the fword are fixed

point decimal numbers and cword are character strings

fwordl = BWNO = BWNOA(1) = ion. pot. (cm-1)

fwordi = BWNOA(I) = ion. pot. (cm-1) of lowest level relative to the ith parent
cwordi=MLTP,LP = (2Sp+1)Lp for ith parent in LS coupling
cwordi=MLTP,LP,XJ = (2Sp+1)Lp Jp for ith parent in IC coupling

Sample 1: /home/adas/adas/adf04/ne.dat

94

A.4 adf07: direct resolved electron impact ionis. data collections

Provides electron impact ionisation rate coefficients for ions optionally with resolution into metastable initial and final

states. Formatting conventions and variable storage are given below.

Data mnemonic: szd
Data root: /home/adas/adas/adf07/
Last update: 15 January 2009

Utilising subroutines: xxdata_07.for, read_adf07.pro

Formatted files to adf07 specification:

Notes:

Element Members Library Comments Resol. Quality
hydrogen h,h0 szd93#h CLM normalised, S&H split resolved high
helium he,he0,hel szd93#he CLM normalised, S&H split resolved high
lithium 1i0-1i2 szd02#li Loch, Colgan resolved high
lithium li szd93#li CLM normalised unresolved high
beryllium be,be0-be3 szd93#be CLM normalised, S&H split resolved medium
boron b szd93#b CLM normalised unresolved high
carbon c,c0-c5 szd93#c CLM normalised, S&H split resolved medium
nitrogen n szd93#n CLM normalised unresolved high
nitrogen n,n0-n6 szd96#n CLM normalised, S&H split resolved medium
oxygen 0,00-07 szd93#o CLM normalised, S&H split resolved medium
fluorine f szd93#f CLM normalised unresolved high
neon ne szd93#ne CLM normalised unresolved high
argon arl szd97#ar Griffin, normalised resolved high
chromium cr,crO,crl szd93#cr Griffin, normalised resolved high
iron fe szd93#fe A&R unresolved medium
molybdenum mo,mo0,mol szd93#mo Griffin, normalised resolved high
argon caffar sdlO8#18 Loch-cadw, baseline ca grds. only medium
krypton ca#tkr sdl08#36 Loch-cadw, baseline ca grds. only medium
Xenon ca#xe sdl08#54 Loch-cadw, baseline ca grds. only medium
silver caffag sdlO8#47 Loch-cadw, baseline ca grds. only medium
tin cafsn sdlO8#50 Loch-cadw, baseline ca grds. only medium
tungsten ca#tw sdlO8#74 Loch-cadw, baseline ca grds. only medium

. The element member contains a preferred compilation for all the ions of the element. The ion members contain
just the individual ion resolved data.

. CLM normalised refers to the Culham Laboratory Reports CLM-R216- & CLM-R270 for the total stage to stage
coefficients.

. S&H refers to splitting into metastable resolved ionisation coefficients using the method of Summers & Hooper.
Results are normalised to the stage to stage total.

. Griffin refers to metastable resolved data extracted from the detailed adf23 data sets prepared by Griffin, Pindzola
or Badnell. This data is also normalised as specified in the dataset comments. Griffin data will eventually replace
all the S&H split data.

. A&R refers to Arnaud & Raymond (1992) Astrophys. J. 398, 394.

. Heavy element baseline data in the cadw approximation, has in general both direct and excitation/autoionisation
parts and includes both ground state and excited state ionisation. Such complete data of format adf23 is totalled
(including direct and excitation/auotionisation) from the ground state of each ion of the elements and returned
in the present format for the convenience of users. .

95

Data lines:

Data lines

Format

NSEL, TEXT
for ISEL= 1 ,NSEL

SYMB, IZ, SYMB IZ1, NTE, BWNO, METI, METF, ISEL

(TEV(T), IT=1,NTE)
(SZD(T), IT=1,NTE)
endfor

Variable identification:

Name

Meaning

15,4x,/°,1a38,/
€2, +,i2,/,e2,)+,i2°/ 15,7/, 7x,f18,9%,i2,9x%,12,7x,i3

6e10.3
6e10.3

Comment

NSEL
TEXT
SYMB
1Z

1Z1
NTE
BWNO
METI
METF
ISEL
TEV()
SZD()

number of reactions available
information

element chemical symbol
initial ion charge

final ion charge

number of temperatures
effective ionisation potential (cm-1)
initial state metastable index
final state metastable index
transition index

electron temperatures (eV)
zero density ionis. coefft. (cm**3 sec-1)

Sample 1. /home/adas/adas/adf07/s1108#74/ca#w.dat

ionisation
9/i.p. =

74 / tungsten
w+ 0/w+ 1/

4.309E-01 8.618E-01 1.724E+00 4.

4.309E+01 8.618E+01 1.724E+02

1.547E-15 1.605E-11 1.994E-09 4.

4.401E-07 4.840E-07 4.745E-07
w4+ 1/w + 2/ 12/i.p. =
6.894E-01 1.724E+00 3.447E+00

1.359E-17 1.052E-11 1.221E-09
2.111E-07 2.340E-07 2.235E-07
w+ 2/w+ 3/ 12/i.p. =

1.551E+00 3.878E+00 7.756E+00
1.551E+02 3.878E+02 7.756E+02

6
6.894E+01 1.724E+02 3.447E+02 6.
1
1

1
1
4.098E-15 9.602E-11 3.474E-09 2.
9.668E-08 7.199E-08 5.617E-08

1.367E-07 1.317E-07 1.160E-07
w+ 3/w + 4/ 12/i.p. =

2.758E+00 6.894E+00 1.379E+01
2.758E+02 6.894E+02 1.379E+03

2
2
7.211E-14 4.652E-10 8.480E-09 3.
4.115E-08 2.788E-08 2.072E-08

8.164E-08 6.729E-08 5.379E-08
w+ 4/w + 5/ 12/i.p. =

2.482E+01 6.205E+01 1.241E+02
2.482E+03 6.205E+03 1.241E+04
5.536E-09 2.273E-08 3.

2.200E-08 1.575E-08 1.197E-08

2
2
157E-08 3.
9.001E-09 6.115E-09 4.

rate coefficients /ca/

61360.6/icode =

adfo7
1/fcode =

I}
_

1/isel

309E+00 8.618E+00 1.724E+01

554E-08 1.469E-07 2.858E-07

119430.5/icode =

1/fcode = 1/isel

I
N

.894E+00 1.724E+01 3.447E+01

894E+02 1.724E+03 3.447E+03

.524E-08 8.350E-08 1.
.989E-07 1.583E-07 1.288E-07

200548.8/icode =

577E-07

1/fcode = 1/isel

I
w

.551E+01 3.878E+01 7.756E+01
.551E+03 3.878E+03 7.756E+03

458E-08 8.605E-08 1.214E-07

297980.3/icode =

1/fcode = 1/isel

I
-~

.758E+01 6.894E+01 1.379E+02
.758E+03 6.894E+03 1.379E+04

590E-08 7.426E-08 8.379E-08

403546.1/icode =

1/fcode = 1/isel

Il
9,

.482E+02 6.205E+02 1.241E+03
.482E+04 6.205E+04 1.241E+05

471E-08 3.209E-08 2.734E-08

96

551E-09

w +71/w +72/ 12/i.p. = 158739837.8/icode = 1/fcode
8.962E+02 2.232E+03 4.464E+03 8.962E+03 2.232E+04 4.464E+04
8.962E+04 2.232E+05 4.464E+05 8.962E+05 2.232E+06 4.464E+06
5.779E-23 4.575E-17 4.807E-15 5.263E-14 2.256E-13 3.681E-13
4.591E-13 4.779E-13 4.387E-13 3.760E-13 2.886E-13 2.291E-13

w +72/w +73/ 12/i.p. = 638408392.0/icode = 1/fcode
9.221E+02 2.292E+03 4.593E+03 9.221E+03 2.292E+04 4.593E+04
9.221E+04 2.292E+05 4.593E+05 9.221E+05 2.292E+06 4.593E+06
5.566E-52 2.886E-29 1.441E-21 1.128E-17 2.618E-15 1.740E-14
4.535E-14 7.576E-14 8.350E-14 8.012E-14 6.714E-14 5.563E-14

w +73/w +74/ 12/i.p. = 649757158.2/icode = 1/fcode

.652E+02 2.422E+03 4.843E+03 9.652E+03 2.422E+04 4.843E+04

.652E+04 2.422E+05 4.843E+05 9.652E+05 2.422E+06 4.843E+06

.928E-51 4.956E-29 1.272E-21 6.927E-18 1.440E-15 8.944E-15

.235E-14 3.700E-14 4.056E-14 3.873E-14 3.240E-14 2.675E-14

1/isel = 72

1/isel = 73

1/isel = 74

NN O O

Processed from adf23 datasets

Code : process_adf23_adf07. for
Author : Hugh Summers
Date 1 22-05-2008

Sources

isel filename

1 /home/summers/adas_dev/adas/adf23/sd108#74/ca#w0.dat
/home/summers/adas_dev/adas/adf23/sd108#74/ca#wl.dat
/home/summers/adas_dev/adas/adf23/sd108#74/ca#w2.dat
/home/summers/adas_dev/adas/adf23/sd108#74/ca#w3.dat
/home/summers/adas_dev/adas/adf23/sd108#74/ca#w4.dat

NN N0 NN N0 000N no0o0nnnn

vl b W N

72 /home/summers/adas_dev/adas/adf23/sd108#74/ca#w71.dat
73 /home/summers/adas_dev/adas/adf23/sd108#74/ca#w72.dat
74 /home/summers/adas_dev/adas/adf23/sd108#74/ca#w73.dat

Details:

isel init. dim i imeta_i cfg_i final im_f imeta_f cfg_f

1 5p6 5d4 6s2 w o+ 1 5p6 5d4 6sl
1 5s2 5p6 5d4 6sl W o+ 1 5s2 5p6 5d4
1 5s2 5p6 5d4 W o+ 1 5s2 5p6 5d3
1 5s2 5p6 5d3 W o+ 1 5s2 5p6 5d2
1 5s2 5p6 5d2 W o+ 1 5s2 5p6 5d1

NN N0 0NN o000 n0n0nonn

S, NIV]
S wNn R
e

72w +71 1 1 1s2 2s1 W +72 1 1 1s2
73w +72 1 1 1s2 w +73 1 1 1s1

N N

97

NN N0 0NN ononn

Nn N N 0N

74 w +73 1 1 1s1 w +74 1 1 1s0
isel init. im_i imeta_i (stat.wt.-1)/2 final im_f imeta_f (stat.wt.-1)/2
1 w+ 0 1 1 104.5 w+ 1 1 1 209.5
2 w+1 1 1 209.5 W+ 2 1 1 104.5
3 w+ 2 1 1 104.5 w+ 3 1 1 59.5
4 w+3 1 1 59.5 W+ 4 1 1 22.0
5 w+ 4 1 1 22.0 W+ 5 1 1 4.5
72w +71 1 1 0.5 W +72 1 1 0.0
73 W +72 1 1 0.0 w +73 1 1 0.5
74 w +73 1 1 0.5 w +74 1 1 0.0

98

A.5 adf08: direct resolved radiative recombination coefficients

Provides resolved radiative recombination coefficient data. Formatting conventions and variable storage are given be-
low.

Data mnemonic: rrc

Data root: /home/adas/adas/adf08/

Last update: 15 January 2009

Utilising subroutines: xxdata_08.for, read_adf08.pro

Formatted files to adf08 specification:

Recombining seq. Members Library Comments Resol. Quality
various radrec Is high

bare nucl. b, be,c, h, he,0 rrcO3## Is medium
h-like. b, be,c, he, o rrc93#h Is medium
he-like b, be, c, 0 rrc93#he Is medium
li-like b, be, c, 0 rrc93#l1i Is medium
be-like b,c,0 rrc93#be Is medium
b-like c,0 1rc93#b Is medium
c-like o rrc93#c Is medium
n-like o) rrc93#n Is medium
ti-like cr rrc934#ti Is medium
v-like cr rrc93#v Is medium
zr-like mo rrc93#zr Is medium
nb-like mo rrc93#nb Is medium
bare nucl. c rrcO6## Is high

h-like. C rrc96#h Is medium
he-like c rrc96#he Is medium
li-like c rrc96#l1i Is medium
be-like c rrc96#be Is medium
b-like c rrc96#b Is medium
bare nucl. n, o, ne rrc98## Is high

h-like. n, o, ne rrc98#h Is medium
he-like n, 0, ne rrc98#he Is medium
li-like n, o, ne rrc98#li Is medium
be-like n, o, ne rrc98#be Is medium
b-like n, o, ne rrc98#b Is medium
c-like n, o, ne rrc98#c Is medium
n-like 0, ne rrc98#n Is medium
o-like ne rrc98#o Is medium
f-like ne rrc98#f Is medium

Notes:

1. In the individual data set names, the recombining ion symbol is followed by ’Is’ to indicate LS resolution.

2. For proton or deuteron recombination, the ’ls’ postfix on the dataset names is followed by "h’ or '’ to denote
high and low temperature ranges.

3. 24 Oct. 1994 revision includes replacement of /rrc98#b/rrc98#b_o3ls.dat. .

Data lines:

99

Data lines Format

seq ="SEQ’ , nucchg =170 , type ="CTYPE’ , ADFO0S8 1a80: keywords - a2,i,a2,a5
<blank line> 1a80
c10, bwnf = BWNF nprf = NLVL_F 1a80: al0,keywords -f12,i3

[c10 has form ’aa+nn aaaa’ where aa = elem. symb., nn= final ion charge
and aaaa = conf/term/levl if CTYPE=ca/ls/ic |
[characters are left justified and numbers right justified]

<underlines> 1a80
<descriptive headers> 1a80
<underlines> 1a80
for i=1,NLVL_F

IA_F(@i) , CODE_F(@i) , CSTRGA_F(i) , cnn , WA _F(i) i5,al,a,a,f13

[cnn has the form *(ISA_F(i))ILA_FG)(XJA_F(1))’ if CTYPE=ls/ic]
and cnn has the form *(XJA_F(1))’ if CTYPE=ca]

endfor
<blank line> 1a80
c10, bwni = BWNI ¢4 = NLVL_I 1a80: al0,keywords -f12,i3

[c10 has form ’aa+nn aaaa’ where aa = elem. symb., nn= initial ion charge
and aaaa = conf/term/levl if CTYPE=ca/ls/ic |
[c4 has form ’aaaa’ where aaaa = ncfg/ntrm/nlvl if CTYPE=ca/ls/ic]

<underlines> 1a80
<descriptive headers> 1a80
<underlines> 1a80
for i=1,NLVL_I

IA_I(@{) , CODE_() , CSTRGA_() , cnn , WA_I(i) i5,al,a,a,f13

[cnn has the form *(ISA_IGA)ILA_IG)(XJA_I(1)) if CTYPE=Is/ic
and cnn has the form *(XJA_I(i))’ if CTYPE=ca]

endfor
<blank line> 1a80
<underlines> 1a80
do i=1, NMETI
<underlines> 1a80
<descriptive headers> 1a80
<underlines> 1a80
meti*= IMET(®) 1a80: keywords - i
te= (TEA_ION(,it),it=1,NTE) 1a256:keyword - d9.2,21d10.2
<underlines> 1a80
forj=1,NLVN_F
INDF , (QRED_ON(,indf,it),it=1,NTE) 15,18x,22d10.2
endfor
<blank line> 1a80
c20 a20

Variable identification:

100

Name Meaning Comment

SEQ iso-electronic sequence two characters, blank fill to right

170 nuclear charge

CTYPE ca, Is or ic denoting resolution two characters

BWNF ionisation potential of final state ion (cm-1)

NLVL_F no. of final ion configs, terms or levels depending on resolution

IA_F(index of final states

CODE_F() code for metastables of final state ion * indicates a metastable

CSTRGA_F() configuration string of final states standard notation

ISA_F() multiplicity only for Is and ic resolution

ILA_F(total orbital quantum number only for Is and ic resolution

XJA_F() (stat. wt.-1)/2 or J J only for ic resolution

BWNI ionisation potential of initial state ion (cm-1)

NLVL_I no. of initial ion configs, terms or levels depending on resolution

T1A_1() index of initial states

CODE_I() code for metastables of initial state ion * indicates a metastable

CSTRGA I() configuration string of initial states standard notation

ISAI() multiplicity only for Is and ic resolution

ILAI) total orbital quantum number only for Is and ic resolution

XJAI() (stat. wt.-1)/2 or J J only for ic resolution

NMETI no. of metastables of initial ion

IMETI() pointers to metastables in initial state index

TEA_ION(,) elec. temperatures (K) of ionis. coefft table 1st dim: initial metastable index,
2nd dim: te index

NTE number of elec. temperatures

INDF current final state metastable index

QRED_ION(,,) scaled ionis. coeffts (cm3 s-1) table 1st dim: initial metastable index,

Sample I1: /home/adas/adas/adf08/rrc96#b_clls.dat

2nd dim: final state index
3rd dim: te index

SEQ="C "’ NUCCHG= 6
PARENT TERM INDEXING BWNP= 196622.4 NPRNTI= 2
INDP CODE SL WI WNP
1 252 2P1 (2)1C 2.5 0.0
2 251 2P2 4)1(5.5 42993.5
LS RESOLVED TERM INDEXING BWNR= 90878.0 NTRM= 64
INDX CODE SL Wl WNR
1 252 2P2 3)1C 4.0 0.0 {1}2.00 {23}1.33
2 252 2P2 (D2C 2.0 10163.0 {1}2.00
3 252 2P2 (1o 0.0 21618.4 {13}2.00
4 281 2P3 (5)0C 2.0 33705.6 {21}3.00
5 252 2P1 381 3)1C 4.0 60343.3 {1}1.00
60 2P4 (1o 0.0 211514.3 {X}
61 251 2P2 3S1 (5)1C 7.0 97858.0 {2}1.00
62 251 2P2 3D1 (5)3(17.0) 115887.3 {2}1.00

101

63
64

2S1 2P2 3D1
2S1 2P2 3D1

5)1C 7.0
(5)2(12.0)

INDX TE=

Ul w N

50
51
52
53
54

1.
2
1.
1
1

W == o0

TRMPRT= (2P)

00D+04

.12D-13

04D-13

.79D-14
.90D-15

.00D-16
.53D-16
.09D-16
.96D-16
.26D-16

[N = o e

N = 00~ D

SPNPRT=

.25D+04
.95D-13
.54D-14
.64D-14
.86D-15

.91D-16
.25D-16
.92D-17
.60D-16
.67D-16

2

== N =N

= N OoON

PRTI= 2 TRMPRT= (4P)

INDX TE=
1
4
7
14
56
61
62
63
64

1.
1
9
1
6.
5
2
4
1
3

00D+04

.42D-14
.51D-14
.30D-13

68D-14

.19D-15
.87D-15
.51D-14
.93D-14
.10D-14

N~ AN DOR OO

SPNPRT=

.25D+04
.32D-14
.79D-14
.20D-13
.10D-14
.47D-15
.77D-15
.08D-14
.74D-14
.80D-14

4

N R NDNMNNAONRDN

.50D+04
.54D-13
.50D-14
.27D-14
.84D-15

.43D-16
.21D-17
.42D-17
.94D-17
.32D-16

.50D+04
.13D-14
.05D-14
.37D-14
.67D-14
.71D-15
.61D-15
.97D-14
.27D-14
.02D-14

115909.5
116178.2

.75D+04
.36D-13
.58D-14
.11D-14
.86D-15

= = O~ W

.53D-16
.91D-17
.78D-17
.00D-17
.32D-17

coO U1 NV W =

.75D+04
.08D-14
.26D-14
.22D-14
.03D-14
.96D-15
.59D-15
.41D-14
.03D-14
.64D-14

R R NDNRFR SO R~ W

102

= = =)

vl W = N =

= 00O NN W V= U

{2}1.00
{2}1.00

.00D+04
.24D-13
.99D-14
.00D-14
.88D-15

.07D-16
.76D-17
.96D-17
.52D-17
.87D-17

.00D+04
.06D-14
.75D-14
.49D-14
.63D-14
.54D-15
.60D-15
.05D-14
.76D-15
.39D-14

= 00 Ul kN

W N R RO

R OO R NP WOV —k N

.50D+04
.08D-13
.21D-14
.64D-15
.90D-15

.41D-17
.64D-17
.17D-17
.10D-17
.50D-17

.50D+04
.06D-14
.05D-14
.53D-14
.12D-14
.07D-15
.60D-15
.59D-14
.78D-15
.08D-14

N

N R~ NN~ D

O VT NNV B = =

.00D+05
.69D-14
.67D-14
.70D-15
.91D-15

.37D-17
.12D-17
.99D-18
.44D-17
.39D-17

.00D+05
.07D-14
.55D-14
.86D-14
.77D-14
.12D-16
.60D-15
.30D-14
.53D-15
.77D-15

— O N 0

= o= U1 00 W

N R DNON VDA R R

.25D+05
.79D-14
.23D-14
.97D-15
.90D-15

.23D-17
.29D-18
.90D-18
.06D-17
.77D-17

.25D+05
.06D-14
.13D-14
.33D-14
.50D-14
.52D-16
.57D-15
.09D-14
.66D-15
.38D-15

A.6 adf09: state selective dielectronic recombination coefficients

Provides state-selective dielectronic recombination coefficient data in Is and ic resolution. The data is resolved by
initial and final parent metastable and includes capture to Is- or ic- resolved low levels, bundle-nl shells and bundle-n
shells to very high n. Data sets are generally distinguished according to parent principal quantum shell transition
(n — nr) and possibly by captured principal quantum shell (ns/) as nn/nss. Formatting conventions and variable stor-

age are given below.

Data mnemonic: drc

Data root: /home/adas/adas/adf09/

Last update: 23 January 2009

Utilising subroutines: xxdata_09.for, read_adf09.pro

Formatted files to adf09 specification:

Recombining seq. Members Library n—n Resol. Quality
H-like. Ar,B,Be,C Fe,He,Li, nrb93#h 1-2 Is medium
Mg,0,Sn,Y
He-like Ar,B,Be,C,Fe,LiMg, nrb93#he 1-2,2-2 Is medium
0.,5n,Y
Li-like Ar,B,Be,C,Fe, Mg, nrb93#li 1-2,2-2,2-3 Is medium
0,Sn,Y
Be-like Ar,B,C,Fe, Mg, nrb93#be 2-2,2-3 Is medium
0,Sn,Y
B-like Ar,C,Fe, Mg, nrb93#b 2-2,2-3 Is medium
0,Sn,Y
C-like Ar, Fe,Mg,0,Y nrb93#c 2-2,2-3 Is medium
N-like Ar,Fe Mg, 0,Y nrb93#n 2-2,2-3 s medium
O-like Ar,Fe Mg, Y nrb93#o 2-2,2-3 Is medium
F-like Ar,Fe Mg, Y nrb93#f 2-2,2-3 Is medium
Ne-like Ar,Fe Mg,Y nrb93#ne 2-3 Is medium
H-like. C, N, Ne mom93#h 1-2 s medium
He-like C, N, Ne mom93#he 1-2,2-2 Is medium
Li-like C, N, Ne mom93#li 1-2,2-2,2-3 Is medium
Be-like C, N, Ne mom93#be 2-2,2-3 Is medium
B-like C, N, O, Ne mom93#b 2-2,2-3 Is medium
C-like N, O, Ne mom93#c 2-2,2-3 Is medium
N-like O, Ne mom93#n 2-2,2-3 Is medium
O-like Ne, Mg mom93#o 2-2,2-3 Is medium
F-like Ne, Mg mom93#f 2-2,2-3 Is medium
H-like. extend. elem. rnge nrb0O#h 1-2 Is, ic, icr high
He-like extend. elem. rnge nrbmb00#he 1-2,2-3 Is, ic, icr high
Li-like extend. elem. rnge nrbjc00#li 2-2,2-3 Is, ic, icr high
Be-like extend. elem. rnge nrbjc00#be 2-2,2-3 ls, ic, icr high
B-like extend. elem. rnge nrbzaQO#b 2-2,2-3 Is, ic, icr high
C-like extend. elem. rnge nrboiz00#c 2-2,2-3 Is, ic, icr high
N-like extend. elem. rnge nrbdmmOO#n 2-2, 2-3 Is, ic, icr high
O-like extend. elem. rnge nrboiz00#o 2-2,2-3 Is, ic, icr high
F-like extend. elem. rnge 0iz00#f 2-2,2-3 ls, ic, icr high
Ne-like extend. elem. rnge nrbOO#ne 2-3 ls, ic high
Ne-like extend. elem. rnge 0iz0O#ne 2-3 ls, ic high
Na-like extend. elem. rnge zaOO#na 2-3,3-3,3-4 Is, icm, icr high

103

Notes:

1. The formerly named ‘mom96’ data have been renamed as ‘mom93’ since they are of the same calculation type
as for the ‘nrb93’ data. The year number is therefore being used to mark the first year of a calculation type. The
new year number ‘00’ has been introduced for the intermediate coupling ic dielectronic data. ‘00’ is also used
for new Is dielectronic data which has extended temperature ranges and is patterned on the ic format.

2. Some sequences have been revised with relativistic intermediate coupling calculations (icr;, icm). Original data
sets (ic) remain but the directory has been renamed to identify both originators, for example nrb & oiz.

Data lines - Is old format:

Data lines Format

seq="SEQSYM’ , nucchg=170 , CFORM , ADF(09 1a128: keywords - a2,i,a4,a5
[CFORM is ’/LS/’ or ’/IC/’ for new form (post 93) data]
[CFORM is ’ ’ for old form (93 and earlier) data]
[Note keywords are italicised]

<blank line> 1a128

C24 , bwnp= BWNP , npranti= NPRNTI, nprntf= NPRNTF 1a128: a24.keywords -f12.1,1,i
[C24 contains ’parent term’ if Is form or ’parent level’

if ic form]
<underlines> 1al128
<descriptive headers> 1a128
<underlines> 1al128

104

do i=1,NPRNTI
IPA(i),C20, ISPA(i), ILPA(i), C7, C37

[strings c20, C7 and C37 contain CSTRGPA(i), XJPA(i)

and WPA(i) respectively]
enddo
<blank line>
C28, bwnr= BWNR, C4= NTRM

[C28 contains ’Is resolved term’ if Is form or ’ic resolved level’
if ic form ; C4 contains ’ntrm’ if Is form or ’nlvl’ if ic form]

(prescribed text field)
(prescribed text field)
(prescribed text field)
do indx=1,NTRM
INDX,INDP,CFGT.,IS, IL, XJ, WNRT
enddo
(blank line)
(prescribed text field), NREP
(prescribed text field)
(prescribed text field)(CTRNS(I),I=1, NPRNT*(NPRNT-1)/2)
do irep=1,NREP
IREPNR,(AAMPM(IN),IN=1,NPRNT*(NPRNT-1)/2)
enddo
(blank line)
(blank line)
(blank line)
do iprti=1,NPRNT
(prescribed text field)
(prescribed text field),IPRTI, TRMPRI, SPNPRI
(blank line)
(prescribed text field),(TE(IT),IT=1,MAXT)
do itrm=1,NTRM
INDX, (ALT(T),IT=1,MAXT)
enddo
(blank line)
(blank line)
do IPRTF=1,NPRTF
(prescribed text field)

(prescribed text field),IPRTF, TRMPRF, SPNPRENSYSF

do isys=1,NSYS
(prescribed text field)
(prescribed text field),IS,SPNSYS
(prescribed text field)
(prescribed text field)
do irep=1,NREP
IREP, (ANT(T),IT=1,MAXT)
enddo
enddo
enddo
enddo
(blank line)
(blank line)
(prescribed comment line)
(prescribed comment line)
(prescribed comment line)

105

16,5x,1a20,1x,2(i1,1x),a7,1x,a37
[16,10x,1a20,1x,2(i1,1x),a7,1x,a37 if new form]

lal28
1a128: keywords -f12.1,i

1a28
1a56
1a56

16,5x,1a20,1x,i1,1x,i1,1x,f4.1,1x,f11.1

1a80

1a61,i3

1a56
1a21,10(7x,1a3)

2i6,9x,10(¢10.2)

1a80
1a80
1a80

1a33

6x,i2,10x,1a4,9x,i2

1a80
11x,10e10.2/11x,10e10.2

16,5x,10e10.2/11x,10e10.2

1a80
1a80

1a42
6x,i2,10x,1a4,9x,i2,7x,i2

lalll
1a98,i2,9x,i2
la7

la7

16,5x,10e10.2/11x,10e10.2

1a80
1a80
1a80
1a80
1a80

Variable identification - s old format:

Name Meaning Comment

SEQ sequence identifier two chars., blank fill to right
170 nuclear charge

CCPLG coupling scheme, ‘/LS/” = Is

BWNP binding wave no. of lowest parent (cm-1)

NPRNTI no. of initial meta. parents (including grnd parent)
NPRNTF no. of final meta. parents (including grnd parent)

INDP index of parent

CFGP configuration (or Eissner code therefor) for parent.

ISP multiplicity of parent (2Sp+1)

ILP lotal orbital quantum number (Lp) for parent

XJP (statist. weight - 1)/2 of parent term

WNPI energy of parent term relative to lowest parent (cm-1)
BWNR binding enrgy of lowest term rel. to lowest parent (cm-1)
NTRM number of terms in LS-resolved set

INDX index value for term

INDP index of parent

CFGT configuration (or Eissner code thereof) for term.

IS multiplicity for level (2*%S+1)

IL total orbital quantum number for term

XJ (statist. weight - 1)/2 for term

WNRT energy of term relative to ground (cm-1)

AATP() specifies meta. to meta. secondary Auger path for terms
NREP number of representative n-shells

CTRNS() specifies meta. to meta. secondary Auger path, written
as m’-m where m’ and m are meta. parent indices.

IREP index of representative n-shells
NR principal quantum number
AAMPM() Auger rate coeflicients (sec-1)
IPRTI index of initial parent

TRMPRI term specification of initial parent
SPNPRI spin multiplicity of initial parent

TE() prescribed electron temperatures (K)
MAXT number of temperatures

INDX index of term

ALT() diel. coeffts. for term for the initial parent
IPRTF index of final parent

TRMPRF term specification of finalparent
SPNPRF spin multiplicity of final parent

NSYSF no. of spin systems assoc. with recomb. to this final
parent (1 or 2)

IS index of spin system

SPNSYS spin multiplicity of spin system

IREP index of representative n-shell

ANT() dielectronic coefficients for n-shell

Sample I: /home/adas/adas/adf09/nrbjc00#be/jc00_v19ic22.dat

New format dielectronic data organisation from year 2000 onwards. The data set is in ic resolution and refers to
parent n = 2 — 2 transition type. There is a separate data set for n = 2 — 3. The temperature set and temperature
dependent data can extend over more that one line - see example 2 for an illustration.

SEQ="B "’ NUCCHG=23 /IC/

106

PARENT LEVEL INDEXING BWNP= 138380083.1 NPRNTI= 4 NPRNTF=10

INDP CODE SL WI WNP
1 252 (1OC 0.0 0.0
2 251 2P1 (3)1C 0.0 298708.6
3 251 2P1 31 1.0 318278.2
4 251 2P1 3)1C 2.0 367687.0
5 281 2P1 (D1 1.0 630571.5%*
6 2P2 (3)1C 0.0 809664.9*
7 2P2 N1 1.0 843929.0%*
8 2P2 3)1C 2.0 877468.8%*
9 2P2 (D2C 2.0 974870.3%*
10 2P2 (1OC 0.0) 1171319.4%
IC RESOLVED LEVEL INDEXING BWNR= 149287009.6 NLVL=1037
INDX INDP CODE SL W] WNR AUGER RATES: INDP-INDP’
1 1 282 2P1 (2)1C 0.5 0.0
2 1 252 2P1 (2)1C 1.5 64359.6
3 1 251 2P2 (4)1C 0.5 317060.1
1033 5 251 2P1 8S1 (2)1C 0.5) 10900180.3
1034 5 251 2P1 8S1 (2)1C 1.5) 10900287.2
1035 6 2P2 7D1 (4)3(C 1.5) 10901578.5
1036 6 2P2 7D1 (4)3(C 2.5) 10903276.6
1037 6 2P2 7F1 (4)4(C 2.5) 10906725.0
NL-SHELL INDEXING & AUGER RATES NLREP= 55
ILREP N L M -M = 2-1 3-1 4-1 3-2 4-2 4-3
1 1 0 0.00E+00 O0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 2 0 0.00E+00 O0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3 2 1 0.00E+00 O0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
53 10 7 0.00E+00 O0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
54 10 8 0.00E+00 O0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
55 10 9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
N-SHELL INDEXING & AUGER RATES NREP= 42
INREP N M’-M = 2-1 3-1 4-1 3-2 4-2 4-3

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 2 0.00E+00 .00E+00 .00E+00 .00E+00 .00E+00 .00E+00
3 0.00E+00 O0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

(=]
(=]
(=]
(=]
(=]

40 700 4.23E+01 2.16E+02 1.71E+02 6.23E+02 4.00E+02 1.54E+03
41 811 2.03E+01 1.03E+02 8.17E+01 2.99E+02 1.92E+02 7.36E+02

107

42 999

.15E+00

PRTI= 1 LVLPRT= (1S

INDX TE=

1035
1036
1037

40
41
42

53
54

3.

[y

(=]

[

(=]

N

61E+03

.48E-15
.40E-15
.19E-13

.00E+00
.00E+00
.00E+00

.84E-13
.67E-11
.62E-11

.00E+00
.00E+00
.00E+00

.84E-13
.53E-10
.54E-32

.00E+00
.00E+00
.00E+00

.81E-10
.17E-15
.99E-15

.83E-23
.28E-26

N

S

w

[y

.22E+03

.98E-13
.43E-14
.71E-13

.65E-30
.57E-29
.69E-30

.11E-12
.90E-11
.71E-11

.19E-30
.99E-30
.68E-30

.11E-12
.29E-10
.26E-21

.40E-42
.00E-42
.71E-42

.44E-10
.08E-13
.24E-13

.62E-21
.18E-24

3.64E+01

N

w

.36E-12 3
.37E-13 1.
.52E-13 1.

.58E-13 1

2.88E+01

.61E+05 7.

.07E-12 5.
.43E-12
.62E-13

[y

1.05E+02

22E+05

27E-13

.24E-12
4.11E-13

2.26E-16
.46E-15
.74E-16

1.81E+06

1.67E-13
3.99E-13
1.26E-13

7.54E-17
4.83E-16
5.87E-17

6.76E+01 2.60E+02

3.61E+06

6.40E-14
.54E-13
4.78E-14

[y

2.93E-17
1.87E-16
2.29E-17

2.33E-13 1.

N

[y

.36E-12 3
.95E-12 1
.30E-12 1

.39E-12 3
.60E-13

.97E-13 1.

1 LVLPRT= (1S 0.

.09E-12

20E-13
26E-13

.44E-13

31E-13
11E-13

.09E-12
.06E-12
.07E-12

.46E-16
.52E-16
.89E-16

9.69E-13
3.06E-14
3.23E-14

4.82E-14
4.37E-14
3.69E-14

9.69E-13
2.71E-13
3.19E-13

2.89E-16
1.87E-16
1.00E-16

3.69E-13
1.08E-14
1.15E-14

1.87E-14
1.69E-14
1.43E-14

3.69E-13
9.61E-14
1.19E-13

1.31E-16
8.45E-17
4.53E-17

4.27E-13 1.

.83E-21 2.
.22E-24 9.

108

.01E-12
7.35E-14

96E-13

10E-21
76E-25

= 2 LVLPRT= (3P 0.

9.39E-13
2.21E-14
5.91E-14

6.12E-22
2.87E-25

3.59E-13
8.28E-15
2.22E-14

2.27E-22
1.07E-25

55 1.41E-30 1.31E-28 1.51E-27 1.38E-27 6.35E-28 2.75E-28

INREP
2 2.81E-10 2.44E-10 6.39E-12 3.01E-12 9.39E-13 3.59E-13
3 8.29E-15 5.13E-13 1.04E-12 4.78E-13 1.44E-13 5.39E-14
4 4.79E-15 2.96E-13 6.07E-13 2.79E-13 8.39E-14 3.15E-14
40 0.00E+00 2.81E-45 4.51E-20 8.75E-20 6.16E-20 3.06E-20
41 0.00E+00 1.01E-45 2.90E-20 5.63E-20 3.96E-20 1.97E-20
42 0.00E+00 0.00E+00 1.54E-20 3.01E-20 2.12E-20 1.05E-20

PRTF=10 LVLPRT= (1S 0.0)

PRTI= 4 LVLPRT= (3P 2.0)

T ALFT(1) ALFT(C 2) ALFT(7) ALFT(8) ALFT(9) ALFT(10)
3.61E+03 2.59E-09 2.35E-10
7.22E+03 3.02E-09 3.10E-10
1.81E+04 1.73E-09 2.34E-10

Sample 2: /home/adas/adas/adf09/nrbjc00#be/jc00_v191s22.dat

The Is form of the new format is illustrated below. Note the key phrases appropriate for term coupling - otherwise
layout is as for the ic example 1 above. There are no separate high representative nl-shell blocks for the Is case.

SEQ="B ’ NUCCHG=23 /LS/
PARENT TERM INDEXING BWNP= 137430030.2 NPRNTI= 2 NPRNTF= 6
INDP CODE SL WI WNP

109

o VT A W

252
2S1 2P1
281 2P1
2P2
2P2
2P2

LS RESOLVED TERM INDEXING

INDX INDP
1 1
2 2
3 2
394 6
395 6
396 6
N-SHELL
IREP N
1 1
2 2
3 3
40 700
41 811
42 999

INDEXING & AUGER RATES

252 2P1
2S1 2P2
281 2P2

2P2 6F1
2P2 6G1
2P2 6H1

PRTI= 1 TRMPRT= (1S)

INDX TE=

394

395

396

3.
7.

NS O

NS weNS

61E+03
22E+06
.56E-14
.91E-14
.64E-14
.23E-13

.00E+00
.08E-16
.00E+00
.30E-17
.00E+00
.84E-19

VT W kR == N

N = 00 = U1 N

.00E+00
.00E+00
.00E+00

.94E+02
.27E+01
.27E+01

SPNPRT=

.22E+03
.81E+07
.32E-12
.79E-14
.14E-12
.76E-14

.38E-34
.48E-17
.71E-35
.69E-18
.26E-37
.50E-20

(GD1Y¢
3 1(
(D1
3 1(
2(
(GD1¢

.0
.0
.0)
.0)
.0)
.0

SN D = b~

296736.
579190.
765813.
861316.
1064133.

BWNR= 148261739.

SL Wl
(2)1C 2.5
(4)1(C 5.5
(2)2(C 4.5

(2)3(6.5)
(2)4(C 8.5)
(2)5(10.5)

.81E+05
.61E+08
.56E-12
.03E-16
.89E-11
.53E-16

A= DN U W=

.21E-15
.28E-19
.60E-16
.98E-20
.44E-18
.62E-22

coO OO © N O WU

110

7

NTRM= 396

AUGER RATES:

WNR
0.0
269317.6
502352.5
10794336.1
10795368.6
10795422.4
NREP= 42
3.61E+05 7.22E+05
7.22E+08 1.81E+09
3.27E-12 1.58E-12
7.18E-17 1.82E-17
1.08E-11 5.14E-12
2.31E-16 5.85E-17
5.68E-15 3.67E-15
2.22E-19 5.63E-20
8.60E-16 5.69E-16
3.53E-20 8.94E-21
7.35E-18 4.89E-18
3.05E-22 7.72E-23

N~ O b W=

N = WN ==

.81E+06
.61E+09
.93E-13
.43E-18
.59E-12
.07E-17

.36E-15
.99E-20
.14E-16
.16E-21
.85E-18
.73E-23

INDP-INDP’

3.61E+06

1.88E-13

6.06E-13

5.50E-16

8.70E-17

7.50E-19

PRTF= 1 TRMPRT= (1S) SPNPRT= 1 NSYS=1

SYS= 1 SPNSYS= 2

IREP
2 2.56E-14 1.32E-12 5.56E-12 3.27E-12 1.58E-12 4.93E-13 1.88E-13
6.91E-14 1.79E-14 2.03E-16 7.18E-17 1.82E-17 6.43E-18
9 9.91E-24 4.10E-17 4.10E-12 2.04E-12 8.58E-13 2.41E-13 8.81E-14
3.17E-14 8.1QE-15 9.11E-17 3.22E-17 8.15E-18 2.88E-18
10 4.33E-40 3.68E-25 2.25E-12 1.63E-12 8.24E-13 2.58E-13 9.81E-14
3.60E-14 9.29E-15 1.05E-16 3.72E-17 9.42E-18 3.33E-18
40 0.00E+00 0.00E+00 1.48E-16 5.19E-16 5.78E-16 2.91E-16 1.29E-16
5.14E-17 1.39E-17 1.63E-19 5.75E-20 1.46E-20 5.15E-21
41 0.00E+00 0.00E+00 9.51E-17 3.34E-16 3.72E-16 1.87E-16 8.34E-17
3.31E-17 8.96E-18 1.05E-19 3.70E-20 9.38E-21 3.32E-21
42 0.00E+00 0.00E+00 5.09E-17 1.79E-16 1.99E-16 1.00E-16 4.47E-17
1.77E-17 4.80E-18 5.60E-20 1.98E-20 5.02E-21 1.78E-21
T ALFT(1) ALFT(2) ALFT(6) ALFT(7) ALFT(C 8) ALFT(C 9) ALFT(10)

3.61E+03 1.51E-13 1.00E-16
7.22E+03 9.36E-12 7.29E-14
1.81E+04 7.00E-11 3.70E-12

7.22E+08 4.75E-15 5.07E-16
.81E+09 .20E-15 1.28E-16
3.61E+09 4.25E-16 4.53E-17

[y
[Ey

Sample 3: /home/adas/adas/adf09/nrb93#li/nrb93#li_sn471s12.dat
Old format dielectronic data organisation before year 2000. The data set is in Is resolution and refers to parent

n = 2 — 2 transition type. Note that there are no separate high representative nl-shell blocks and no data block at the
end for the total dielectronic rate coefficient in the old format.

SEQ="BE’ NUCCHG=590

PARENT TERM INDEXING BWNP= 606126998.2 NPRNTI= 2 NPRNTF= 2

111

INDP

CODE

1S2 251
1S2 2P1

LS RESOLVED TERM INDEXING

SL WI WNP
(2)0(0.5) 0.0
(2)1C 2.5 750575.7

BWNR= 668924621.0

INDX CODE SL W] WNR
1 1S2 2S2 (1OC 0.0 0.0
2 1S2 2S1 2P1 (3)1C 4.0 683850.3
3 1S2 2S1 2P1 (1)1C 1.0) 1315281.3
164 1S2 2P1 8F1 (1)2(2.0) 59761223.5
165 1S2 2P1 8D1 (1)1C 1.0) 59761725.3
166 1S2 2P1 8D1 (1)3(3.0) 59761798.8
N-SHELL INDEXING & AUGER RATES
IREP N M'-M= 2-1
1 1 0.00E+00
2 2 0.00E+00
3 3 0.00E+00
40 700 0.00E+00
41 811 0.00E+00
42 999 0.00E+00
PRTI= 1 TRMPRT= (2S) SPNPRT= 2
INDX TE= 2.21E+06 4.42E+06 1.10E+07 2.21E+Q07
1 0.00E+00 1.55E-33 1.98E-22 5.60E-19
2 0.00E+00 7.91E-31 1.11E-19 3.30E-16
3 0.00E+00 2.20E-31 3.37E-20 1.03E-16
164 0.00E+00 1.99E-44 2.52E-28 3.29E-23
165 0.00E+00 2.23E-43 2.82E-27 3.69E-22
166 0.00E+00 5.16E-43 6.54E-27 8.54E-22
PRTF= 1 TRMPRT= (2S) SPNPRT= 2 NSYS= 2
IREP
2 0.00E+00 2.21E-31 3.39E-20 1.04E-16
3 0.00E+00 9.33E-37 1.36E-22 4.01E-18

112

NTRM=166

NREP= 42

4.42E+08 1.

3.46E-17 1.
2.60E-14 8.
7.81E-15 2.

16E-17 4
84E-15 3
64E-15 1

7.17E-20 2.
8.03E-19 2.
1.86E-18 6.

67E-20 1

SPNSYS= 1

7.84E-15
2.12E-15

2.65E-15 1
7.53E-16 2

10E+09 2.

98E-19 1.
92E-19 2.

21E+09

.48E-18
.45E-15
.03E-15

.07E-20
20E-19
78E-19

.03E-15
.98E-16

4 0.00E+00 1.16E-38
39 0.00E+00 4.16E-47
40 0.00E+00 1.86E-47
41 0.00E+00 1.19E-47
42 0.00E+00 6.39E-48

IREP

2 0.00E+00 7.91E-31

3 0.00E+00 2.88E-36

4 0.00E+00 2.36E-38
40 0.00E+00 4.53E-47
41 0.00E+00 2.92E-47
42 0.00E+00 1.56E-47

C ADAS ADFO9 DATA - SCCS

(SRS UVENT, =

.76E-23

.25E-30
.58E-31
.59E-31
.92E-31

.11E-19

4.17E-22

.59E-23

.32E-30

8.49E-31

.54E-31

1.13E-18

.17E-25
.69E-26
.23E-26
.33E-26

w o O N

3.30E-16
.22E-17
2.30E-18

[a—y

2.27E-25
1.46E-25
7.82E-26

113

[e)]

1SN

O = N O

.26E-15

w o~ N

.57E-16

.32E-22
.04E-22
.67E-23
.57E-23

1.

.60E-14
.45E-15
.56E-15

.43E-22
.14E-22
.21E-22

N

SPNSYS=

.84E-15
.29E-15
.30E-16

2.41E-22

—_

.55E-22

8.29E-23

83E-16

.36E-23
.18E-23
.69E-23
.44E-23

.45E-15
.07E-16
.71E-16

.71E-23
.25E-23
.34E-23

A.7 adflI: iso-nuclear master files

114

A.8 adf15: photon emissivity coefficients

115

A.9 adf23: state selective electron impact ionisation coefficients

The data sets provide tabular state selective direct ionisation rate coefficients between initial ionising and final ionised
states at ca, Is or ic resolution. The tabular data also may include electron impact excitation rate coefficients to au-
toionising states and Auger yields allowing detailed evaluation of excitation-autoionisation channels.

Data mnemonic: cio

Data root: /home/adas/adas/adf23/
Last update: 277 November 2008
Utilising subroutines: xxdata_23.for

Formatted files to adf23 specification:

Iso-elec. Library Members Resol. Comments Quality
grf95#he th_b3ls - th_o6ls Is Griffin High
grf95#he exp-b3ls - exp_o6ls Is Griffin High
grfo5#li th_b2lIs - th_oSls Is Griffin High
grf95#be th_blls - th_o4ls Is Griffin High
grf95#b th_bOlIs - th_o3ls Is Griffin High
arf95#c th_cOls - th_o2ls Is Griffin High
grf95#n th_nOls - th_olls Is Griffin High
grf95#n exp-n0ls - exp-olls Is Griffin High
grf95#0 th_o0ls, exp_o0ls Is Griffin High
arf97#cl arl Is Griffin High
sd107#h ca#h0 - ca#w73 ca Loch - seq.subset medium
sd107#h ic#hO - ic#w73 ic Loch - seq.subset High
sdl07+#he ca#he(- ca#w72 ca Loch - seq.subset medium
sd107#he ic#heO - ic#w72 ic Loch - seq.subset High
sd107#1i ca#li0 - ca#tw71 ca Loch - seq.subset medium
sd107#1i ic#li0 - ic#w71 ic Loch - seq.subset High
Iso-nuc. Library = Members Resol. Comments Quality
sdl08#18 ca#farQ - ca#farl7 ca Loch medium
sd108#50 ca#sn0 - ca#sn49 ca Loch medium
sd108#54 ca#xe(- ca#xe53 ca Loch medium
sdl08#74 ca#tw(- ca#tw73 ca Loch medium

Notes:

116

Data lines:

Data lines Format

seq ="SEQ’ , nucchg =170, type =’CTYPE’ , ADF23 1a80: keywords - a2,i,a2,a5
<blank line> 1a80

c10, bwnf = BWNF nprf = NLVL_F 1a80: al0,keywords -f12,i3

[c10 has form ’aa+nn aaaa’ where aa = elem. symb., nn= final ion charge
and aaaa = conf/term/levl if CTYPE=ca/ls/ic |
[characters are left justified and numbers right justified]

<underlines> 1a80
<descriptive headers> 1a80
<underlines> 1a80
for i=1,NLVL_F

IA_F(i) , CODE_F() , CSTRGA_F(@) , cnn , WA_F(i) i5,al,a,a,f13

[cnn has the form *(ISA_F(i))ILA _F(i)(XJA_F(@))’ if CTYPE=Is/ic]
and cnn has the form ’(XJA_F(i))’ if CTYPE=ca]

endfor
<blank line> 1a80
c10, bwni = BWNI ¢4 = NLVL_I 1a80: al0,keywords -f12,i3

[c10 has form ’aa+nn aaaa’ where aa = elem. symb., nn= initial ion charge
and aaaa = conf/term/levl if CTYPE=ca/ls/ic |
[c4 has form ’aaaa’ where aaaa = ncfg/ntrm/nlvl if CTYPE=ca/ls/ic]

<underlines> 1a80
<descriptive headers> 1a80
<underlines> 1a80
do i=1,NLVL_I

TIA_I(@) , CODE_() , CSTRGA (i) , cnn , WA_I(i) i5,al,a,a,f13

[cnn has the form *(ISA_IG)ILA_IG)(XJA_IG)) if CTYPE=Is/ic
and cnn has the form ’(XJA_I(i))’ if CTYPE=ca]

enddo
<blank line> 1a80
<underlines> 1a80
do i=1,NMETI
<underlines> 1a80
<descriptive headers> 1a80
<underlines> 1a80
meti*= IMET() 1a80: keywords - i
te= (TEA_ION(,it),it=1,NTE) 1a256:keyword - d9.2,21d10.2
<underlines> 1a80
forj=1,NLVN_F
INDF , (QRED_ION(,indf,it),it=1,NTE) 15,18x,22d10.2
endfor
<blank line> 1a80
c20 a20

[c20 has form > aa+nn Auger yields’ where aa = elem. symb.
and nn= final ion charge]
<underlines> 1a80

117

c25, (INDF_A(,k),k=1,NF_A(i)) 1a25,i8,21i10
[c25 has the form ’ indi /indf’]
<underlines> 1a80
doj=1,NLVL.i
INDI , (YLD_A(,indi,k),k=1,NF_A(i)) i5,18x,22d10.2
enddo

<blank line> 1a80
<descriptive headers> 1a80
<underlines> 1a80
te= (TEA_EXC(i,it),it=1,NTE) 1a256:keyword - d9.2,21d10.2
<underlines> 1a80

doj=1,NLVL.
INDI, (QRED_EXC(,indi,it),it=1,NTE) i5,18x,22d10.2
enddo
<underlines> 1a80
enddo

118

Variable identification:

Name Meaning Comment

SEQ iso-electronic sequence two characters, blank fill to right

170 nuclear charge

CTYPE ca, Is or ic denoting resolution two characters

BWNF ionisation potential of final state ion (cm-1)

NLVL_F no. of final ion configs, terms or levels depending on resolution

IA_F() index of final states

CODE_F() code for metastables of final state ion * indicates a metastable

CSTRGA_F() configuration string of final states standard notation

ISA_F() multiplicity only for Is and ic resolution

ILA_F() total orbital quantum number only for Is and ic resolution

XJA F() (stat. wt.-1)/2 or J J only for ic resolution

BWNI ionisation potential of initial state ion (cm-1)

NLVL.I no. of initial ion configs, terms or levels depending on resolution

TIA_I() index of initial states

CODE_I() code for metastables of initial state ion * indicates a metastable

CSTRGA I() configuration string of initial states standard notation

ISAI() multiplicity only for Is and ic resolution

ILAI) total orbital quantum number only for Is and ic resolution

XJAI() (stat. wt.-1)/2 or J J only for ic resolution

NMETI no. of metastables of initial ion

IMETI() pointers to metastables in initial state index

TEA_ION(,) elec. temperatures (K) of ionis. coefft table 1st dim: initial metastable index,
2nd dim: te index

NTE number of elec. temperatures

INDF current final state metastable index

QRED_ION(,,) scaled ionis. coeffts (cm3 s-1) table 1st dim: initial metastable index,
2nd dim: final state index
3rd dim: te index

NF_A() no. of final states for Auger yield table Ist dim: initial metastable index,

INDF_A(,) final state index for Auger yield table Ist dim: initial metastable index,
2nd dim: final state index

YLD_A(,) Auger yield table 1st dim: initial metastable index,
2nd dim: initial state index
3rd dim: final state index

TEA_EXC(,) elec. temperatures (K) of excit. coefft table Ist dim: initial metastable index,
2nd dim: te index

INDI current initial state index

QRED_EXC(,,) scaled excit. coeffts (cm3 s-1) table 1st dim: initial metastable index,

119

2nd dim: initial excited state index
3rd dim: te index

Sample 1. /home/adas/adas/adf23/adf23_sample_ca_without-nrep.dat

.00D+04

2.73D-07

.52D-08

1.55D-08

S U1 O N

.00D+04

.00D-05
.79D-01
.53D-02
.19D-05

ADF23

~

[o) e BTN

.00D+05

.23D-07
.08D-08
.13D-08

.00D+05

.11D-05
.44D-01
.51D-02
.31D-05

seq =’sn nucchg = 50 type = ’ca
sn+ 1 conf indexing bwnf = 116138.9 nprf = 3
indf code W] wnf
1* 4dA 5s2 5pl (2.5 0.0
2 4dA 5s1 5p2 (14.5) 55559.2
3 4s2 4p6 4d9 5s2 5p2 (74.5) 204542.3
sn+ O conf indexing bwni = 57118.8 ncfg = 5
indi code Wl wni
1* 4dA 5s2 5p2 (7.0) 0.0
2 4p5 4dA 4f1 5s2 5p2 (629.5) 848246.4
3 4s2 4p5 4dA 5s2 5p3 (59.5) 788239.3
4 4p5 4dA 5s2 5p2 5d1 (449.5) 840261.6
5 4p5 4dA 5s2 5p2 5f1 (629.5) 850666.1
meti*= 1
ionis rates
indf Te= 2.00D+03 5.00D+03 1.00D+04 2.00D+04
1 6.13D-08 1.11D-07 1.54D-07 2.02D-07
2 6.45D-09 1.68D-08 2.59D-08 3.68D-08
3 2.53D-10 2.04D-09 4.40D-09 7.51D-09
sn+ 1 Auger yields
indi \indf 1 3
2 1.00D+00 5.00D+00
3 1.00D+00 2.00D+00
4 1.00D+00 3.00D+00
5 1.00D+00 1.00D+00
excit rates
indi Te= 2.00D+03 5.00D+83 1.00D+04 2.00D+04
2 1.00D-08 1.00D-08 6.91D-05 6.93D-05
3 1.00D-08 2.74D+02 4.08D-01 4.82D-01
4 1.00D-08 1.00D-08 4.32D-02 4.67D-02
5 1.00D-08 1.00D-08 6.09D-05 6.12D-05
G oo
C
C Sample: ionising ion sn+@
C configuration average
C single metastable (ground) state for final ion sn+l

120

NOONOONDONONONONnnNN

single metastable (ground) state for initial ion sn+®

includes direct ionisation

includes excitation to a set of low auto-ionising configurations
no higher bundle-n shells

* is used to identify initial and final metastables. The indexing
should avoid ambiguity even if * is omitted.

two or more electron shake-off would require further final ion
blocks in addition to the adjacent parent ion.

shake-off after direct ionisation would require further final ion
blocks in addition to the adjacent parent ion.

121

A.10 adf32: drivers for ADASS802 ionisation calculations

The format provides configuration and other control parameters for distorted wave electron impact collisional ion-
isation rate coefficient calculations. They have no use outside ADAS802 calculations. The format is a sequential
link of a number of sub-formats driving the various steps of the calculation. The sub-formats are .seq., .indx, .cfg,
_ionsn_dirct_<i><j>.dat, _ionsn_indirct_<i><j>.dat, _autos_in, _di_rcg_l.dat and _di_rcg_2.dat. They are either auto-
generated in background execution of the ionisation code (see ADAS8#2) or are created from interactive data input
on-line (see ADAS802). There is no necessity for their archive storage for the general ADAS user. The format is
systematically archived in central ADAS heavy element calculations for completeness of production records.

Data mnemonic:

Data root: /home/adas/adas/adf32/

Last update: Jan 15, 2009

Utilising subroutines: ADAS802. Note no read_adf32 is provided in ADAS.

Formatted files to adf32 specification:

Element Directory Form Members

Ar argon composite ar0.dat - ar17.dat
Kr krypton composite kr0.dat - kr35.dat
Xe xenon composite xe0.dat - xe53.dat
Ag silver composite ag0.dat - ag46.dat
Sn tin composite snQ.dat - sn49.dat
W tungsten composite w0.dat - w73.dat

122

A1 adf34: drivers for ADAS801 structure calculations

The format provides configuration and other control parameters for Cowan atomic structure calculations. They have
no use outside Cowan calculations. There are four variants called the primary, _inst, _Is_pp, _ic_pp datasets. The
latter three are relevant only to the intermediate steps of automatic Cowan calculations. They are either auto-generated
in background execution of the Cowan code (see ADASS8#1) or are created from interactive data input on-line (see
ADASS8O01). There is no necessity for their archive storage for the general ADAS user and they are included here only
for completeness. The primary forms the main input dataset to ADAS801. It is of value to archive as a record (and for
repeatability) of a structure calculation. It can also be prepared by hand or simply modified (for example by including

an extra configuration). The format is systematically archived in central ADAS heavy element calculations.

Data mnemonic:
Data root: /home/adas/adas/adf34/
Last update: Dec 18, 2008

Utilising subroutines: ADAS801. Note no read_adf34 is provided in ADAS.

Formatted files to adf34 specification:

Element Directory Form Members

Ar argon primary ar(.dat - arl7.dat
_inst ar(_inst.dat - ar17_inst.dat
As_pp ar0_ls_pp.dat - ar17_ls_pp.dat
_ic_pp ar0_ls_pp.dat - ar17_lIs_pp.dat

Kr krypton primary krO.dat - kr35.dat

Xe xenon primary xe0O.dat - xe53.dat

Ag silver primary ag0.dat - ag46.dat

Sn tin primary sn0.dat - sn49.dat

w tungsten primary w0.dat - w73.dat

Data lines (primary variant):

Data lines

Format

C80
do i=1,NCONFG

1a80

170, 121, CTITLA(), CFCOM(i) 2i5,1a18,3x,1a20

enddo
-1 i5
Variable identification (primary variant):
Name Meaning Comment
C80 control string - preferred settings given should be retained

[Refer to Cowan text - Atomic Structure’ for detail of control
settings. ADASS801 uses a default set]

170 nuclear charge
171 effective ion charge

[Usually taken as ion charge+1, this can give an incorrect total
electron count for complex ions. The Cowan prescription is based

on reference to the nearest rare gas core (and may be negative).
ADAS automatic heavy species codes have a robust IZ1 specifier. The
user varying this must check the electron count from the rcn step.]

CTITLA() string for user configuration naming convenience in output - preferred shown

CFCOM() configuration specifications in Cowan format

Sample (primary variant): [home/adas/adas/adf34/argon/ar3.dat

123

2 -5 2 10 1.0 5.d-09 5.d-11-2 0130 1.0 0.65 0.0 0.5

18 4 Ar ground zl= 3 1 3s2 3p3

18 4 Ar cfg 01 1 3s2 3p2 4pl
18 4 Ar cfg 02 1 3s2 3p2 4fl
18 4 Ar cfg 03 ® 3s2 3p2 3d1
18 4 Ar cfg 04 0 3s2 3p2 4sl
18 4 Ar cfg 05 ® 3s2 3p2 4di
18 4 Ar cfg 06 ® 3s1 3p4

-1

Sample (_inst variant): /home/adas/adas/adf34/argon/ar3_inst.dat

z0 18

zi 3

parity-1 3

parity-2 4

E2 3

M1 3

scale 75 95 75 75 75

temperature 25
2.00e+02 3.00e+02 5.00e+02 7.00e+02 1.00e+03 1.50e+03 2.00e+03 3.00e+03
5.00e+03 7.00e+03 1.00e+04 1.50e+04 2.00e+04 3.00e+04 5.00e+04 7.00e+04
1.00e+05 1.50e+05 2.00e+05 3.00e+05 5.00e+05 1.00e+06 2.00e+06 5.00e+06
1.00e+07

Sample (_Is_pp variant). [home/adas/adas/adf34/argon/ar3_ls_pp.dat

1
Hugh Summers

10/08/07

5

C

C Cowan plane wave Born method

C

C Scale factors 75 95 75 75 75

C

&FILES ifgfile = ’./ifg#adf34_argon_ar3.dat’ , outfile = ’'adf®4_copmm#18_ls#ar3.dat’ &END

&OPTIONS ip = 482782.27, coupling = LS’ , aval = 'YES’ , isonuclear = ’YES’,
quantity = 'RATES’, lweight = 'NO’ , comments = 2, numtemp = 14 , &END

1 2 3 5 7 911 12 13 14 15 17 19 20

Sample (_ic_pp variant): fhome/adas/adas/adf34/argon/ar3_ic_pp.dat

1
Hugh Summers
10/08/07

Cowan plane wave Born method

Scale factors 75 95 75 75 75

N O NONNOwwv

124

&FILES ifgfile = ’./ifg#adf34_argon_ar3.dat’ , outfile = ’'adf®4_copmm#18_ic#ar3.dat’ &END

&OPTIONS ip = 482782.27, coupling = 'IC’ , aval = YES’ , isonuclear = ’YES’,
quantity = 'RATES’, lweight = ’NO’ , comments = 2, numtemp = 14 , &END

1 2 3 5 7 91112 13 14 15 17 19 20

125

A.12 adf40: envelope feature photon emissivity coefficients

The format provides a pixellated tabulation of one or more spectral intervals containing the line broadened emissivi-
ties of the spectrum of an ion of an element. Analogous to the emissivity coefficients of adf15, the feature emissivity
coeflicients are collisional-radiative quantities, tabulated for ranges of electron temperatures and electron densities.
The spectrum line content of a feature emissivity coefficient depends on the data input (normally an adf04 data set) to
the collisional-radiative calculation. The types exc, rec and cx types and resolutions ca, Is and ic, used for adfI5 also
apply to adf40. Since the wavelength intervals of feature emissivity coefficients are usually set up for particular local
spectrometers, the central ADAS database content of this format is restricted to a few generic ranges, such as VUV,
XUV and visible.

Data mnemonic: fpec

Data root: /home/adas/adas/adf40/

Last update: Dec 10, 2008

Utilising subroutines: read_adf40.pro, xxdata_40.pro

Formatted files to adf54 specification:

Element Directory Sub-dir. layer Resolution Members

Xe copmm#54 xe 01 ca ca#xe(.dat - ca#xe53.dat
Is Is#xe0.dat - Is#xe53.dat
ic ic#xe(.dat - ic#xe53.dat

Sn copmm#50 xe 01 ca ca#sn0.dat - ca#sn49.dat
Is Is#tsn0.dat - 1s#sn49.dat
ic ic#sn0.dat - ic#sn49.dat

Data lines:
Data lines Format
NSEL, SYM, 1Z, TEXT,RCODE i5,4x,’/°,1a3,i2,1a54,) ,1a2,’)

do isel= 1 to NSEL
FCODE, NPIX , NDENS , NTE , FILMEM, TYPE , INDM , ISEL a6,i6,2i4,2¢8.,i2,i5
[NB. ’/” and ’code=" delimited]

WVMIN, WVMAX 2612.5
(DENS(in), in=1,NDENS) 8¢9.2
(TE(it), it=1,NTE) 8¢9.2

do in = 1 to NDENS
doit=1to NTE
(FPEC(ipix,in,it,ISEL), ipix=1,NPIX) 8e9.2
enddo
enddo
enddo

Variable identification:

126

Name

Meaning

Comment

NSEL
SYM

1Z

TEXT
RCODE
FCODE
NPIX
NDENS
NTE
FILMEM
TYPE
INDM
ISEL
WVMIN
WVMAX
DENS()
TE()
FPEC(,,)

number of transitions available

element symbol in form

charge of the ion

information

resolution code; LS=; Is-resolution; IC=; intermediate coupling
Filter character code if present

Number of pixels

number of densities

number of temperatures

source specific ion excitation file

type of photon emissivity (excit, recomb, cx)
associated metastable index in source file

transition index

minimum wavelength of spectral interval (Angstrom)
maximum wavelength of spectral interval (Angstrom)
electron densities (cm-3)

electron temperatures (eV)

finite density feature photon emissivity coefficients (cm3 s-1)
Ist parameter pixel index

2nd parameter electron density index

3rd parameter electron temperature index

127

Sample: /home/adas/adas/adf40/xe_10.dat

== 00 wWww =

9.

2 /Xe+10 envelope feature photon emissivity coefficients
ft1235 128 24 24 /filmem =

200.00000 1000.00000

.00e+01 1.00e+02 1.00e+03 1.00e+04 1
.00e+07 1.00e+08 3.00e+08 1.00e+09 3
.00e+11 1.00e+12 3.00e+12 1.00e+13 3
.31e-02 6.03e-02 8.62e-02 1.29%e-01 1
.62e-01 1.29e+00 1.72e+00 2.59e+00 4
.72e+01 2.59e+01 4.31e+01 6.03e+01 8
.00e-74 1.00e-74 1.00e-74 1.00e-74 1
19e-10 1.56e-09 2.51e-09 3.14e-09 3.

ft1235 128 24 24 /filmem =

Nn N N N

(g

0ON N N0 0N n0n0nNnn0o0n0no0o00nonnN

n N

NE—= 0o b wwR

10.00000 100.00000

.00e+01 1.00e+02 1.00e+03 1.00e+04 1
.00e+07 1.00e+08 3.00e+08 1.00e+09 3
.00e+11 1.00e+12 3.00e+12 1.00e+13 3
.31e-02 6.03e-02 8.62e-02 1.29e-01 1
.62e-01 1.29e+00 1.72e+00 2.59e+00 4
.72e+01 2.59e+01 4.31e+01 6.03e+01 8
.95e-14 5.90e-14 5.27e-14 7.86e-14 1
.28e-14 8.71e-15 6.27e-15 3.54e-15 2.

/type = f_excit

.00e+05 1.00e+06
.00e+09 1.00e+10
.00e+13 1.00e+14
.72e-01 2.59%e-01
.31e+00 6.03e+00
.62e+01 1.29e+02
.00e-74 1.00e-74

76e-09 4.36e-09
/type = f_excit

.00e+05 1.00e+06
.00e+09 1.00e+10
.00e+13 1.00e+14
.72e-01 2.59%e-01
.31e+00 6.03e+00
.62e+01 1.29e+02
.12e-13 1.56e-13

15e-15 2.51e-15

envelope feature photon emissivity c

information

54
11

nuclear charge
ion charge + 1

specific ion file :
expansion file

no ionisation data has been included

options : Ilnorm=T Ilpsel=F lzsel=F
lhsel=F 1rsel=F lisel=F

population processing code: adas810

isel iwvrg wavelength range (ang)

1 1 100.00000 1000.00000
2 2 10.00000 100.00000
code : adas810

producer : h.p.summers

oefficients:

lionsel=T
Insel =F

type metastable

f_excit
f_excit

128

/home/adas/adas/adf04/copmm#54/1s#xel0.dat
no projection data was used in this case

/IC
/indm = 1/isel =
3.00e+06 1.00e+07
3.00e+10 1.00e+11
3.00e+14 1.00e+15
4.31e-01 6.03e-01
8.62e+00 1.29e+01
1.72e+02 2.59e+02
2.82e-30 3.22e-24
4.71e-09 5.03e-09
/indm = 1/isel =
3.00e+06 1.00e+07
3.00e+10 1.00e+11
3.00e+14 1.00e+15
4.31e-01 6.03e-01
8.62e+00 1.29e+01
1.72e+02 2.59e+02
1.68e-13 1.47e-13
4.70e-15 1.01e-14
imet nmet
t 1
t 1

/

ip

129

A3 adf42: driver data sets for ADAS810 emissivity calculations

130

A.14 adf46: driver data sets for BBGP for dielectronic recombination

The data sets contain atomic structure, threshold partial wave collisional strengths, transition probabilities, static dipole
polarisabilities, quantum defect expansions, representative level and plasma specifications. These are sufficient to en-
able calculation of state selective dielectronic coefficients to bundle and bundle-nl shells of a complex ion in the bbgp

approximation including the effects of doubly excited state re-distribution.

Data mnemonic:

Data root: [home/adas/adas/adf46/
Last update: Feb 13,2009

Utilising subroutines: run_adas708.for

Formatted files to adf46 specification:

Iso-elec. Library Members Resol. Comments Quality
bbgp094#he Is#lil - Is#w71 s adas Medium
bbgp09#li Is#bel - Is#w70 Is adas Medium
bbgp094#ta Is#wl Is adas Medium
Notes:
Data lines:
Data lines Format

seq ="SEQ’ , nucchg =IZ0 , type =’"CTYPE’ , ADF46
<blank line>
cl0, bwni = BWNO.I npri = NLVL_I
[c10 has form ’aa+nn aaaa’ where aa = elem. symb., nn= initial ion charge
and aaaa = conf/term/levl if CTYPE=ca/ls/ic]
[characters are left justified and numbers right justified]
<underlines>
<descriptive headers>
<underlines>
endfor
for i=1,NLVL_F
IA_I3), CODE._I(i) , CSTRGA_I() , cnn , WA_I(i)
[cnn has the form *(ISA_I(i))ILA_I(1))(XJA_I(@)) if CTYPE=Is/ic]
and cnn has the form *(XJA_I(i))’ if CTYPE=ca]
endfor
<blank line>

131

1a80: keywords - a2,i,a2,a5
1a80
1a80: al0,keywords -f12,i3

1a80
1a80
1a80

i5,al,a,a,f13

1a80

cl0, bwni = BWNO_F ¢4 = NLVL_F

[c10 has form ’aa+nn aaaa’ where aa = elem. symb., nn= initial ion charge

and aaaa = conf/term/levl if CTYPE=ca/ls/ic |

[c4 has form *aaaa’ where aaaa = ncfg/ntrm/nlvl if CTYPE=ca/ls/ic]

<underlines>
<descriptive headers>
<underlines>

for i=1,NLVL_I

IA_F(i) , CODE_F(i) , CSTRGA F(i) , cnn , WA_F(i)

[cnn has the form *(ISA_F(@i))ILA_F(i)(XJA_F(1))’ if CTYPE=ls/ic
and cnn has the form ’(XJA_F(i))’ if CTYPE=ca]

<blank line>
<block header>

[In normal order = ’transition parameters’ (keyword: ’transition”)

<underlines>
c35,c221
[c35 is blank filled. ¢223 has the form

1=01=1 I=NOMGL-1" where NOMGL is the number of

partial waves present in the following table]
<underlines>
for i=1, NTRN

IDXL(@) , IDXU() , ITYP(i), AUL(i) , (OMGL(j,i)j=1,NOMGL)

endfor
<blank line>
<block header>

[In normal order = ’polarisability ... (keyword: *polarisability”)

<underlines>
¢30,c226
[c35 is descriptive . ¢223 has the form

'1=0 1=1I=LMAX_QD’ where LMAX_QD is

the number of quantum defect expansions in the following table]

<descriptive headers>
<underlines>
for i=1,NPOL

IDXP(i) , DPOL() , (QD1(j.,i),QD2(j,i),j=1,]=LMAX_QD+1)

endfor
<blank line>
<block header>

[In normal order = ’representative ... (keyword: 'representative’)

<underlines>
cll,NL1
[c11 has the form * nll =’]
cll, NL2
[c11 has the form * nl2 =" |
cll, NL3
[c11 has the form * nl3 =’]
cll, c245
[c11 has the form ’ nrep =’. ¢245 has the form

132

1a80: al0,keywords -f12,i3

1a80

1a80

1a80
i5,al,a,a,f13
1a80

1a80: keyword

1a80
a35,a221

1a256
3i5,5x,d10.2,22(f10.5)

1a80
1a80: keyword

1a80
a30,a226

1a80
1a80

i5,5x,23(f10.5)

1a80
1a80: keyword

1a80

*

all,a245

(NREP(),i=1,INREP) as blank separated integers]
cll, c245 all,a245
[c11 has the form * Irep =’. ¢245 has the form
(LREP(),i=1,ILREP) as blank separated integers]

<blank line> 1a80

<block header> 1a80: keyword
[In normal order = ’plasma ... (keyword: ’plasma’)

<underlines> 1a80

cll, c245 all,a245

[c11 has the form ’ te =’. ¢c245 has the form
(TE(),i=1,NTE) as blank separated real numbers]
cll, c245 all,a245
[c11 has the form * dens =’. ¢245 has the form
(DENS(i),i=1,NDENS) as blank separated real numbers]
cll, c245 all,a245
[c11 has the form * tp =’. c245 has the form
(TP(1),i=1,NTP) as blank separated real numbers]
cll, c245 all,a245
[c11 has the form * densp =’. c245 has the form
(DENSP(i),i=1,NDENSP) as blank separated real numbers]

cll, ZP *
[c11 has the form * zp ="]
cll, AMSP *
[c11 has the form > amsp ="]
cll, c246 all,a245

[c11 has the form ’c
69 dashes -’]

-’. ¢245 is conventionally

Variable identification:

Name Meaning Comment

SEQ iso-electronic sequence two characters, blank fill to right
120 nuclear charge

CTYPE ca, Is or ic denoting resolution two characters

BWNO._I ionisation potential of initial state ion (cm-1)

NLVL.I no. of initial ion configs, terms or levels depending on resolution
T1A_I() index of initial states

CODE_I() code for metastables of initial state ion * indicates a metastable
CSTRGAI() configuration string of initial states standard notation

ISA_I() multiplicity only for Is and ic resolution
ILA_I() total orbital quantum number only for Is and ic resolution
XJAI() (stat. wt.-1)/2 orJ J only for ic resolution
BWNO_F ionisation potential of final state ion (cm-1)

NLVL_F no. of final ion configs, terms or levels depending on resolution

133

1A_F()
CODE_F()
CSTRGA _F()
ISA_F()
ILA_F()
XJA_F()
NTRN
IDXL()
IDXU()
ITYP()

AUL()
NOMGLY()

OMGL(,)

NPOL
IDXP()
DPOL()
LMAX_QD
QDAI(,)
QDAZ2(,)
NLI

NL2

NL3

INREP
NREP()
ILREP
LREP()
NTE
TE()
NDENS
DENS()
NTP
TP()
NDENSP
DENSP()
7P
AMSP

index of final states

code for metastables of final state ion
configuration string of final states
multiplicity

total orbital quantum number

(stat. wt.-1)/2 or J

number of transitions

index of lower parent ion level of trans
index of upper parent ion level of trans
type of parent transition (1=dipol,
2=non-dipol, 3=spin change)

transition probabilities (s-1)

number threshold partial wave collision
strengths for parent transitions
threshold partial wave collision
strengths for parent transitions

number of polarisabilies

index of parent ion level

dipole polarisability of parent level
largest quantum defect l-series expansion
quantum defect expansion coefficient a0
quantun defect expansion coefficient al
lowest n-shell of recombined ion for DR
lowest 1-resolved shell of recombined ion for DR
highest bundle-n n-shell for recombined
ion for dr

number of representative n-shell
representative n-shells

number of representative 1-shells
representative 1-shells

number of electron temperatures
electron temperatures (K)

number of electron densities

electron densities (cm-3)

number of positive ion temperatures
positive ion temperatures (K)

number of positive ion densities
positive ion densities (cm-3)

projectile ion effective charge

projectile ion effective mass number

134

* indicates a metastable
standard notation

only for Is and ic resolution
only for Is and ic resolution
J only for ic resolution

Sample 1. /home/adas/adas/adf46/bbgp094#b/Ist#od.dat

seq ='b’ nucchg = 8 type =’1s’ adf46
0 + 4 term indexing bwnf = 6865884.2 nprf = 4
indi code SL W wno
1* 1s2 2s2 (HoC 1.0 0.0
2# 1s2 2sl 2pl (D1 3.0 166950.0
3# 1s2 2sl 3sl (1eC 1.0 561697.0
4# 1s2 2sl 3pl (11 3.0 580766.0
o + 3 term indexing bwni = 6092695.1 ntrm = 1
indf code SL Wl wno
1* 1s2 2s2 2pl (2)1C 2.5 257.3
transition parameters
idx1l idxu typ_trn aul omgl (E=0)
1=0 1=1 1=2 1=3 1=4 1=5
1 4 1 2.31D+10 0.00599 0.00079 0.01329 0.21682 0.57813 0.00000
3 4 1 1.67D+07 0.93985 1.02455 0.53798 0.46717 0.85458 0.00000
2 4 1.00D+00 0.13598 0.03529 0.07155 0.01967 0.00039 0.00000
polarisability and quantum defect parameters
idxp dpol 1=0 1=1 1=2
qdl qd2 qdl qd2 qdl qd2
1 ©.99590 0.33845 0.06300 0.17670 0.07300 0.03874 -0.08300
2 2.48760 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
3 31.53780 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 20.28190 0.00000 0.20000 0.00000 0.00000 0.00000 0.00000
representative n-shells
nll = 2
nl2 = 10
nl3 = 900
nrep =123456789 10 11 12 15 18 20 25 30 35 40 50 60 70 80 100 150 200 300 500 700 900
lrep =012345673829
plasma parameters
te = 1.60E+04 2.00D+04 3.20D+04 5.00D+04 8.00D+04 1.00D+05 1.60D+05 3.20D+05
ne = 1.00E-04 2.00D-04 3.20D-04 5.00D-04 8.00D-04 1.00D-03 1.660D-03 3.20D-03
tp 1.60E+04 2.00D+04 3.20D+04 5.00D+04 8.00D+04 1.00D+05 1.60D+05 3.20D+05
np = 1.00E-04 2.00D-04 3.20D-04 5.00D-04 8.00D-04 1.00D-03 1.60D-03 3.20D-03
zZp =1.0
amsp = 1836.0

135

0onN N N0 00N nn0nn

Notes: (1) te, tp in Kelvin; ne, np in cm™-3.
(2) tp and np relate to redistributive collisions with plasma ions
of charge zefp and atomic mass number amp.
Code : adas701
Author : Hugh Summers
Source : /home/summers/adas_dev/adas/adf55/.dat
Date : 05-02-2009

136

A.15 adf48: state selective radiative recombination coefficients

137

A.16 adf54: general promotional rule sets

Each data set of promotional rules provides a rule specification for all possible ground states of ions of elements.The
central ADAS data base has generic samples for small, medium and large computer systems. In practice the rules
would be customised for a particular computer system (see section 2.4. Customising is done for one element at a time,
and it may be convenient for the user to archive the customised data set by element. The central ADAS data base has
some such customised promotion rules data sets for EFDA-JET. There is potential redundancy in such archiving, since

the rules for one element may well be apposite for all elements lighter than it.

Data mnemonic:
Data root: /home/adas/adas/adf54/
Last update: Aug 12, 2008
Utilising subroutines: read_adf54.pro

Formatted files to adf54 specification:

Data lines:

Element Dataset Sizing Comments
promotional_rules_small.dat 300 levels
promotional _rules_medium.dat 1000 levels
promotional _rules_large.dat 10000 levels
*

<elem. symbol>

promotional_rules_custom.dat

promotional_rules_<elem. Symbol>.dat 1000 levels

Data lines

Format

nmax, nel

do i=0 to n_index-1
do j=0 to nel-1

index(i*nel+j), config(i*nel+j)

enddo
index[nel*i:(nel*(i+1))-1]
n_el[nel*i:(nel*(i+1))-1]
no_v_shl[nel*i:(nel*(i+1))-1]
max_dn_v1[nel*i:(nel*(i+1))-1]
min_dn_v1[nel*i:(nel*(i+1))-1]
max_dl_v1[nel*i:(nel*(i+1))-1]
min_dl_v1[nel*i:(nel*(i+1))-1]
max_dn_v2[nel*i:(nel*(i+1))-1]
min_dn_v2[nel*i:(nel*(i+1))-1]
max_dl_v2[nel*i:(nel*(i+1))-1]
min_dl_v2[nel*i:(nel*(i+1))-1]
prom_cl[nel*i:(nel*(i+1))-1]
max_n_cl[nel*i:(nel*(i+1))-1]

138

31x,1i3,5x%,1i2

li5,1a*

16x,10i5
16x,1015
16x,10i5
16x,10i5
16x,10i5
16x,1015
16x,1015
16x,10i5
16x,10i5
16x,10i5
16x,1015
16x,10i5
16x,10i5

min_n_cl[nel*i:(nel*(i+1))-1] 16x,10i5
max_l_cl[nel*i:(nel*(i+1))-1] 16x,10i5
min_l_cl[nel*i:(nel*(i+1))-1] 16x,10i5
max_dn_cl[nel*i:(nel*(i+1))-1] 16x,10i5
min_dn_cl[nel*i:(nel*(i+1))-1] 16x,10i5
max_dl_cl[nel*i:(nel*(i+1))-1] 16x,10i5
min_dl_cl[nel*i:(nel*(i+1))-1] 16x,10i5
fill_n_v1[nel*i:(nel*(i+1))-1] 16x,10i5

fill_par[nel*i:(nel*(i+1))-1] 16x,10i5
for_tr_sel[nel*i:(nel*(i+1))-1] 16x,10i5
last_4f[nel*i:(nel*(i+1))-1] 16x,10i5
grd_cmplx[nel*i:(nel*(i+1))-1] 16x,10i5
repeat
Variable identification:

Name Meaning Comment

nmax number of ground configs.

nel number of ground configs per block

n_index number of blocks (= nmax/nel)

index([] ground config. index

config[] ground config. strinds Cowan form

index[] n_el[] number of electron

no_v_shl[] number of open shell

max_dn_vI[] maximum delta n promotion for first
min_dn_vl[] minimum delta n promotion for first
max_dl_v1[] maximum delta I promotion for first
min_dl_v1[] minimum delta 1 promotion for first
max_dn_v2[] maximum delta n promotion for second
min_dn_v2[] minimum delta n promotion for second
max_dl_v2[] maximum delta I promotion for second

min_dl_v2[] minimum delta I promotion for second
prom_cl[] promote from inner shell closed shells
max_n_cl[] maximum inner shell n for promotion from
min_n_cl[] minimum inner shell n for promotion from
max_l_cl[] maximum inner shell 1 for promotion from
min_l_cl[] minimum inner shell I for promotion from
max_dn_cl[] maximum delta n promotion for inner shell to
min_dn_cl[] minimum delta n promotion for inner shell to
max_dl_cl[] maximum delta 1 promotion for inner shell to
min_dl_cl[] minimum delta I promotion for inner shell to
fill_.n_v1[] add all nl configurations

fill_par[] add parity

for_tr_sel[] Cowan option for radiative transitions
last_41]] shift an electron valence shell to 4f

grd_cmplx[] include configurations of same complex

139

Sample: /home/adas/adas/adf54/promotional_rules_large.dat

/ADF54
index

O oo NOYUUVIhA WN =R S

index
n_el
no_v_shl
max_dn_v1l
min_dn_v1
max_dl_v1
min_dl_v1
max_dn_v2
min_dn_v2
max_dl_v2
min_dl_v2
prom_cl
max_n_cl
min_n_cl
max_1_cl
min_1_cl
max_dn_cl
min_dn_cl
max_dl_cl
min_dl_cl
fill_n_v1
fill_par
for_tr_se
last_4f

grd_cmplx

index
170
171
172
173
174
175
176
177
178
179

/PROMOTION RULES
config

1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2

1

2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s2

config

1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s1

2s2
2s2
2s2
2s2
2s2
2s2
2s2
2sl

(]

@@ wWrawhedraoawuurrRrwreehrhrenNno e

2p6
2p6
2p6
2p6
2p6
2p6
2p6
2p6
2p6
2p6

2p6
2p5
2p4
2p3
2p2
2pl

3s2
3s2
3s2
3s2
3s2
3s2
3s2
3s2
3s2
3s2

2]

@ wreewdhkherwuuurrrwRERehNMRrRr

/180

3p6
3p6
3p6
3p6
3p6
3p6
3p6
3p6
3p6
3p6

2
84
2

@ WrHRrWwWwhkhoeeorRradaWuUIUITE LR WRFR DD PR S

3d10
3d10
3d10
3d10
3d10
3d10
3d10
3d10
3d10
3d10

S N

@D WErRrQWhAReaRrRWUIUVIREREWR D -

/10

4s2
4s2
4s2
4s2
4s2
4s2
4s2
4s2
4s2
4s2

S

oo
N

@ DdWrHRWwWwdhkhoeorRrWUIUVIFKRRE WRFRDD» RN

4p6
4p6
4p6
4p6
4p6
4p6
4p6
4p6
4p6
4p6

140

SN

@ @wWwWreewdhker@wWuu R REFEWRSHKD PP

4d10
4d10
4d10
4d10
4d10
4d10
4d10
4d10
4d10
4d10

4114
4114
4114
4f14
4f14
4114
4114
4114
4114
4f14

[02]

@ dWPrRreewdheraowuuureceeeeeehdhra@araeo

5s2
5s2
5s2
5s2
5s2
5s2
5s2
5s2
5s2
5s2

~

@D UWErHRrWhReerRrwWuurRroeeeh P, kr ©ON

5p6
5p6
5p6
5p6
5p6
5p6
5p6
5p6
5p6

%
~ he]
(o]

S DWW RADQWDHh UMD R DR, 0

5d10
5d10
5d10
5d10
5d10
5d10
5d10
5d10
5d10
5d9

~

@ weeewherRrWuUuu R NNRDNMNRFRLR NOUV

50
50
50
5f0
5f0
50
50
510

5£0

590
5g0
5g0
5g0
590
5g0
5g0
5g0

5g0

6s2
6s2
6s2
6s2
6s2
6s2
6s2
6sl

6s1

6p6
6p5
6p4
6p3
6p2
6pl

index 170 171 172 173 174 175 176 177 178 179
n_el
no_v_shl
max_dn_v1
min_dn_v1 -
max_dl_vl
min_dl_v1 -
max_dn_v2
min_dn_v2
max_dl_v2
min_dl_v2

prom_cl

max_n_cl

min_n_cl

max_1_cl

min_1_cl

max_dn_cl
min_dn_cl
max_dl_cl
min_dl_cl
fill_n_vi1

fill_par
for_tr_sel

last_4f

grd_cmplx

—_
(=]

P @ W R @rRre@rre@arNNReeeeeedrr WwkrkNRFRO®

WA re@NOdFrRr@Rr NNMNRrRrRDRrr WKk NP
1 1

W rr@rre@r@rLr NNRFrRrRreeeeeer wWwkrLDNRFR
1 1

—F QW mRBR@rRre@rRr@r NNRFRRRDD R WKk NRKRN

P @ W mrRr@rRr@rRr@rRr NNRFR DD WRKkRNIRFEO
1 1

P @ WRerRr@r@re@rNNRFRDr WRkNERFRWUu

H QWO MR @R A@QrRFAOR FEFEFMFEF ORI WENRF B

S O WO RO HRr R Uk Wk WwWkrkN
1

S WSRO RrRr R U PR r WKk WRr Kk

C Generated from old adas8xx_promotion_rules_large.pro. This is a hand
C selected set of rules chosen by H. Summers.

C

C User: Adam Foster

C Date: 15/02/08

141

A7 adf55: general dielectronic recombination promotional rules

Each data set of promotional rules provides a rule specification for all possible ground states of recombining ions of
elements. The central ADAS data base has generic samples for small, medium and large computer systems. In practice
the rules would be customised for a particular computer system (see section 2.4.

Data mnemonic:

Data root: /home/adas/adas/adf55/
Last update: Jan 29, 2009

Utilising subroutines: read_adf55.pro

Formatted files to adf55 specification:

Element Dataset Sizing Comments
promotional_rules_recom_small.dat 300 levels
promotional rules_recom_medium.dat 1000 levels
promotional_rules_recom_large.dat 10000 levels
promotional _rules_recom_custom.dat *

<elem. symbol> promotional_rules_<elem. Symbol>.dat 1000 levels

Data lines:

Data lines Format
nmax, nel 31x,113,5x%,1i2
do i=0 to n_index-1
do j=0 to nel-1
index(i*nel+j), config(i*nel+j) 1i5,1a*

enddo

index[nel*i:(nel*(i+1))-1] 16x,10i5
n_el[nel*i:(nel*(i+1))-1] 16x,10i5
no_v_shl[nel*i:(nel*(i+1))-1] 16x,10i5

max_dn_v1[nel*i:(nel*(i+1))-1] 16x,10i5
min_dn_v1[nel*i:(nel*(i+1))-1] 16x,10i5
max_dl_v1[nel*i:(nel*(i+1))-1] 16x,10i5
min_dl_v1[nel*i:(nel*(i+1))-1] 16x,10i5
max_dn_v2[nel*i:(nel*(i+1))-1] 16x,10i5
min_dn_v2[nel*i:(nel*(i+1))-1] 16x,10i5

max_dl_v2[nel*i:(nel*(i+1))-1] 16x,10i5
min_dl_v2[nel*i:(nel*(i+1))-1] 16x,10i5
prom_cl[nel*i:(nel*(i+1))-1] 16x,10i5
max_n_cl[nel*i:(nel*(i+1))-1] 16x,10i5

142

max_dn_v2[]
min_dn_v2[]

maximum delta n promotion for second
minimum delta n promotion for second

min_n_cl[nel*i:(nel*(i+1))-1] 16x,10i5
max_l_cl[nel*i:(nel*(i+1))-1] 16x,10i5
min_l_cl[nel*i:(nel*(i+1))-1] 16x,10i5
max_dn_cl[nel*i:(nel*(i+1))-1] 16x,10i5
min_dn_cl[nel*i:(nel*(i+1))-1] 16x,10i5
max_dl_cl[nel*i:(nel*(i+1))-1] 16x,10i5
min_dl_cl[nel*i:(nel*(i+1))-1] 16x,10i5
fill_n_v1[nel*i:(nel*(i+1))-1] 16x,10i5
fill_par[nel*i:(nel*(i+1))-1] 16x,10i5
for_tr_sel[nel*i:(nel*(i+1))-1] 16x,10i5
last_4f[nel*i:(nel*(i+1))-1] 16x,10i5
grd_cmplx[nel*i:(nel*(i+1))-1] 16x,10i5
n_target[nel*i:(nel*(i+1))-1] 16x,10i5
Imax_target[nel*i:(nel*(i+1))-1] 16x,10i5
repeat
Variable identification:
Name Meaning Comment
nmax number of ground configs
[refers to parent, that is recombining ion
above and all following]

nel number of ground configs per block

n_index number of blocks (= nmax/nel)

index([] ground config. index

config[] ground config. strinds Cowan form

index[] n_el[] number of electron

no_v_shl[] number of open shell

max_dn_vIl[] maximum delta n promotion for first

min_dn_vl[] minimum delta n promotion for first

max_dl_v1[] maximum delta I promotion for first

min_dl_v1[] minimum delta I promotion for first

max_dl_v2[] maximum delta 1 promotion for second
min_dl_v2[] minimum delta I promotion for second

prom _cl[] promote from inner shell closed shells
max_n_cl[] maximum inner shell n for promotion from
min_n_cl[] minimum inner shell n for promotion from
max_l_cl[] maximum inner shell 1 for promotion from
min_l_cl[] minimum inner shell 1 for promotion from
max_dn_cl[] maximum delta n promotion for inner shell to
min_dn_cl[] minimum delta n promotion for inner shell to
max_dl_cl[] maximum delta 1 promotion for inner shell to
min_dl_cl[] minimum delta 1 promotion for inner shell to
fill_.n_v1[] add all nl configurations

fill_par[] add parity

for_tr_sel[] Cowan option for radiative transitions

last_41[] shift an electron valence shell to 4f
grd_cmplx[] include configurations of same complex
n_target(] high spectator n-shell for Auger calcs.

[refers to recombined ion above and following]

Imax_target[] largest spectator l-shell for Auger calcs.

143

Sample: /home/adas/adas/adf55/promotional_rules_large.dat

/ADF55
index

O oo NOYUUVIhA WN =R S

index
n_el
no_v_shl
max_dn_v1l
min_dn_v1
max_dl_v1
min_dl_v1
max_dn_v2
min_dn_v2
max_dl_v2
min_dl_v2
prom_cl
max_n_cl
min_n_cl
max_1_cl
min_1_cl
max_dn_cl
min_dn_cl
max_dl_cl
min_dl_cl
fill_n_v1
fill_par
for_tr_se
last_4f

grd_cmplx

n_target
Imax_targ

index
170
171
172
173
174
175
176
177
178

/PROMOTION RULES
config

1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2

1

et

2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s2

(]

@@ wWrawhedraoawuurrRrwreehrhrenNno e

100

config

1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2

2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s1

10

2p6
2p6
2p6
2p6
2p6
2p6
2p6
2p6
2p6
2p6

2p6
2p5
2p4
2p3
2p2
2pl

3s2
3s2
3s2
3s2
3s2
3s2
3s2
3s2
3s2
3s2

2]

@ wreewdhkherwuuurrrwRERehNMRrRr

100

—_
(=]

/180

3p6
3p6
3p6
3p6
3p6
3p6
3p6
3p6
3p6
3p6

2
84
2

@ WrHRrWwWwhkhoeeorRradaWuUIUITE LR WRFR DD PR S

100
10

3d10
3d10
3d10
3d10
3d10
3d10
3d10
3d10
3d10
3d10

S N

@D WErRrQWhAReaRrRWUIUVIREREWR D -

100
10

/10

4s2
4s2
4s2
4s2
4s2
4s2
4s2
4s2
4s2
4s2

S

oo
N

@ DdWrHRWwWwdhkhoeorRrWUIUVIFKRRE WRFRDD» RN

10
1

0
0

4p6
4p6
4p6
4p6
4p6
4p6
4p6
4p6
4p6
4p6

4d10
4d10
4d10
4d10
4d10
4d10
4d10
4d10
4d10
4d10

SN

@ @wWwWreewdhker@wWuu R REFEWRSHKD PP

100 1

144

10

4114
4114
4114
4f14
4f14
4114
4114
4114
4114
4f14

[02]

@ dWPrRreewdheraowuuureceeeeeehdhra@araeo

00
10

5s2
5s2
5s2
5s2
5s2
5s2
5s2
5s2
5s2
5s2

~

@D UWErHRrWhReerRrwWuurRroeeeh P, kr ©ON

100
10

5p6
5p6
5p6
5p6
5p6
5p6
5p6
5p6
5p6

%
~ he]
(o]

S DWW RADQWDHh UMD R DR, 0

100
10

5d10
5d10
5d10
5d10
5d10
5d10
5d10
5d10
5d10
5d9

~

@ weeewherRrWuUuu R NNRDNMNRFRLR NOUV

100
10

50
50
50
5f0
5f0
50
50
510

5£0

590
5g0
5g0
5g0
590
5g0
5g0
5g0

5g0

6s2
6s2
6s2
6s2
6s2
6s2
6s2
6sl

6s1

6p6
6p5
6p4
6p3
6p2
6pl

179 1s1

index 170 171 172 173 174 175 176 177 178 179
n_el 10 9 8 7 6 5 4 3 2 1
no_v_shl 1 1 1 1 1 1 1 1 1 1
max_dn_v1 2 2 2 2 2 2 2 2 3 3
min_dn_v1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
max_dl_v1 3 3 3 3 3 3 3 3 3 3
min_dl_v1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
max_dn_v2 0 0 0 0 0 0 0 0 0 0
min_dn_v2 0 0 0 0 0 0 0 0 0 0
max_dl_v2 0 0 0 0 0 0 0 0 0 0
min_dl_v2 0 0 0 0 0 0 0 0 0 0
prom_cl 1 1 1 1 1 1 1 1 0 0
max_n_cl 2 2 2 2 2 2 1 1 1 1
min_n_cl 2 2 2 2 2 2 1 1 5 5
max_1_cl 1 1 1 1 1 1 1 1 1 1
min_1_cl 0 0 0 0 0 0 0 0 1 1
max_dn_cl 1 1 1 1 1 1 1 1 0 0
min_dn_cl 0 0 0 0 0 0 0 0 0 0
max_dl_cl 2 1 1 1 1 1 1 1 0 0
min_dl_cl 0 0 0 0 0 0 0 0 0 0
fill_n_v1 1 1 1 1 1 1 1 1 1 1
fill_par 0 0 0 0 0 0 0 0 0 0
for_tr_sel 3 3 3 3 3 3 3 3 3 3
last_4f 0 0 0 0 0 0) 0 0 0
grd_cmplx 0 0 1 1 1 1 1 0 0 0
n_target 100 100 100 100 100 100 100 100 100 100
Imax_target 10 10 10 10 10 10 10 10 10 10
C ___

C Generated from old adas8xx_promotion_rules_large.pro. This is a hand
C selected set of rules chosen by H. Summers.

C

C User: Hugh Summers

C Date: 29/01/09

145

A.18 adf56: general ionisation promeotional rules

Each data set of promotional rules provides a rule specification for all possible ground states of ionising ions of el-
ements and an associated set of singly excited states based on a parent. The central ADAS data base has generic
samples for small, medium and large computer systems. In practice the rules might be customised for a particular
computer system (see section 2.4.

Data mnemonic:

Data root: [home/adas/adas/adf56/
Last update: Jan 09, 2009

Utilising subroutines: read_adf56.pro

Formatted files to adf56 specification:

Element Dataset Sizing Comments
promotional_rules_ionis_small.dat grd drct
promotional _rules_ionis_medium.dat grd drct & exca
promotional rules_ionis_large.dat exst & grd drct & exca

<elem. symbol> promotional rules_ionis_<elem. Symbol>.dat grd drct & exca
Data lines:

Data lines Format
nmax, nel 31x,113,5x%,1i2
do i=0 to n_index-1
do j=0 to nel-1
index(i*nel+j), config(i*nel+j) 1i5,1a*

enddo

index[nel*i:(nel*(i+1))-1] 16x,10i5
n_el[nel*i:(nel*(i+1))-1] 16x,10i5
no_v_shl[nel*i:(nel*(i+1))-1] 16x,10i5
v1_shl[nel*i:(nel*@i+1))-1] 16x,10i5
v2_shl[nel*i:(nel*(i+1))-1] 16x,10i5

drct_eval_v[nel*i:(nel*(i+1))-1] 16x,10i5
drct_eval_cl[nel*i:(nel*(i+1))-1] 16x,10i5
min_shl_cl[nel*i:(nel*(i+1))-1] 16x,10i5
exca_eval_v2[nel*i:(nel*(i+1))-1] 16x,1015
max_dn_v2[nel*i:(nel*(i+1))-1] 16x,10i5
min_dn_v2[nel*i:(nel*(i+1))-1] 16x,10i5
max_dl_v2[nel*i:(nel*(i+1))-1] 16x,10i5

146

min_dl_v2[nel*i:(nel*(i+1))-1] 16x,10i5

exca_eval_cl[nel*i:(nel*(i+1))-1] 16x,10i5
max_dn_cl[nel*i:(nel*(i+1))-1] 16x,10i5
min_dn_cl[nel*i:(nel*(i+1))-1] 16x,10i5
max_dl_cl[nel*i:(nel*(i+1))-1] 16x,10i5
min_dl_cl[nel*i:(nel*(i+1))-1] 16x,10i5
exst_eval [nel*i:(nel*(i+1))-1] 16x,10i5

exst_adf00_prt[nel*i:(nel*(i+1))-1] 16x,10i5
exst_prt_hole_shl[nel*i:(nel*(i+1))-1] 16x,10i5
max_n_exst[nel*i:(nel*(i+1))-1] 16x,10i5
max_l_exst[nel*i:(nel*(i+1))-1] 16x,10i5
drct_eval_exst_v[nel*i:(nel*(i+1))-1] 16x,10i5
drct_eval_exst_cl[nel*i:(nel*(i+1))-1] 16x,10i5
exca_eval_exst_v[nel*i:(nel*(i+1))-1] 16x,10i5
exca_eval_exst_cl[nel*i:(nel*(i+1))-1] 16x,10i5

repeat
Variable identification:
Name Meaning Comment
nmax number of ground configs.
nel number of ground configs per block
n_index number of blocks (= nmax/nel)
index[] ground config. index
config[] ground config. strings Cowan form
n_el[] number of electrons
no_v_shl(] number of shells to treat as valence shells. Max. 2 relevant to relating ion and parent
v1_shl[] first valence shell position in adf56 configuration specifications.
v2_shl[] second valence shell position in adf56 configuration specifications. zero if none defined.
drct_eval_v[] evaluate direct ionisation from the valence shell(s).
drct_eval _cl[] evaluate direct ionisation from other non-valence (closed) shells.
min_shl_cl[] lowest closed shell to include (position in adf56 configuration specifications).
exca_eval_v2[] evaluate excitation/autoionisation from second valence shell if identified.
max_dn_v2[] maximum change in v2 n-shell to be included.
min_dn_v2[] minimum change in v2 n-shell to be include.
max_dl_v2[] maximum change in v2 1-shell to be included.
min_dl_v2[] minimum change in v2 I-shell to be include.
exca_eval_cl[] evaluate excitation/autoionisation from other non-valence (closed) shells.
max_dn_cl[] maximum change in closed n-shell to be included.
min_dn_cl[] minimum change in closed n-shell to be included.
max_dl_cl[] maximum change in closed I-shell to be included.
min_dl_cl[] minimum change in closed 1-shell to be included.
exst_eval[] evaluate ionisation from excited states.
exst_adf00_prt[] assume parent for building excited states is as present in the adfO0 data set for the ion.
exst_prt_hole_shl[] specify position of shell in ground configuration to form parent if not from adf00 above.
max_n_exst[] maximum n-shell for excited states to be included.
max_l_exst[] maximum l-shell for excited states to be included.

drct_eval_exst_v[] evaluate direct ionisation from excited state valence shells.

drct_eval_exst_cl[] evaluate direct ionisation from excited state non-valence (closed) shells.
exca_eval_exst_v[] evaluate excitation/autoionisation for excited states from valence shells (vl and v2 above).
exca_eval_exst_cl[] evaluate excitation/autoionisation for excited states from non-valence (closed) shells.

147

Sample: /home/adas/adas/adf56/promotional_rules_ionis_large.dat

/ADF56
index

O oo NI WN R

index
n_el
no_v_shl
v1l_shl
v2_shl
drct_eval
drct_eval
min_shl_c
exca_eval
max_dn_v2
min_dn_v2
max_dl_v2
min_dl_v2
exca_eval
max_dn_cl
min_dn_cl
max_dl_cl
min_dl_cl
exst_eval

exst_adf00_prt

/PROMOTION RULES
config

1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2

_V
_cl
1

_v2

_cl

2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s2

exst_prt_hole_shl

max_n_exs
max_1l_exs

t
t

drct_eval_exst_v
drct_eval_exst_cl
exca_eval_exst_v
exca_eval_exst_cl

index
170
171
172
173
174
175
176
177
178

config

1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2
1s2

2s2
2s2
2s2
2s2
2s2
2s2
2s2
2s1

e T N o — I — R — R T e S UG S~)

2p6
2p6
2p6
2p6
2p6
2p6
2p6
2p6
2p6
2p6

2p6
2p5
2p4
2p3
2p2
2pl

3s2
3s2
3s2
3s2
3s2
3s2
3s2
3s2
3s2
3s2

i T e e — I — I — I e e S UG Y N~]

/180

3p6
3p6
3p6
3p6
3p6
3p6
3p6
3p6
3p6
3p6

2
84
2
17
16
1
1
11
1
0
-1
3
-1
1

[y

P PR R r whLhe

3d10
3d10
3d10
3d10
3d10
3d10
3d10
3d10
3d10
3d10

e T S o — I — R — R T S GG I Sy —]

/10

4s2
4s2
4s2
4s2
4s2
4s2
4s2
4s2
4s2
4s2

e T N o — I — R — R T e S UG S)

4p6
4p6
4p6
4p6
4p6
4p6
4p6
4p6
4p6
4p6

148

e T e S e — I — I — I N S UG Y N]

4d10
4d10
4d10
4d10
4d10
4d10
4d10
4d10
4d10
4d10

4114
4114
4114
4f14
4f14
4114
4114
4114
4114
4f14

[02]

[y

=

P PR RPrRrrwhoerrooeerrrRrreoreo

5s2
5s2
5s2
5s2
5s2
5s2
5s2
5s2
5s2
5s2

~

[y

[y

P R R RPQrr R WA RrRRPRPRORRDrRr PR kLR EFPF O R ON

5p6
5p6
5p6
5p6
5p6
5p6
5p6
5p6
5p6
5p6

~

[y

[y

R R R, P WAL PO R EFEFEFEFWE 0

5d10
5d10
5d10
5d10
5d10
5d10
5d10
5d10
5d10
5d9

= = ~
=== W oN O

1
R R R R,k R WL LR NNORRE

50
50
50
5f0
5f0
50
50
50

5f0

590
5g0
5g0
5g0
590
5g0
5g0
5g0

5g0

6s2
6s2
6s2
6s2
6s2
6s2
6s2
6sl

6s1

6p6
6p5
6p4
6p3
6p2
6pl

179 1s1

index 170 171 172 173 174 175 176 177 178 179
n_el 10 9 8 7 6 5 4 3 2 1
no_v_shl 1 1 1 1 1 1 1 1 1 1
v1_shl 17 17 17 17 17 17 16 16 13 16
v2_shl 16 16 16 16 16 16 0 0 0 13
drct_eval_v 1 1 1 1 1 1 1 1 1 1
drct_eval_cl 1 1 1 1 1 1 1 1 1 1
min_shl_cl 11 11 11 11 11 11 11 11 11 11
exca_eval_v2 1 1 1 1 1 1 1 1 1 1
max_dn_v2 0 0 0 0 0 0 0 0 0 1
min_dn_v2 -1 -1 -1 -1 -1 -1 0 0 0 0
max_dl_v2 3 3 3 3 3 3 0 0 0 2
min_dl_v2 -1 -1 -1 -1 -1 -1 0 0 0 -2
exca_eval_cl 1 1 1 1 1 1 1 1 1 1
max_dn_cl 1 1 1 1 1 1 1 1 1 1
min_dn_cl 0 0 0 0 0 0 0 0 0 0
max_dl_cl 4 4 4 4 4 4 4 4 4 4
min_dl_cl -3 -3 -3 -3 -3 -3 -3 -3 -3 -3
exst_eval 1 1 1 1 1 1 1 1 1 1
exst_adf00_prt 1 1 1 1 1 1 1 1 1 1
exst_prt_hole_shl 0 0 0 0 0 0 0 0 0 0
max_n_exst 0 0 0 0 0 0 0 0 0 0
max_1l_exst 0 0 0 0 0 0 0 0 0 0
drct_eval_exst_v 1 1 1 1 1 1 1 1 1 1
drct_eval_exst_cl 1 1 1 1 1 1 1 1 1 1
exca_eval_exst_v 1 1 1 1 1 1 1 1 1 1
exca_eval_exst_cl 1 1 1 1 1 1 1 1 1 1

C This is a hand selected set of rules chosen by H. Summers.
C

C User: Hugh Summers

C Date: 09/01/09

149

Appendix B

IDL procedures

Procedure Current location Local checks Central ADAS

Txt Opr Lnk CVS Rel

read_adf00.pro /home/hps/adas_dev/idl/read_adf/

=
=
=
=

xxdtes.pro /home/summers/adas_dev/idl/adaslib/atomic/
xxcftr.pro /home/summers/adas_dev/idl/adaslib/atomic/
cSdplr.pro /home/summers/adas_dev/idl/adas3xx/adas305/

read_adf15.pro

adas_vector.pro

read_adf54.pro
adas8xx_promotion_rules.pro
adas8xx_promotions.pro
cfg2occ.pro
adas8xx_create_drivers.pro
adas8xx_create_ca_adf04.pro
adas8xx_create_ls_ic_adf04.pro
run_adas808.pro
adas8xx_opt_promotions_control.pro
adas8xx_opt_expand_promotions.pro
r8fbch.pro

r8necip.pro
config_orbital_energies.pro

tev_alf s.pro

sbchid_cfg_tot.pro

read_adf56.pro
adas8xx_ionis_promotion_rules.pro
adas8xx_ionis_promotions.pro
adas8xx_ionis_create_drivers.pro
adas8xx_ionis_create_ca_adf23.pro
run_adas813.pro

read_adf55.pro

/home/adas/idl/adaslib/read _adf/
/home/adas/idl/adaslib/util/
/home/summers/adas_dev/idl/read_adf/
/home/hps/adas_dev/idl/adas8xx/adaslib/
/home/hps/adas_dev/idl/adas8xx/adaslib/
/home/adas/idl/adaslib/atomic/
/home/hps/adas_dev/idl/adas8xx/adaslib/
/home/hps/adas_dev/idl/adas8xx/adaslib/
/home/hps/adas_dev/idl/adas8xx/adaslib/
/home/hps/adas_dev/idl/adaslib/read_adf/
/home/hps/adas_dev/idl/adaslib/read _adf/
/home/hps/adas_dev/idl/adaslib/read _adf/
/home/adas/idl/adaslib/atomic/
/home/adas/idl/adas2xx/adas208/
/home/adas/adaslib/atomic/

/home/summers/adas_dev/idl/adaslib/atomic/
/home/summers/adas_dev/idl/adaslib/atomic/

/home/hps/adas_dev/idl/adaslib/read _adf/
/home/hps/adas_dev/idl/adaslib/read _adf/
/home/hps/adas_dev/idl/adaslib/read _adf/
/home/hps/adas_dev/idl/adaslib/read _adf/
/home/hps/adas_dev/idl/adaslib/read_adf/
/home/hps/adas_dev/idl/adaslib/read _adf/
/home/hps/adas_dev/idl/adaslib/read _adf/

B SIR SE SE SE S T S S

S B B B BB B BB BB BB B BB BRBEBBEBBBEBBBB B

5B B BB BB BBBBBBBBBBBBEBBEBEBBEBEBBBB

5 B B BB B B BB BB BB B BB BRBEBBBBB BB BB

S B B B BB B BB BB BB B BB BRBEBBBBRBEBBBB B

150

Procedure Current location Local checks Central ADAS

Txt Opr Lnk CVS Rel

alf_r_bdn.pro /home/summers/adas_dev/idl/adaslib/atomic/ vy n n n n
alf_r_bdnl.pro /home/summers/adas_dev/idl/adaslib/atomic/ y n n n n
alf_r_tot.pro /home/summers/adas_dev/idl/adaslib/atomic/ vy n n n n
alf_d_bgf.pro /home/summers/adas_dev/idl/adaslib/atomic/ vy n n n n
alf_d_bgp.pro /home/summers/adas_dev/idl/adaslib/atomic/ vy n n n n
alf_d_bbgp.pro /home/summers/adas_dev/idl/adaslib/atomic/ vy n n n n
read_adf55.pro /home/hps/adas_dev/idl/adaslib/read _adf/ y n n n n
run_adas407.pro /home/hps/adas_dev/idl/adaslib/read _adf/ y n n n n
run_adas408.pro /home/hps/adas_dev/idl/adaslib/read_adf/ y n n n n
run_adas316.pro /home/hps/adas_dev/idl/adaslib/read_adf/ y n n n n
preview_natural_partition.pro /home/hps/adas_dev/idl/adaslib/read_adf/ y n n n n
run_adas416.pro /home/hps/adas_dev/idl/adaslib/read_adf/ y n n n n

151

read_adf00.pro

i+
; PROJECT : ADAS
; NAME : read_adf00
; PURPOSE : Reads an adf0®0 element file from IDL
; Called from IDL using the syntax
; read_adf00,file=..., z0=... etc
; ARGUMENTS : Arguments are non-positional named parameters. All output
; arguments will be defined appropriately.
; NAME I/0 TYPE DETAILS
; REQUIRED : file I str full name of ADAS adf00 file
; dir I str adf00 directory
; z0 I int atomic number
; z_ion I int Ion stage(s) of interest. (preferred)
; z1 I int Ion stage(s) of interest. (deprecated)
; [Specifying both z_ion and z1 is disallowed]
; OPTIONAL ionpot 0 double Ion potential(s).
; config 0 double Ground state configuration(s).
; KEYWORDS : /all - return all ion stages. Note zl must be an
; argument in this case.
; NOTES : Either file or dir and z® or z0® alone are required. If
; only z0 is given then central ADAS adf00 is queried.
; AUTHOR : Martin O0’Mullane
; DATE i 07-02-2001
; MODIFIED:
; 1.2 Allan Whiteford
; - Added /help keyword
; 1.3 Hugh Summers
; - Added preferred keywords z_ion for zl. Deprecate zl
; and fault if both zl1 and z_ion set.
; VERSION:
; 1.1 04-12-2002
; 1.2 07-04-2005
; 1.3 22-08-2008
PRO read_adf00, file = file, $
dir = dir, $

152

z0 = z0, $
z1 = zl, $
z_ion = z_jon, $
config = config, $
ionpot = ionpot, $
all = all, $
help = help
Notes:
xxdtes.pro
+
; PROJECT : ADAS
; NAME ;. xxdtes
; PURPOSE : Detects if the configuration string from a specific ion
; level list line is of Eissner or standard form.
; ARGUMENTS : All output arguments will be defined appropriately.
; Inputs will be converted to correct type, if possible,
; internally without changing calling type.
; xxdtes, in_cfg = in_cfg, is_eissner=is_eissner
; NAME I/0 TYPE DETAILS
; REQUIRED : in_cfg I string input configuration
; is_eissner 0 integer 1 = true if in_cfg is of Eissner form
; 0 = false
; KEYWORDS None
; NOTES : Calls the fortran code. C returns weird stuff for true
; and false when mapped to fortran logical variables
; (-1 is true, 0 is false?)
; AUTHOR : Martin O0’Mullane
; DATE . 08-04-2002
; MODIFIED:
; 1.1 Martin O’Mullane
; - First version.
; 1.2 Martin O’Mullane

; - Add an interface fortran subroutine to turn logicals
; into integers. Should fix endian problems.
; 1.3 Allan Whiteford

153

- Changed wrapper path to be just ADASFORT.

VERSION:

1.
1.
1.

w N =

08-04-2002
05-02-2003
10-08-2004

PRO xxdtes, in_cfg = in_cfg, is_eissner=is_eissner

Notes:

xxcftr.pro

PROJECT

NAME

PURPOSE

ARGUMENTS

REQUIRED

KEYWORDS

NOTES

AUTHOR

DATE

MODIFIED:
1.1

ADAS

xxcftr

Converts a configuration character string, such as occurs
in a specific ion file level list, between Eissner and
standard forms.

All output arguments will be defined appropriately.
Inputs will be converted to correct type, if possible,

internally without changing calling type.

xxcftr, in_cfg = in_cfg, out_cfg=out_cfg, type=type

NAME I/0 TYPE DETAILS

in_cfg I string input configuration

out_cfg I string output configuration

type I integer type of conversion

= 1 => standard form out, standard form

2 => Eissner form out, standard form
3 => standard form out, Eissner form
4 => Eissner form out, Eissner form

None

Calls the fortran code.

Martin O’Mullane

08-04-2002

Martin O’Mullane
- First version.

154

in
in
in
in

1.3 Allan Whiteford

VERSION:
1.1
1.1

08-04-2002
10-08-2004

; - Changed wrapper path to be just ADASFORT.

PRO xxcftr, in_cfg = in_cfg, out_cfg=out_cfg, type=type

Notes:

cSdplr.pro

; PROJECT

NAME

PURPOSE

ARGUMENTS

REQUIRED

NOTES

AUTHOR

DATE

ADAS

c5dplr

Doppler broaden Stark components.

All output arguments will be defined appropriately.
Inputs will be converted to correct type, if possible,
internally without changing calling type.

c5dplr
NAME
amss

ndpix
npix
wvmin
wvmax
ndcomp
ncomp
wvcomp ()
emcomp ()
tev

amss
doppler()

I/0

I
I
I
I
I
I
I
I
I
I
0

TYPE
double

long
long
double
double
long
long
double
double
double
double
double

Calls fortran code.

Martin O’Mullane

21/02/05

DETAILS
Atomic mass of hydrogen in plasma

Maximum number of pixels in range
Actual number of pixels in range
Minimum wavelength (A)

Maximum wavelength (A)

Maximum number of components
Actual number of components
Wavelength of component
Emissivity of component

Specific plasma electron temperature (eV)
Atomic mass of hydrogen in plasma
Doppler broadened feature

155

; MODIFIED:
; 1.1 Martin O’Mullane
; - First version.

; VERSION:
; 1.1 21/02/05

PRO c5dplr, ndpix, npix, wvmin, wvmax, ndcomp, $
ncomp, wvcomp, emcomp, tev, amss, $
doppler

Notes:

read_adf15.pro

+

; PROJECT : ADAS

; NAME : read_adfl5

; PURPOSE : Reads adf15 (PEC) files from the IDL command line.

; called from IDL using the syntax

; read_adfl5,file=...,block=...,te=... etc

; ARGUMENTS : All output arguments will be defined appropriately.

; NAME I/0 TYPE DETAILS

; REQUIRED ;. file I str full name of ADAS adf1l5 file

; block I int selected block

; te I real() temperatures requested

; dens I real() densities requested

; OPTIONAL data 0 - PEC data

; wlngth 0 - wavelength of transition

; iz® 0 int return guess of nuclear charge
; (returns -1 if unable to guess)
; izz 0 int return guess of ion charge

; (returns -1 if unable to guess)
; izl 0 int return guess of ion charge+1

; (returns -1 if unable to guess)
; KEYWORDS all I - if specified data is 2D of

; temperature and density.

; kelvin I - requested temperature in K (default eV)

156

PRO read_adfl15,

adas_vector.pro

; NOTES
AUTHOR
DATE
MODIFIED

1.2
1.3
1.4
1.5
1.6
1.7
VERSION
1.1
1.2
1.3
1.4
1.5
1.6
1.7

This is part of a chain of programs - read_adfl5.c and
readadfl5. for are required.

Martin O’Mullane

20-07-99

Martin O’Mullane

- No limit on number of Te/dens returned

- Returns a 2D array if /all is specified.

- Temperatures can be requested in K if /kelvin is specified.
Martin O’Mullane

- Regularised comments
Allan Whiteford

- Added in functionality to guess at nuclear and ion charge.
Allan Whiteford

- Added /help keyword.
Martin O’Mullane

- Add fulldata.
Martin O’Mullane

- Increase nstore to 500.

20-07-1999

05-03-2001

15-03-2002

08-05-2003

07-04-2005

12-04-2005

22-04-2005

file = file, $
block = block, $
te = te, $
dens = dens, $
data = data, $
wlngth = wlngth, $
all = all, $
kelvin = kelvin, $
iz0 = iz0, $
izz = izz, $
izl = izl, $
fulldata = fulldata, $
help = help

Notes:

157

; PROJECT:
; ADAS

; NAME:
; ADAS_VECTOR

; PURPOSE:
; Generate a vector of values given the minimum, maximum
; and number of points.

; NOTES:
; The default is to generate a log based distribution.

; INPUTS:

; LOW - minimum value.

; HIGH - maximum value.

; NUM - number of points.

; OPTIONAL INPUTS:
; None

; OUTPUTS:

; OPTIONAL OUTPUTS:
; None.

; KEYWORD PARAMETERS:
; LINEAR - if selected the distribution is linear.

; CALLS:
; None

; SIDE EFFECTS:
; None

; CATEGORY:
; UNIX system IDL utility.

; WRITTEN:
; Martin O0’Mullane, 25-11-2004

; MODIFIED:

; 1.1 Martin O’Mullane
; - First release.
; VERSION:

; 1.1 25-11-2004

FUNCTION adas_vector, low=low, high=high, num=num, linear=linear

158

Notes:

read_adf54.pro

J+
; PROJECT . ADAS

; NAME : read_adf54

; PURPOSE : Reads adf54 (promotion rules) files from the IDL command line.
; called from IDL using the syntax

; read_adf54,file=...,fulldata=fulldata

; ARGUMENTS : All output arguments will be defined appropriately.

; NAME I/0 TYPE DETAILS

; REQUIRED . file I str full name of ADAS adfl5 file

; fulldata O str Structure containing the

; adf54 details.

; NOTES :

; The fulldata structure is defined:

; config : ground configuration

; index : reference index

; n_el : number of electron

; no_v_shl : number of open shell

; max_dn_vl : maximum delta n promotion for first

; min_dn_vl : minimum delta n promotion for first

; max_dl_vl : maximum delta 1 promotion for first

; min_dl_vl : minimum delta 1 promotion for first

; max_dn_v2 : maximum delta n promotion for second

; min_dn_v2 : minimum delta n promotion for second

; max_dl_v2 : maximum delta 1 promotion for second

; min_dl_v2 : minimum delta 1 promotion for second

; prom_cl : promote from inner shell closed shells

; max_n_cl : maximum inner shell n for promotion from

; min_n_cl : minimum inner shell n for promotion from

; max_1_cl : maximum inner shell 1 for promotion from

; min_1_cl : minimum inner shell 1 for promotion from

; max_dn_cl : maximum delta n promotion for inner shell to
; min_dn_cl : minimum delta n promotion for inner shell to
; max_dl_cl : maximum delta 1 promotion for inner shell to
; min_dl_cl : minimum delta 1 promotion for inner shell to
; fill_ n_vl : add all nl configurations

; fill_par : add parity

; for_tr_sel : Cowan option for radiative transitions

; last_4f : shift an electron valence shell to 4f

; grd_cmplx : include configurations of same complex

159

; AUTHOR : Alessandra Giunta
; DATE o 02-10-2007

; MODIFIED:

; 1.1 Alessandra Giunta

; - First release.

; VERSION:
; 1.1 02-10-2007

pro read_adf54, file = file, fulldata = fulldata

Notes:

adas8xx_promotion_rules.pro

; NAME : adas8xx_promotion_rules

; PURPOSE : To set the default promotional rules for configuration generation
; of the complete set of ions of an element.

; CATEGORY : ADAS

; USE : Usually called before the promotional routine ’'default_promotions’
; INPUT

; (I*4) z0_nuc = keyword = nuclear charge

;) a54file = keyword = adf54 promotion rules dataset

; OUTPUTS

; (R*8) ionpot[] keyword = ionis. potential (ev) for each ion of element
; 1st dim: ion charge ® --> zO_nuc-1

; (struc) rules = keyword = structure of rules for ion charges 0 --> z0_nuc-1

; NOTES : The rules structure is defined as (vectors span ® --> zO_nuc-1)

; index[] : index of ground configuration of each ion of element in adf54 file

; config[] : ground configuration for each ion of element

; n_el[] : number of electrons for each ion of element

; no_v_shl[] : number of open (valence) shells. Include outer-most shell even if closec
; max_dn_v1[] : maximum delta n promotion for first (outer-most) valence shell

; min_dn_v1[] : minimum delta n promotion for first (outer-most) valence shell.

160

; ROUTINES:

; CATEGORY:
Adas system.

; WRITTEN:

max_dl_vi1[]
min_dl_v1[]
max_dn_v2[]
min_dn_v2[]
max_dl_v2[]
min_dl_v2[]
prom_cl[]
max_n_cl[]
min_n_cl[]
max_1_cl[]
min_1_cl[]
max_dn_cl[]
min_dn_cl[]
max_dl_cl[]
min_dl_cl[]

fill_n_vi1[]
fill_par[]
for_tr_sel[]
last_4f[]
grd_cmplx[]

NAME
read_adf00
read_adf54

: maximum
: minimum
: maximum
: maximum
: maximum
: minimum
. promote
: maximum
: minimum
: maximum
: minimum
: maximum
: minimum
: maximum
: minimum

TYPE
ADAS
ADAS

Negative value allows access to inner unoccupied or open shell

delta
delta
delta
delta
delta
delta

1 promotion
1 promotion
n promotion
n promotion
1 promotion
1 promotion

for first (outer-most) valence shell
for first (outer-most) valence shell.

for second (inner-most) valence
for second (inner-most) valence
for second (inner-most) valence
for second (inner-most) valence

from inner shell closed shells (l=yes,®=no)

inner
inner
inner
inner
delta
delta
delta
delta

Negative value allows access to
: add all nl configurations of outer valence shell n (l=yes,0=no)
: if n_fill only add opposite parity to valence shell else add both pariti
: Cowan option for radiative transitions 1 - first parity, 2 or 3(default)
: shift an electron valence shell to unfilled 4f as extra ground
: include configurations of same complex as ground configuation for valenc

shell n for
shell n for
shell 1 for
shell 1 for
n promotion
n promotion
1 promotion
n promotion

COMMENT
reads an adf00 file
reads an adf54 promotion rules dataset

promotion from
promotion from
promotion from
promotion from
for inner shell to
for inner shell to
for inner shell to
for inner shell to

H. P. Summers, University of Strathclyde,29-06-06.

; MODIFIED:

1.

1.

; VERSION:
1.

==

1

2

BwWw N R

H. P. Summers

- First version put into CVS.
A. Foster & H. P. Summers
- Changed to use an adf54 data file with customised promotion rules

H. P. Summers

- Changed order of parameters to put ’'a54file’ near the beginning,
added index and introduced ref_rules and rules structures

H. P. Summers

- Replaced variable name z® by z®_nuc to avoid confusion

25-08-06
23-07-08
19-08-08
22-08-08

adas8xx_promotion_rules, z0_nuc

a54file

= z0_nuc,
= ab4file,

161

shell
shell
shell
shell

inner unoccupied or open shell

Notes:

adas8xx_promotions.pro

; PURPOSE

; CATEGORY :

; USE
; INPUT
; (I*4)

;o (I
i (R*8)

; (struc)

; OUTPUTS

;o (@)
i (IF)
N (S
;o (I*)
;o (I*)
i (IF4)

;o (T%4)

; (I*4)

; (I*4)

;o (I%4)
;o (I%4)

; NOTES

ionpot

: adas8xx_promotions

= ionpot, $

: generate a set of excited configurations for an ion of an

element from an initial ground configuration and a set of rules.

ADAS

: Usually called

z0_nuc
z_ion
ionpot
rules

grd_cfg
grd_occ[]
ex_cfg[]
grd_par
ex_par[]
grd_zc_cow[]

ex_zc_cow[]

oc_store[]

no_configs[]

no_terms []
no_levels[]

index[]
config[]
n_el[]

after ’adas8xx_promotion_rules’

= keyword
= keyword
= keyword
= keyword

keyword
= keyword
keyword
keyword
= keyword

= keyw

nuclear charge

selected ion charge

ionis. potential (ev) for an ion

structure of rules for ion charges 0 --> zO_nuc-1

ground configuration
ground occupation nos.
excited configurations
ground parity
excited parities
d = grd. eff. charge for Cowan adf34 driver
n.b. prescription ok for z®_nuc>19. For
z0_nuc<19 revert to zc_cow=z_ion=ion charge+1l

= keyword = exc. eff. charge for Cowan adf34 driver

= keyword =

= keyword

keyword
= keyword

n.b. prescription ok for z®_nuc>19. For

z0_nuc<19 revert to zc_cow=z_ion+l=ion charge+1
configuration occupancies
no. of configs in 7 categories (0: grd, 1: 1st val., 2: 2nd ve
3: inner shell, 4: all val. n, 5: alter. grd., 6: grd complex.
no. of levels in 7 categories (as above)
no. of levels in 7 categories (as above)

: The rules structure is defined as (vectors span 0 --> z0_nuc-1)

: index of ground configuration of each ion of element in adf54 file
: ground configuration for each ion of element
: number of electrons for each ion of element

162

no_v_shl[]
max_dn_v1[]
min_dn_v1[]

max_dl_v1[]
min_dl_vi1[]
max_dn_v2[]
min_dn_v2[]
max_dl_v2[]
min_dl_v2[]
prom_cl[]
max_n_cl[]
min_n_cl[]
max_1_cl[]
min_1_cl[]
max_dn_cl[]
min_dn_cl[]
max_dl_cl[]
min_dl_cl[]

fill_n_vi1[]
fill_par[]

for_tr_sel[]

last_41f[]
grd_cmplx[]

: number of open (valence) shells. Include outer-most shell even if closec
: maximum delta n promotion for first (outer-most) valence shell
: minimum delta n promotion for first (outer-most) valence shell.

Negative value allows access to inner unoccupied or open shell

: maximum delta 1 promotion for first (outer-most) valence shell
: minimum delta
: maximum delta
! maximum delta
: maximum delta
: minimum delta 1 promotion for second (inner-most) valence shell
: promote from inner shell closed shells (l=yes,0=no)

: maximum inner shell n for promotion from

: minimum inner shell n for promotion from

: maximum inner shell 1 for promotion from

: minimum inner shell 1 for promotion from

: maximum delta n promotion for inner shell to

: minimum delta n promotion for inner shell to

: maximum delta 1 promotion for inner shell to

: minimum delta n promotion for inner shell to

promotion for first (outer-most) valence shell.
promotion for second (inner-most) valence shell
promotion for second (inner-most) valence shell

1
n
n
1 promotion for second (inner-most) valence shell

Negative value allows access to inner unoccupied or open shell

: add all nl configurations of outer valence shell n (l=yes,0=no)

if n_fill only add opposite parity to valence shell else add both pariti

: Cowan option for radiative transitions 1 - first parity, 2 or 3(default)

shift an electron valence shell to unfilled 4f as extra ground
include configurations of same complex as ground configuation for valenc

; ROUTINES:
; NAME TYPE COMMENT
get_parity local returns the parity given occupation numbers
new_occup local determine whether the occupation vector
matchs a group.
write_config local writes an adf34 compatible configuration.
adas808_cfg_cmplx ADAS return configurations of an n-shell complex
h8nlev ADAS returns the level count for a configuration
; CATEGORY:

Adas system.

; WRITTEN:

H. P. Summers, University of Strathclyde,29-06-06.

; MODIFIED:
1.1 H. P. Summers

- First version put into CVS.
1.2 Allan Whiteford
- Changed call from complexes to adas808_cfg_complx
Was missed during renaming exercise.

1.3 H. P. Summers

- Added lonarr for config,term and level count vector; improved
input/output descriptors. Correction to logic for rare gas
omitted closed-shell detection

- Further correction to logic for Cowan effective z_ion for adf34

1.4 H. P. Summers
driver.
1.5 H. P. Summers

Now use zc_cow=z_ion for z0_nuc<19.

- Correction to preamble text for fill_par

163

1.6 H. P. Summers
- Replaced variable name z® by zO_nuc, zl1 by z_ion and zc by zc_cow to
avoid confusion. Introduced rules structure as a keyword parameter

; VERSION:
; 1.1 25-08-06
; 1.2 09-10-06
; 1.3 29-11-06
; 1.4 18-06-07
; 1.5 18-07-08
; 1.6 22-08-08
PRO adas8xx_promotions, z0_nuc = z0_nuc, $
z_ion = z_ion, $
ionpot = ionpot, $
rules = rules, $
grd_cfg = grd_cfg, $
grd_occ = grd_occ, $
ex_cfg = ex_cfg, $
grd_par = grd_par, $
ex_par = ex_par, $
grd_zc_cow = grd_zc_cow, $
eX_zC_Cow = ex_zC_cow, $
oc_store = oc_store, $
no_configs = no_configs, $
no_terms = no_terms, $
no_levels = no_levels
Notes:
cfg2occ.pro
J+
; PROJECT : ADAS
; NAME : cfg2occ
; PURPOSE : Converts a textual configuration to an occupation
; number array
; EXPLANATION:

This function takes a textual configuration, nuclear charge
and ion charge to return occupation numbers of electrons

USE:
An example;
result = cfg2occ(’2s 2p’,6,2)
print,result

164

;2110000000000 ...

; INPUTS:

; CFG: The configuration in either standard or Eissner
; notation.

; IZ0: The nuclear charge of the ion.

; ZZ : The charge of the ion.

; OPTIONAL INPUTS:
; None.

; OUTPUTS:
; An occupation number array with all electrons specified

; OPTIONAL OUTPUTS:
; None.

; KEYWORD PARAMETERS:
; help : Displays documentation

; CALLS:
; read_adf0®0 for ground configurations.

; SIDE EFFECTS:
; None

; NOTES:

; Determines unspecified electrons by filling in occupation

; numbers based on the ground configuration of the ion in

; question in order of spectroscopic notation, this means for
; the W+14 with a configuration of simply ’5p’ it will assume
; that a 5s electron has been promoted rather than a 4f.

; Note, however, that the routine does not assume lower

; occupation numbers are filled if the ground configuration

; has them partially empty so for neutral tungsten with

; a configuration of ’6p’ it will leave the 5f and 5g orbitals
; empty and the 5d partially filled as one would expect.

; AUTHOR : Allan Whiteford
; DATE : 12-10-04

; MODIFIED:

; 1.1 Allan Whiteford

; - First version.

; VERSION:
; 1.1 31-07-08

165

Notes:

adas8xx_create_drivers.pro

; NAME : adas8xx_create_drivers

; PURPOSE : prepares the driver data sets of format adf34 and adf42 for

; complete heavy element structure and emissivity calculations.
; Default names are setup if keywords are omitted on call.

; CATEGORY : ADAS

; NOTES : adf®4, adfl5 and adf40 data set names are required. Default
; names are setup if keywords are omitted on call.

; The ’plasma’ structure is defined as

; thetal] : full vector of temperatures (eV) - unscaled

; indx_theta[] : pointer vector to temperature values in theta[] to be used.

; rho[] : full vector of densities (cm-3) - unscaled

; indx_rho[] : pointer vector to density values in rho[] to be used.

; npix[] : full vector of pixel counts of wavelength ranges

; wvlmin[] : full vector of lower wavelength limit (Angstrom) of wavelength ranges
; wvlmax[] full vector of upper wavelength limit (Angstrom) of wavelength ranges
; indx_wvl[] : pointer vector to wavelength ranges in npix[],wvlmin[] and

; : wvlmax[] to be used.

; The ’files’ structure is defined as

; adf34_file : adf34 file name
; adf34_inst_file : adf34 inst file name
; adf34_l1s_pp_file : adf34 pp file name for ’'ls’ resolution

; adf34_ic_pp_file : adf34 pp file name for ’'ic’ resolution

; adf42_ca_file : adf42 file name for ’ca’ resolution
; adf42_1s_file : adf42 file name for ’'ls’ resolution
; adf42_ic_file : adf42 file name for ’ic’ resolution

; adf42_ca_pp_file : adf42 pp file name for ’'ca’ resolution

; adf42_1s_pp_file : adf42 pp file name for ’'ls’ resolution
; adf42_ic_pp_file : adf42 pp file name for ’'ic’ resolution
; adf0®4_ca_tl_file : adf®4 - type 1 file name for ’'ca’ resolution

; adf04_ca_file : adf®4 file name for ’ca’ resolution
; adf®4_1s_file : adf®4 file name for ’ls’ resolution
; adf04_ic_file : adf®4 file name for ’ic’ resolution
; adfl15_ca_file : adfl5 file name for ’ca’ resolution
; adf15_1s_file : adfl5 file name for ’ls’ resolution
; adfl5_ic_file : adfl5 file name for ’ic’ resolution
; adf40_ca_file : adf40 file name for ’ca’ resolution
; adf40_1s_file : adf4® file name for ’'ls’ resolution
; adf40_ic_file : adf40 file name for ’ic’ resolution
; adfll_ca_file : adfll file name for ’ca’ resolution

; adfll_1ls_file : adfll file name for ’'ls’ resolution

166

; USE
; INPUT

(1%4)
(1%4)
c*)
(R*8)
(R*8)
(1*4)
(R*8)
(1%4)
(1%4)
(R*8)
(R*8)
(1*4)

(str)

(c*
(C‘k
(C:’:
(c
(c*
(c*
(c
(C‘.‘:
(C‘.‘:
(c
(c*
(c*
(C:‘:
(Cv’:
(c
(c*
(c*
(c
(C:’:
(C‘.‘:

R e e e R R - i A e N N I e A e

(str)

(1%4)
)
c*)
(1%4)
(1%4)

adfll_ic_file

: adfll file name for ’ic

resolution

: Usually called after ’adas8xx_promotion_rules’

z0 = keyword
z1 = keyword
config = keyword
ionpot = keyword
thetal] = keyword
indx_thetal] = keyword
rho[] = keyword
indx_rho[] = keyword
npix[] = keyword
wvlmin[] = keyword
wvlmax[] = keyword
indx_wvl[] = keyword
plasma = keyword
adf34_file = keyword
adf34_inst_file = keyword
adf34_ls_pp_file = keyword
adf34_ic_pp_file = keyword
adf42_1s_£file = keyword
adf42_ic_file = keyword
adf42_ca_file = keyword
adf42_ls_pp_file = keyword
adf42_ic_pp_file = keyword
adf42_ca_pp_file = keyword
adf®4_ca_tl1_file = keyword
adf04_ca_file = keyword
adf®4_ls_£file = keyword
adf®4_ic_file = keyword
adf40_ca_£file = keyword
adf40_l1s_£file = keyword
adf40_ic_file = keyword
adfll_ca_file = keyword
adfl1_1s_file = keyword
adfll_ic_file = keyword
files = keyword
for_tr_sel = keyword
grd_cfg = keyword
ex_cfg[] = keyword
grd_par = keyword
ex_par[] = keyword

nuclear charge

selected ion charge
ground configuration for selected ion
ionis. potential (ev) for selected ion

full vector of
pointer vector
full vector of
pointer vector
full vector of
full vector of

temperatures (eV) - unscaled

to temperature values in theta[] to be used.
densities (cm-3) - unscaled

to density values in rho[] to be used.

pixel counts of wavelength ranges

lower wavelength limit (Angstrom) of wavelengt

full vector of upper wavelength limit (Angstrom) of wavelengt
pointer vector to wavelength ranges in npix[],wvlmin[] and wy

structure containing theta, indx_theta, rho, indx_rho,
npix, wvlmin, wvlmax, indx_wvl

adf34 file name

adf34 inst file name

adf34 pp file name for ’ls’ resolution
adf34 pp file name for ’ic’ resolution
adf42 file name for ’ls’ resolution
adf42 file name for ’ic’ resolution
adf42 file name for ’ca’ resolution
adf42 pp file name for ’ls’ resolution
adf42 pp file name for ’ic’ resolution
adf42 pp file name for ’ca’ resolution
adf®4 - type 1 file name for ’'ca’ resolution
adf®4 file name for ’ca’ resolution
adf®4 file name for ’ls’ resolution
adf®4 file name for ’ic’ resolution
adf40 file name for ’ca’ resolution
adf40 file name for ’ls’ resolution
adf40 file name for ’ic’ resolution
adfll file name for ’ca’ resolution
adfll file name for ’'ls’ resolution
adfll file name for ’'ic’ resolution

structure containing adf34_file, adf34_inst_file, adf34_ls_py
adf34_ic_pp_file, adf42_ca_file, adf42_]
adf42_ic_file, adf42_ca_pp_file, adf42_]
adf42_ic_pp_file, adf®4_ca_tl_file, adfd
adf04_1s_file, adf0®4_ic_file, adf40_ca_A
adf40_1s_file, adf40_ic_file, adfll_ca_{
adfll_1s_file, adfll_ic_file

Cowan option for radiative transitions 1 - first parity, 2 oz
ground configuration

excited configurations

ground parity

excited parities

167

; (I*%4) grd_zc = keyword = grd. eff. charge for Cowan adf34 driver

; n.b. prescription ok for z0>19. For

; z0<19 revert to zc=zl=ion charge+l

; (R*8) ex_zc[] = keyword = exc. eff. charge for Cowan adf34 driver

; n.b. prescription ok for z0>19. For

; z0<19 revert to zc=zl=ion charge+l

; (I*%4) /ca_only = keyword => prepare only config. average drivers

; (I*4) /make_ic_adf34 = keyword => force preparation of ’'ls’ and ’ic’ adf34 drivers even if /ce
; OUTPUTS

; ROUTINES:

; NAME TYPE COMMENT

; xxdate system returns the date

; xxesym ADAS returns element symbol for given nuclear charge
; CATEGORY:

; Adas system.

; WRITTEN:
; H. P. Summers, University of Strathclyde,29-06-06.

168

; MODIFIED:

; 1.1 H. P. Summers

; First version put into CVS.

; 1.2 H. P. Summers

; Update comments and keyword checks/defaults

; 1.3 H. P. Summers

; Added structures ’'plasma’ and ’files’, their default handling and their

; relationship to their separate keyword parameters

; VERSION:

; 1.1 25-08-06

; 1.2 06-08-08

; 1.3 21-08-08

PRO adas8xx_create_drivers, z0 = z0, $
z1 = z1, $
zC = zc, $
ionpot = ionpot, $
theta = theta, $
indx_theta = indx_theta, $
rho = rho, $
indx_rho = indx_rho, $
npix = npix, $
wvlmin = wvlmin, $
wvlmax = wvlmax, $
indx_wvl = indx_wvl, $

plasma = plasma, $

adf34_file = adf34_file, $
adf34_inst_file = adf34_inst_file, $
adf34_l1s_pp_file = adf34_l1s_pp_file, $
adf34_ic_pp_file = adf34_ic_pp_£file, $

adf42_ca_file =
adf42_1s_file =
adf42_ic_file =
adf42_ca_pp_file =
adf42_ls_pp_file =
adf42_ic_pp_file =
adf0®4_ca_tl_file =

adf04_1s_file
adf04_ic_file
adf15_ca_file
adfl15_1s_file
adfl15_ic_file
adf40_ca_file
adf40_1s_file
adf40_ic_file
adfll_ca_file
adfll_ls_file
adfll_ic_file
files

Notes:

adf04_ca_file

= adf04_1s_file,
= adf®4_ic_file,
= adfl5_ca_file,
= adf15_1s_file,
= adfl15_ic_file,
= adf40_ca_file,
= adf40_1s_file,
= adf40_ic_file,
= adfll_ca_file,
= adfl11_1s_file,
= adfll_ic_file,
= files,

for_tr_sel
grd_cfg
ex_cfg
grd_par
ex_par

grd_zc

ex_zc

ca_only
make_ic_adf34

adas8xx_create_ca_adf04.pro

; PROJECT : ADAS

; NAME : adas8xx_create_ca_adf04

; PURPOSE :

; EXPLANATION:

adf42_1s_file,
adf42_ic_file,
adf42_ca_file,
adf42_ls_pp_£file,
adf42_ic_pp_£file,
adf42_ca_pp_file,
adf®4_1s_file,
adf®4_ic_file,
$

R B R A s IR AR R]

&~

for_tr_sel,
grd_cfg,
ex_cfg,
grd_par,
ex_par,
grd_zc,
ex_zc,
ca_only,
make_ic_adf34

Generates configuration average adf04 files

R A R R S S AL

P A A A A s s

; This routines takes a given set of configurations, nuclear and ionic
; charge and generates a complete adf04 file (type I and/or type III)
; working in a PWB CA approximation.

; USE:
; An example;

169

iz0=6
iz=3

caex,iz,iz0,occup,adf®4_t1_file="adf04_1’,adf0®4_t3_file="adf04_3’

; INPUTS:

iz : Ion charge

iz0: Nuclear charge

occup: Occupation numbers of configurations
First index: configuration number
Second index: orbital number.

; OPTIONAL INPUTS:

None.

; OUTPUTS:

None.

; OPTIONAL OUTPUTS:

exit_status: returns -1 if ADFO4 generation has failed for any reason

; KEYWORD PARAMETERS:

ionpot: Ionisation potential, if not specified it will be read from central ADAS
adf04_t1_file: Filename of type I file to produce

adf0®4_t3_file: Filename of type III file to produce

keeppass: Do not remove temporary passing files.

occ2cow: Convert occupation numbers to Cowan (i.e. adas801) input standard

; CALLS:

read_adf00: read adf0®0 files.
h4mxwl: Maxwell average collision strengths.
xxspln: Used for splining (momentum transfer)

; SIDE EFFECTS:

This function spawns UNIX commands.

; CATEGORY:

Series 8 utility.

; WRITTEN:

Allan Whiteford

; MODIFIED:

Version 1.1 Allan Whiteford 01-11-2004
First release (originally h8caex).
Version 1.2 Hugh Summers 28-09-2006
Major revision and name change to
adas8xx_create_ca_adf04
Version 1.3 Hugh Summers 04-12-2006
Added call to adas8xx_cowan_string_check

170

; Version 1.4

Hugh Summers

24-07-2007

; Modified temporary filenames to make unique

; Version 1.5

Adam Foster

08-01-2008

; Modified to return ’exit_status’. Also quits
; rather than crashes if Cowan run has failed

; Version 1.6

Hugh Summers

24-07-2007

; Put ,/sh on spawning final copying to archive

; VERSION:

01-11-2004
28-09-2006
04-12-2006
24-07-2007
08-01-2008
25-07-2008

R R R R R R
U WN R

pro adas8xx_create_ca_adf04, iz, $
iz®, $
occup, $
ionpot = ionpot, $
theta = theta, $
indx_theta = indx_theta, $
adf04_t1_file = adf®4_tl_file, $
adf04_t3_file = adf®4_t3_file, $
archive_dir = archive_dir, $
archive_files = archive_files, $

keeppass =
exit_status

Notes:

adas8xx_create_ls_ic_adf04.pro

PRO adas8xx_create_ls_ic_adf04,

z1,

adf34_file
adf34_inst_file
adf34_ls_pp_£file
adf34_ic_pp_£file
adf04_ls_file
adf04_ic_file
archive_dir
archive_files
submit

171

keeppass, $
= exit_status

adf34_file,
adf34_inst_file,
adf34_ls_pp_~file,
adf34_ic_pp_~file,
adf04_l1s_file,
adf®4_ic_file,
archive_dir,
archive_files,
submit

Notes:

run_adas808.pro

; NAME : run_adas808

; PURPOSE : generate configuration sets for the ions of elements and

; write all 1s-, ic- and ca-coupling adf34 and adf42 driver and
; data files. Execute configuration average Cowan structure

; calculation and write ca- type 1 and type 3 adf04 files.

; Create 1ls- and ic- adf0®4 files. Create 1s- ic- and ca-

; adfl5 and adf40 and adfll (partial plt) files.

; CATEGORY : ADAS
; NOTES

; USE : This is a set up procedure for both offline and online use of
; adas801, adas808, adas810. It is designed for economised

; handling of heavy species and subsequent use in a partitioned
; superstage framework.

; Use of consistent temperature, density, wavelength ranges
; throughout large scale production is achieved by inclusion
; of defaults sets in the procedure with working subsets

; specified by indexing vectors

; indx_theta: pointing to the temperature vector theta
; indx_rho : pointing to the density vector rho
; indx_wvl : pointing to the npix, wvlmin, wvlmax vectors

; The default ADAS subsets are adopted by omitting the keywords
; in calling the procedure.

; By default, the temperatures theta[] are treated as reduced
; to be scaled with the ion charge, z, as te[]=(z+1) "2*thetall],
; and are treated as absolute by using the keyword /theta_noscale

; By default the densities rho[] are treated as absolute are
; scaled only if the keyword /rho_scale is used. Then
; dens[]=rho[]/(z+1)"7.

; The internal settings are:

; theta = [2.00e+02, 3.00e+02, 5.00e+02, 7.00e+02, 1.00e+03,
; 1.50e+03, 2.00e+03, 3.00e+03, 5.00e+03, 7.00e+03,
; 1.00e+04, 1.50e+04, 2.00e+04, 3.00e+04, 5.00e+04,
; 7.00e+04, 1.00e+05, 1.50e+05, 2.00e+05, 3.00e+05,
; 5.00e+05, 1.00e+06, 2.00e+06, 5.00e+06, 1.00e+07]
; indx_theta = [0, 2, 4, 6, 8,10,12,14,16,18,20,21,22,23]

172

INPUT
(
(I:’:
(I:’:
(I
(I

(I‘.‘:

(C

(I:‘:
(Iz’:
(*

ROUTINES:

CATEGORY :

4)
)
4)
4)

4)

4)

)

4
4)
4)

rho = [1.00e-03, 1.00e+00, 1.00e+01, 1.00e+02, 1.00e+03,
1.00e+04, 3.00e+04, 1.00e+05, 3.00e+05, 1.00e+06,
3.00e+06, 1.00e+07, 3.00e+07, 1.00e+08, 3.00e+08,
1.00e+09, 3.00e+09, 1.00e+10, 3.00e+10, 1.00e+11,
3.00e+11, 1.00e+12, 3.00e+12, 1.00e+13, 3.00e+13,
1.00e+14, 3.00e+14, 1.00e+15, 3.00e+15, 1.00e+16]

indx_rho = [17,19,21,23,25,27,29]
npix = [128, 128, 128, 128, 512,
256, 256, 256, 256, 256]

wvlmin= [1.00e+00, 1.00
3.00e+00, 7.00

wvlmax= [1.00e+01, 1.00
5.00e+00, 1.20

e+01, 1.00e+02, 1.00e+03, 1.00e+00,
e+01, 5.00e+02, 1.00e+03, 3.00e+03]

e+02, 1.00e+03, 1.00e+04, 1.00e+04,
e+02, 1.50e+03, 2.00e+03, 7.00e+03]

indx_wvl =[O0, 1, 4]

z0_list = set of nuclear charge of required elements
nel_min = lowest number of bound electrons for ion range
nel_max = largest number of bound electrons for ion range
indx_thetal] = keyword = pointer vector to temperature

values in theta[] to be used.
indx_rho[] = keyword = pointer vector to density

values in rho[] to be used.
indx_wvl[] = keyword = pointer vector to wavelength

ranges in npix[],wvlmin[] and

wvlmax[] to be used.
a54file = keyword => adf54 file name (full pathway)

/theta_noscale = keyword

/rho_scale = keyword
/ca_only = keyword
NAME

xxelem

xxesym

adas8xx_promotion_rules
adas8xx_promotions
adas8xx_create_drivers
adas8xx_create_ca_adf04
adas8xx_create_ls_ic_adf04

adas8xx_create_adf15_adf40

Adas system.

=> treat theta[] as absolute
=> treat rho[] as reduced
=> compute only config. average results

TYPE
adas
adas
adas
adas
adas
adas
adas

adas

173

COMMENT

obtain an element name

returns an element chemical symbol
set promotion rules from adf54 file
create configuration set for an ion
write adf34/adf42 drivers for an ion
create 'ca’ adf04 type 1 and 3 files
create 'ls’ and ’'ic’ adf04 type 1
and 3 files

create ’ca’, ’ls’ and ’ic’ adf15,
adf40 and adfll(partial plt) files

; WRITTEN:
; H. P. Summers, University of Strathclyde,22-08-06.

; MODIFIED:
; 1.1 H. P. Summers
; First version put into CVS.
; 1.2 H. P. Summers
; Added ca_only and a54file keywords and associated
; "small’, ’medium’ and ’large’ default promotion rules.
; Adjusted to long integers for term/level counts and
; tidied count summary print out.
; 1.3 H. P. Summers
; Correction to z0_list when nel_min gt z0.
; 1.4 A. Foster & H. P. Summers
; Changed to adf54 data set for promotion rules and
; returned to a single adas8xx_promotions_rule.pro
; which fetches in the adf54.
; VERSION:
; 1.1 25-08-06
; 1.2 17-01-07
; 1.3 05-07-07
; 1.4 23-07-08
PRO run_adas808, z0_list = z0_list, $
nel_min = nel_min, $
nel_max = nel_max, $
indx_theta = indx_theta, $
indx_rho = indx_rho, $
indx_wvl = indx_wvl, $
a54file = ab4file, $
theta_noscale = theta_noscale, $
rho_scale = rho_scale, $
ca_only = ca_only
common shells, ndshell , $
shmax , nval , lval , shl_lab , $
iprom_1 , iprom_2 s $
nrg_cnt_idx , nrg_exl_idx , nrg_el_cnt , $
nval_max , nval_min , lval_max , lval_min , $

njvals

Notes:

adas8xx_opt_promotions_control.pro

174

Notes:

adas8xx_opt_expand_promotions.pro

Notes:
r8fbch.pro
T+
; PROJECT : ADAS
; NAME : r8fbch
; PURPOSE : Calculates a shell contribution to the ionisation rate
; coefficient in the Burgess-Chidichimo approximation.
; ARGUMENTS : All output arguments will be defined appropriately.
; Inputs will be converted to correct type, if possible,
; internally without changing calling type.
; result = r8fbch(iz=iz, xi=xi, zeta=zeta, te=te)
; r8fbch, iz =iz, $
; xi = xi, $
; zeta = zeta, §$
; te = te
; NAME I/0 TYPE DETAILS
; REQUIRED iz I integer recombined ion charge
; xi I double effective ionisation potential (Ryd)
; zeta I double effective number of equivalent electrons
; te I double array of electron temperature (K)
; KEYWORDS help I - prints help to screen
; NOTES : Calls the fortran code.
; Units of result are cm”3/s
; AUTHOR : Martin O’Mullane
; DATE : 18-09-2008

175

; MODIFIED:
; 1.1 Martin O’Mullane
; - First version.

; VERSION:
; 1.1 18-09-2008
FUNCTION r8fbch, iz =iz, $
Xi = xi, $
zeta = zeta, $
te = te, $
help = help
Notes:
r8necip.pro
+
; PROJECT : ADAS
; NAME : r8necip
; PURPOSE : Calculates ECIP approximation for ionisation rate.
; ARGUMENTS : All output arguments will be defined appropriately.
; Inputs will be converted to correct type, if possible,
; internally without changing calling type.
; result = rsnecip(iz=iz, xi=xi, zeta=zeta)
; r8necip, iz =iz, $
; x1i = xi, $
; zeta = zeta, $
; te = te, $
; alfred = alfred
; NAME I/0 TYPE DETAILS
; REQUIRED iz I integer recombined ion charge
; xi I double effective ionisation potential (Ryd)
; zeta I double effective number of equivalent electrons
; te I double array of electron temperature (K)
; OPTIONAL alfred 0 double scaled 3-body recombination coefficient
; KEYWORDS None

176

; NOTES : Calls the fortran code.
; Units of result are cm”3/s

; AUTHOR : Martin O0’Mullane

; DATE : 08-04-2002

; MODIFIED:

; 1.1 Martin O’Mullane

; - First version.

; 1.2 Richard Martin

; - Removed underscore in CALL_EXTERNAL statement.
; 1.3 Allan Whiteford

; - Changed wrapper path to be just ADASFORT.

; VERSION:
; 1.1 08-04-2002
; 1.2 17-03-2003
; 1.3 10-08-2004
FUNCTION r8necip, iz =iz, $
xi = xi, $
zeta = zeta, $§
te = te, $
alfred = alfred
Notes:
config_orbital_energies.pro
J+
; PROJECT . ADAS
; NAME : config_orbital_energies
; PURPOSE : Calculates the shell orbital energies for the ground
; configuration, or supplied conffiguration, of an ion.
; EXPLANATION:
; Configurations are taken from adf00 datasets if none are
; supplied. RCN from Cowan is run and orbital energies, along
; with nlg are returned.
; ARGUMENTS : All output arguments will be defined appropriately.

177

; NAME I/0 TYPE DETAILS

; REQUIRED : z0_nuc I int atomic number

; z_ion I int ionisation stage

; OPTIONAL config I str full configuration string suitable for adf34
; n 0 int() principal quantum number

; 1 0 int() angular quantum number

; q 0 int() occupation number

; energy 0 real() orbital energy for nlg shell

; elec 0 int number of electrons from RCN output file
; KEYWORDS

; help I - prints help to screen

; NOTES : - Spawns rcn.x and get_orbital.x. Can leave temporary files in
; working directory if exits uncleanly.

; - The configuration string must start ar 1s and list all shells.
; It must be suitable for inclusion as adf34. See any adf0®

; configuration for a suitable example.

; AUTHOR : Martin O0’Mullane

; DATE : 08-10-2008

; MODIFIED:

; 1.1 Martin O’Mullane

; - First version.

; VERSION:

; 1.1 08-10-2008

PRO config_orbital_energies, z0_nuc = z0_nuc, §$
z_ion = z_ion, $
config = config, $
n = n, $
1 =1, $
q =dq, $
energy = energy, $
elec = elec, $
help = help

Notes:

tev_alf_s.pro

; PROJECT:

178

; ADAS

; NAME:

; tev_alf_s

; PURPOSE:

; Returns the electron temperature in eV at which the

; recombination coefficient alf(z+1 --> z) equals the

; ionisation coefficient S(z --> z+1) using Seaton (1964)

; expressions for the coefficients.

; ARGUMENTS : Arguments are non-positional named parameters. All output

; arguments will be defined appropriately.

; NAME I/0 TYPE DETAILS

; REQUIRED: z_ion I real ionising ion charge (= recombined ion charge).
; ionpot_z I real ionisation potential of ion z (Ryd).

; tev_alf_ s O real function returned value = elect. temperature (K).
; OPTIONAL: zeta I real number of equiv. electrons for ionis. coeff.

: (defaults to 1.0).

; ph_frac I real phase space avail. frac. for recom. coeff.

; (defaults to 1.0).

; accur I real frac. change in temperature at which

; iteration terminates (defaults to 0.001).
; KEYWORDS Tev I - switch ionpot_z and tev_alf s to elec. volts
; help I - prints help to screen

; NOTES

; AUTHOR: Hugh Summers

; DATE: 9-10-2008

; MODIFIED:

; 1.1 Hugh Summers

; - First release

; VERSION:
; 1.1 9-10-2008

FUNCTION tev_alf_s, z_ion =
ionpot_z =
zeta = zeta, $
ph_frac = ph_frac, $
accur = accur, $
ev = ev, $
help = help

z_ion,

ionpot_z, $

179

Notes:

sbchid_cfg_tot.pro

J+
; PROJECT : ADAS

; NAME : sbchid_cfg_tot

; PURPOSE : calculates total ionisation rate coefficient for a

; configuration from IDL, using the Burgess-Chidichimo

; expression for shell contributions.

; ARGUMENTS : Arguments are non-positional named parameters. All output

; arguments will be defined appropriately.

; NAME I/0 TYPE DETAILS

; REQUIRED : z0_nuc I int nuclear charge of element

; z_ion I int charge of ionising ion

; te I real() array of electron temperatures (K)

; coef 0 real() array of ionisation coefficients (cm”3 s"-1)

; OPTIONAL : config_z I str full configuration string of initial state

: (defaults to adf0®)

; config zl I str full configuration string of final state

; (defaults to adf0®)

; ionpot_z I real ionisation potential of initial state to ionised
; ion ground(Ryd) (defaults to adf00)

; excpot_zl I real excitation energy of final state above ionised
; ion ground (Ryd) (defaults to zero)

; case_ionis I str selected approximation case (‘case a’,

; ’case ba’ etc).(defaults to ’case bb’).

; ci_v I real scaling factor for valence ionisation group

; (defaults to 1.0)

; ci_nv I real scaling factor for non-valence ionisation group
; (defaults to 1.0)

; cr I real scaling factor for excitation group

; (defaults to 1.0)

; KEYWORDS T ev I - switch ionpot_z and te[] to elec. volts

; help I - prints help to screen

; NOTES

; AUTHOR : Hugh Summers

; DATE ;. 28-11-2008

; MODIFIED:

; 1.1 Hugh Summers

; - first release

; VERSION:

180

; 1.1 28-11-2008

PRO sbchid_cfg_tot, z0_nuc = z0_nuc, $
Z_ion = z_ion, $
config_z = config_z, $
config_zl = config_zl, §$
ionpot_z = ionpot_z, $
excpot_zl = excpot_zl, §

case_jonis = case_ionis, $

ci_v = ci_v, $

ci_nv = ci_nv, $

ci_r = ci_r, $
te = te, $
coef = coef, $

ev = ev, $
help = help

Notes

Notes:

adas8xx_ionis_promotion_rules.pro

Notes:

adas8xx_ionis_promotions.pro

Notes:

adas8xx_ionis_create_drivers.pro

181

Notes:

adas8xx_ionis_create_ca_adf23.pro

Notes:

run_adas813.pro

Notes:

alf_r_bdn.pro

J+
; PROJECT : ADAS

; NAME : alf_r_bdn

; PURPOSE : calculates radiative recombination coefficients to an

; n-shell at a set of electron temperatures.

; ARGUMENTS : Arguments are non-positional named parameters. All output

; arguments will be defined appropriately.

; NAME I/0 TYPE DETAILS

; REQUIRED : z0_nuc I int nuclear charge of element

; z_ion I int charge of recombined ion

; n I int principal quantum number of final state

; te I real() array of electron temperatures (K)

; coef 0 real() array of radiative recom. coeffts (cm”3 s"-1)
; OPTIONAL : dionpot_.n I real ionisation potential for final state

; n-shell to recombining ion ground(Ryd)

; (defaults to hydrogenic energy)

; approx I str selected approximation (‘no-gf’,’h-gf’).

(defaults to ’'h-gf’).

182

; KEYWORDS T ev I - switch ionpot_z and te[] to elec. volts

; help I - prints help to screen
; NOTES
; AUTHOR : Hugh Summers
; DATE ;. 28-11-2008
; MODIFIED:
; 1.1 Hugh Summers
; - first release
; VERSION:
; 1.1 28-11-2008
PRO alf_r_bdn, zO_nuc = z0_nuc, $
z_ion = =z_ion, $
n = n, $
te = te, $
coef = coef, §
ionpot_n = ionpot_n, $
approx = approx, $
ev = ev, $
help = help
Notes:
alf_r_bdnl.pro
J+
; PROJECT : ADAS
; NAME : alf_r_bdnl
; PURPOSE : calculates radiative recombination coefficients to an
; nl-shell at a set of electron temperatures.
; ARGUMENTS : Arguments are non-positional named parameters. All output
; arguments will be defined appropriately.
; NAME I/0 TYPE DETAILS
; REQUIRED : z0_nuc I int nuclear charge of element
; z_ion I int charge of recombined ion
; n I int principal quantum number of final state

183

$

; 1 I int

; te I real ()

; coef 0 real)

; OPTIONAL : config_zl I str

; ionpot_nl I real

; approx I str

; KEYWORDS T ev I -

; help I -

; NOTES

; AUTHOR : Hugh Summers

; DATE : 28-11-2008

; MODIFIED:

; 1.1 Hugh Summers

; - first release

; VERSION:

; 1.1 28-11-2008

PRO alf r_bdnl, zO®_nuc = z0_nuc,
z_ion = z_ion, §$
n = n, $
1 =1, $
te = te, §
coef = coef, $
config_zl1 = config_zl1,
ionpot_n = ionpot_n,
approx = approx,
ev = ev, §
help = help

Notes:

alf_r_tot.pro

y+

; PROJECT : ADAS

orbital quantum number of final state

array of electron temperatures (K)

array of radiative recom. coeffts (cm”3 s"-1)

full configuration string of initial state
(defaults to adf0®)

ionisation potential for final nl-shell

to recombining ion initial state(Ryd)
(defaults to hydrogenic energy)

selected approximation (‘no-gf’,’h-gf’,
"dw-gf’).(defaults to 'h-gf’).

switch ionpot_z and te[] to elec. volts
prints help to screen

184

calculates total radiative recombination coefficients to an

; ion at a set of electron temperatures and electron densities.

Arguments are non-positional named parameters.

All output

; arguments will be defined appropriately.

TYPE
int
int
real ()
real ()
real(,)
str
str
real
real
str

real

real

; NAME alf_r_tot

; PURPOSE

; ARGUMENTS

; NAME I/0
; REQUIRED z0_nuc I
; z_ion I
y te I
; dens I
; coef 0
; OPTIONAL config_z I
; config_zl I
; ionpot_z I
; excpot_zl I
; case_rr I
; crr I
; derr I
; KEYWORDS ev I
; help I
; NOTES

; AUTHOR Hugh Summers
; DATE 28-11-2008

; MODIFIED:

; 1.1 Hugh Summers
; - first release
; VERSION:

; 1.1 28-11-2008

PRO alf r_tot, zO®_nuc
z_ion
te =

z0_nuc,

= z_jon, $

te, $

DETAILS

nuclear charge of element

charge of recombined ion

array of electron temperatures (K)

array of electron densities (cm™-3)

array of radiative recom. coeffts (cm"3 s"-1)

1st dim: electron temperature
2nd dim: electron density

full configuration string of final lowest
state (defaults to adf00 ground config.)

full configuration string of initial state
(defaults to adf00 ground)

ionisation potential of final lowest state

to ionised ion ground(Ryd) (defaults to adf00)

excitation energy of initial state above
ionised ion ground (Ryd) (defaults to zero)

selected approximation case (‘case a’,
"case b’ ’case c¢’).(defaults to ’case b’).

scaling factor for lowest complex capture
(defaults to 1.0)

Temperature scaling factor for lowest complex
capture (defaults to 1.0)

switch ionpot_z, excpot_zl and te[] to elec.
volts
prints help to screen

185

dens = dens, $
coef = coef, $
config_.z = config .z , $
config_zl = config_zl, $
ionpot_z = ionpot_z, $
excpot_zl = -excpot_zl, §
case_rr = case_rr, §
crr = crr, $
derr = derr, §$
ev = ev §
help = help §
Notes:
alf_d_bgf.pro
i+
; PROJECT ADAS
; NAME alf d_bgf
; PURPOSE calculates total zero-density dielectronic recombination
; coefficients in the Burgess General formula approximation
; to an ion at a set of electron temperatures. A low precision
; finite density correction may be applied.
; ARGUMENTS Arguments are non-positional named parameters. All output
; arguments will be defined appropriately.
; NAME I/0 TYPE DETAILS
; REQUIRED z0_nuc I int nuclear charge of element
; z_ion I int charge of recombined ion
; deij I real() set of parent transition energies (Ryd)
; (Note: absolute energy - not z-scaled)
; fij I real() set of parent upward oscillator strengths
; from the parent ground state
; te I real() array of electron temperatures (K)
; coef_tot O real() array of dielectronic recom. coeffts (cm”3 s"-1)
; OPTIONAL dens I real electron density (cm”™-3)
; (faults if delta_nc not also set)
; delta_nc I int parent n-shell transition (® or > 0)
; KEYWORDS ev I - switch deij[] and te[] to elec. volts
; help I - prints help to screen
; NOTES

186

; AUTHOR : Hugh Summers
; DATE : 21-05-2009
; MODIFIED:

; 1.1 Hugh Summers
; - first release

; VERSION:
; 1.1 21-05-2009
PRO alf_d_bgf, z0O_nuc = z0_nuc, $
z_ion = =z_ion, $
deij = deij, $
fij = fij, $
te = te, $
dens = dens, §
delta_nc = delta_nc, §
coef_tot = coef_tot, §
ev = ev, $
help = help
Notes:
alf_d_bgp.pro
J+
; PROJECT : ADAS
; NAME : alf_d_bgp
; PURPOSE : calculates total zero density and n-shell partial
; dielectronic recombination coefficients in the Burgess
; General Program approximation to an ion at a set of
; electron temperatures. A density dependent cut-off on the total
; may be included.
; ARGUMENTS : Arguments are non-positional named parameters. All output
; arguments will be defined appropriately.
; NAME I/0 TYPE DETAILS
; REQUIRED : z0_nuc I int nuclear charge of element
; z_ion I int charge of recombined ion
; ep I real parent transition energy (cm-1)
; fp I real parent transition oscillator strength

187

; te I real) vector of electron temperatures (K)
; 1st dim: electron temperature index

; OPTIONAL np I int upper n-shell of parent transition

; 1p I int upper 1l-shell of parent transition

; ng I int lower n-shell of parent transition

; (belongs to the ground configuration)

; 1g I int lower 1-shell of parent transition

; (belongs to the ground configuration)

; cor I real() Bethe partial wave correction factors

; 1st dim: partial wave index (=1+1)

; df I real Bethe global adjustment parameter

; (defaults to 0.0)

; nmin I int lowest accessible n-shell by DR

; def_nmin I real quantum defect for lowest accesible n-shell by DR
; (defaults to 0.0)

; nrep I intQ representative n-shells

; 1st dim: representative n-shell index

; phfrac I real phase space factor for lowest accessible n-shell
; (default to 1.0)

; corfac I real Bethe global adjustment parameter

; (default to 0.0)

; dens I real electron density for n-shell cutoff in total

; coefficient(cm-3)
; (default to 0.0)

; coef_tot 0 real() vector of total DR coeffts (cm”3 s”-1) including

; density cut-off of sum if dens set otherwise

; zero density sum.

; 1st dim: electron temperature index

; coef_n 0 real(,) array of partial n-shell recom. coeffts (cm"3 s"-1)
; to representative n-shells

; 1st dim: representative n-shell index

; 2nd dim: electron temperature index

; KEYWORDS T ev I - switch te[] to elec. volts

; help I - prints help to screen

; NOTES

; 1. np,lp,ng,lg required if cor not set. Must have lp=1g+/-1

; 2. If cor not set, fortran default values are used based on np,lp,ng,lg
; 3. df default to 0.0. fortran default value used if cor not set

; 4. nrep defaults to standard ADAS fortran internal value if not set.

; If not set, nmin is required. If nrep and nmin supplied must have
; nmin=nrep(1l)

coef_n is not returned by fortran subroutine if nrep not set

; 6. Associated fortran subroutine has temperatures in eV.

v

; AUTHOR : Hugh Summers
; DATE 1 29-05-2009

; MODIFIED:

; 1.1 Hugh Summers

; - first release

188

; VERSION:

; 1.1 29-05-2009

PRO alf_d_bgp, z0_nuc = z0_nuc, $
z_ion = =z_ion, $
ep = ep, $
fp = 1fp, $
te = te, $
np = np, $
lp = 1p, §$
ng = ng, $
lg = 1g, $
cor = cor, $
df = df, §
nmin = nmin, $
def_nmin = def_nmin, $
phfrac = phfrac, $§
corfac = corfac, $
nrep = nrep, $
te = te=, §
dens = dens, $
coef_tot = coef_tot, §
coef_n = coefn, §
ev = ev, $
help = help

Notes:

alf_d_bbgp.pro

J+
; PROJECT : ADAS

; NAME : alf_d_bbgp

; PURPOSE : calculates n-shell and nl-shell finite density

; dielectronic recombination coefficients in the Burgess

; Bethe General Program approximation to an ion at a set of

; electron temperatures and electron densities.

; ARGUMENTS : Arguments are non-positional named parameters. All output
; arguments will be defined appropriately.

; NAME I/0 TYPE DETAILS

; REQUIRED ;. zO0_nuc I int nuclear charge of element

189

; z_ion I int charge of recombined ion

; adf46_file I str driver adf46 data set

; te I real () array of electron temperatures (K)

; dens I real() array of electron densities (cm-3)

; (defaults to zero density case)

; OPTIONAL zeff I real effective charge of thermal ion colliders
; (defaults to 1.0)

; ams_zeff I real effective mass of thermal ion colliders

; (defaults to 2.0)

; nrep I int() representative n-shells

; (defaults to standard ADAS set)

; 1_bound I int highest 1-shell for output coef _nl

; (defaults to 10)

; coef_n 0 real(,,) array of dielect. recom. coeffts (cm”"3 s”-1)

; 1st dim: electron temperature

; 2nd dim: electron density

; 3rd dim: representative n-shell index

; coef_nl 0 real(,,,)array of dielect. recom. coeffts (cm"3 s"-1)
; 1st dim: electron temperature

; 2nd dim: electron density

; 2nd dim: representative n-shell index

; 3rd dim: 1-shell index

; KEYWORDS roev I - switch te[] to elec. volts
; help I - prints help to screen

; NOTES

; AUTHOR : Hugh Summers

; DATE . 28-11-2008

; MODIFIED:

; 1.1 Hugh Summers

; - first release

; VERSION:

; 1.1 28-11-2008

PRO alf_d_bbgp, z®_nuc = z0_nuc, $
Z_ion = z_ion, $
adf46_file = adf46_file, $
te = te, §
dens = dens, $
zeff = zeff, §
ams_zeff = ams_zeff, §
nrep = nrep, $
1_bound = 1_bound, $
coef_n = coef_n, §
coef_nl = coef_nl, $
ev = ev, §
help = help

190

Notes:

read_adf55.pro

Notes:

run_adas407.pro

Notes:

run_adas408.pro

Notes:

run_adas316.pro

Notes:

preview_natural_partition.pro

191

Notes:

run_adas416.pro

192

Appendix C

FORTRAN subroutines

Subroutine Current location Local checks Central ADAS
Txt Opr Lnk CVS Rel
xxdata_00.for /home/hps/adas_dev/fortran/adaslib/read_adf/ y n n n n
xxdata_09.for /home/hps/adas_dev/fortran/adaslib/read_adf/ y n n n n
xxdata_11.for /home/hps/adas_dev/fortran/adaslib/read_adf/ y n n n n
xxdata_15.for /home/hps/adas_dev/fortran/adaslib/read_adf/ y n n n n
xxdata_23.for /home/summers/adas_dev/fortran/adaslib/read_adf/ vy n n n n
xxdata_40.for /home/hps/adas_dev/fortran/adaslib/read_adf/ y n n n n
xxdata_46.for /home/hps/adas_dev/fortran/adaslib/read_adf/ y n n n n
xxdtes.for /home/hps/adas_dev/fortran/adaslib/read _adf/ y n n n n
xxcftr.for /home/hps/adas_dev/fortran/adaslib/read _adf/ y n n n n
gSdtes.for /home/hps/adas_dev/fortran/adaslib/read _adf/ y n n n n
xxdrbf.for /home/hps/adas_dev/fortran/adas7xx/adas708/ y n n n n
xxdrbp.for /home/hps/adas_dev/fortran/adas7xx/adas708/ y n n n n
gxdrbp.for /home/hps/adas_dev/fortran/adas7xx/adas708/ y n n n n
xxdraa.for /home/hps/adas_dev/fortran/adas7xx/adas708/ y n n n n
g8bbgp.for /home/hps/adas_dev/fortran/adas7xx/adas708/ y n n n n
xxwrto_09.for /home/hps/adas_dev/fortran/adas7xx/adas708/ y n n n n

193

xxdata_00.for

(g

N NN 00N nN0n0o0n0n0n0nNn0o0n0nNn00o0n0nN0nNo0o0nnNn0o0n0on0o0nnon0onnna~nN

subroutine xxdata_00(iunit , dsname |,
& izdimd , iodimd , imdimd ,
& esym , 1z0 , bwnoa , eeva ,
& iorba , na , la , iqa ,
& cstr_std ,
& imeta , eevma ,
& iorbma , nma , lma , igma ,
& cstrm_std ,
& lexist , lresol
&)

implicit none

*%% fortran77 subroutine: xxdata_00 **

purpose: to fetch data from an adf00 data set and detect its main
characteristics.

1. element symbol and nuclear charge
2. ionisation potentials (cm-1 and eV)
3. shell occupancies in the normal collating order

calling program: various

ionisation potential: eV

configuration: standard form nlg (incl. integers
for n>9 and g>9 , lower case
letter for 1 and space separators)

subroutine:

input : (i*4) iunit = unit to which input file is allocated

input : (c*(*)) dsname = name of opened data set on iunit

input : (i*4) izdimd = maximum nuclear charge

input : (i*4) iodimd = max. number of orbitals

input : (i*4) imdimd = max. number of metastables

output: (c*2) esym = element symbol.

output: (i*4) iz0® = nuclear charge read

output: (r*8) bwnoa () = ionisation potential (cm-1) of each stage
1st dim: index = nuclear charge +1

output: (r*8) eeva() = ionisation potential (eV) of each stage
1st dim: index = nuclear charge +1

output: (i*4) iorba() = number of orbital shells in configuration
1st dim: index = nuclear charge +1

output: (i*4) na(,) = principal quantum number of shell

1st dim: index = nuclear charge +1
2nd dim: shell index
output: (i*4) la(,) = orbital ang. momentum qu. no. of shell
1st dim: index = nuclear charge +1
2nd dim: shell index
output: (i*4) iga(,) = occupancy. of shell

194

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

output:

output:

output:

output:

output:

output:

output:

output:

output:

routines:

author:

date:

update:

1st dim: index = nuclear charge +1
2nd dim: shell index

(c*(*)) cstr_std()= configuration string in standard form
1st dim: index = nuclear charge +1

(r*8) eevma(,) = excitation energy (eV) of each metastable
1st dim: index = nuclear charge +1
2nd dim: index = metastable index

(i*4) iorbma(,) = number of orbital shells in metas. config.
1st dim: index = nuclear charge +1
2nd dim: index = metastable index

(1i*4d) nma(, ,) = principal quantum number of metas.shell
1st dim: index = nuclear charge +1
2nd dim: shell index
3rd dim: index = metastable index

(1i*4d) Ima(,,) = orbital ang. mom. qu. no. of metas. shell
1st dim: index = nuclear charge +1
2nd dim: shell index
3rd dim: index = metastable index

(i*4) igma(,,) = occupancy. of metas. shell
1st dim: index = nuclear charge +1
2nd dim: shell index
3rd dim: index = metastable index

(c*(*)) cstrm_std(,)=meta. config. string in standard form
1st dim: index = nuclear charge +1
2nd dim: index = metastable index

(1*4) lexist = .true. => ionisation potential present
= .false. => not present
=4 lresol = .true. => metastable resolved adf00 file

= .false. => not metastable resolved adf0®

routine source brief description
idunit adas fetch unit number for output of messages
i4fctn adas converts from char. to integer variable
xxslen adas finds string length excluding leading and
trailing blanks
xxword adas parses a string into separate words
for ° O<>{}’ delimiters
xxcase adas changes a string to upper or lower case
xfesym adas obtain element symbol from nuclear charge
xfelem adas obtain element name from nuclear charge
xxterm adas terminate program with a message

Hugh Summers, University of Strathclyde
JA7.08

tel. 0141-548-4196

27/04/04

15/12/06 H. P. Summers - extended to handle metastable resolved

195

0o NN N0 0N nno0nnon0onn

adf00 files
version: 1.1 date: 27-04-04
modified: H.P. Summers
- first version
version: 1.2 date: 05-01-07
modified: H. P. Summers
- extended to handle metastable resolved
adf00 files

integer*4 iunit , izdimd , iodimd , imdimd
integer*4 idunit , i4fctn , labt , 1z0
integer*4 istart , istop , 1 y] , k

& in , h , iq , ind , m
integer*4 nfirst , iwords , maxwrd , icurrent, nmet
integer*4 iorba(izdimd) , na(izdimd,iodimd) ,

& la(izdimd,iodimd) , iqa(izdimd,iodimd)
integer*4 ifirst(nodim) , ilast(nodim)

integer*4 imeta(iodimd)
integer*4 iorbma(izdimd,imdimd) ,

& nma (izdimd, iodimd, imdimd) s
& Ima(izdimd,iodimd, imdimd) s
& igma(izdimd,iodimd,imdimd)
real*8 bwnoa (izdimd) , eeva(izdimd) , eevma(izdimd,iodimd)

character dsname*(*), string*240

character esym*2 , xfelem*12 , xfesym*2
character c3*3 , cl2%12
character c80_1%80 , c80_2%80 , c80_3*80 , element*12

character cstr_std(izdimd)*(*)

character cstrm_std(izdimd,imdimd)*(*)

character c_nshl(35)*1 , c_1shl(22)*1 , c_qshl(36)*1
character c_scol(45)%*2

data c_scol /’1s’,’2s’,’2p’,’3s’,’3p’,’3d’,’4s’,’4p’,
& 4d’,’4f’,’5s’,’5p’,’5d’,’5f’,’5g’,’6s’,
& "6p’,’6d’,’6f’,’6g’,’6h’,’7s’,’7p’,’7d’,
& 7£’,°79’,’7h’ ,’71’,’8s’,’8p’,’8d’, 8%,
& "89’,’8h’,’81’,’8j’,’9s’,’9p’,’9d’,’9f’,
& ’99’,’91’,’91’,79j’,’9k’/

196

data c_nshl /’1’,’2’,’3’,’4’,’5’,’6’,7",’8’,’9’,
& ’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’, i,
& 377,°’k’,’’ ,’m’ ,’n’ 07, ', ', ',
& s’ v w7y 2/

data c_1shl /’s’,’p’,’d’,’f’,’¢g’,’h’,’i’,’j’,’k’,
& 1’,’m’,’n’,’0’,’q’,’r’,’t’,’u’,’'v’,
& w,'x,'y’ 'z /

data c_gshl /’0’,’1’,’2°,’3’,’4’,’5",’6°,°7’,’8",
& 9’ ,’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,
& i7,737,’k’,’ ,’m’ ,’n’ 07, 'p L a7,
& r’,)’s’)t ,u v w0’y 2/

€ o
Notes:
xxdata_11.for

subroutine xxdata_11(iunit , iclass ,
& isdimd , iddimd , itdimd |,
& ndptnl , ndptn , ndptnc , ndcnct ,
& iz® , islmin , islmax ,
& nptnl , nptn , nptnc ,
& iptnla , iptna , iptnca ,
& ncnct |, icnctv ,
& iblmx , ismax , dnr_ele, dnr_ams,
& isppr , ispbr , isstgr ,
& idmax , itmax ,
& ddens , dtev , drcof ,
& lres , Istan , lptn
&)

implicit none

Thdhhhk fortran77 Subroutine: Xxdata_ll Tk

purpose: to read a complete adfll file, check its class and
determine its standard, resolved and partition organisation.

calling program: various

notes: (1) A ‘standard’ adfll file contains gcr data between one
whole ionisation stage and another whole ionisation
stage.
A ‘resolved’ (or partial) adfll file contains gcr data
between a set of metastables of one ionisation stage
and a set of metastables of another ionisation stage.
A resolved file is distinguished from a standard file
by the presence of a ‘connection vector’ in the adfll
data file header lines.
The connection vector specifies the number of meta-
stables in each ionisation stage which are coupled
together by gcr data.

(2) A ‘partitioned’ adfll file contains gcr data between

NN N0 0NN 00N 0000000 nno0n0on0nnN

197

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

clumps of ionisation stages or metastables or comb-
inations of the two called ‘partitions’.

A ‘partition level’ is a specification of the
partitions which span all the ionisation stages (and
metastables) of an element. Successive partition
levels give a heirarchy corresponding to larger
partitions and greater clumping.

A ‘superstage’ is a set of partitions which are close-

coupled.

There are thus equivalences
ionisation stage - superstage
metastable - partition
ion charge - superstage index

A partitioned adfll file may be standard (with each
superstage comprising only one partition) or resolved.
A partitioned file is distinguished by the presence of
‘partition specification block’ in the adfll data

file header lines.

(3) When a partition specification block is present, it
should be ordered from the highest partition level
index to lowest partition level index. Thus the first
partition in the partition block has the least number
of partitions and the last has the greatest number.

(4) Twelev classes of adfll data file may be read by the
subroutine as follow:

class index type GCR data content

acd recombination coeffts

scd ionisation coeffts

ccd X recombination coeffts

prb recomb/brems power coeffts
CX power coeffts
gcd base meta. coupl. coeffts
xcd parent meta. coupl. coeffts
plt low level line power coeffts
pls represent. line power coefft

O 00 NO VT i WIN =
ke
s
(g}

10 zcd effective charge
11 ycd effective squared charge
12 ecd effective ionisation potential

(5) A resolved adfll file, with a connection vector, has a set
of names and pointers at precise positions in the data file
which are recognised.

The names are different for partitioned and unpartitioned
data files as follow:

file unpartitioned partitioned
class names names
(all) z1 sl
(indices 1 and 2) (indices 1 and 2)
acd iprt igrd ispp ispb
scd iprt igrd ispp ispb
ccd iprt igrd ispp ispb

198

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

prb iprt ispp

prc iprt ispp

qcd igrd jord ispb jspb
xcd iprt jprt ispp jspp
plt igrd ispb

pls igrd ispb

zcd igrd ispb

ycd igrd ispb

ecd igrd ispb

(6) In partitioned nomenclature: s=superstage; p=partition;
b=base (current superstage), p=parent (next up super-
stage), c=child (next down superstage). Thus arrays
‘iprtr’ and ‘igrd’ in old notation are now substituted
by ‘isppr’ and ‘ispbr’ respectively internally and in
external naming.

subroutine:
input : (i*4) dunit = unit to which input file is allocated
input : (i*4) iclass = class of data (1 - 12):
l-acd, 2-scd, 3-ccd, 4-prb, 5-prc
6-gcd, 7-xcd, 8-plt, 9-pls,10-zcd
11-ycd, 12-ecd
input : (i*4) isdimd = maximum number of (sstage, parent, base)
blocks in isonuclear master files
input : (i*4) iddimd = maximum number of dens values in
isonuclear master files
input : (i*4) itdimd = maximum number of temp values in
isonuclear master files
input : (i*4) ndptnl = maximum level of partitions
input : (i*4) ndptn = maximum no. of partitions in one level
input : (i*4) ndptnc = maximum no. of components in a partition
input : (i*4) ndcnct = maximum number of elements in connection
vector
output: (i*4) iz® = nuclear charge
output: (i*4) islmin = minimum ion charge + 1
(generalised to connection vector index)
output: (i*4) islmax = maximum ion charge + 1
(note excludes the bare nucleus)
(generalised to connection vector index
and excludes last one which always remains
the bare nucleus)
output: (i*4) nptnl = number of partition levels in block
output: (i*4) nptnQ = number of partitions in partition level

1st dim: partition level

number of components in partition

1st dim: partition level

2nd dim: member partition in partition level

output: (i*4) iptnla() = partition level label (0O=resolved root,l=
unresolved root)

1st dim: partition level index

partition member label (labelling starts at 0)

1st dim: partition level index

output: (i*4) nptnc(,)

output: (i*4) iptna(,)

199

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

output:

output:
output:

output:

output:

output:

output:

output:

output:

output:

output:
output:
output:

output:
output:

output:

output:

output:

(i

(i*
(i-k

¢!

(1 *

(C-k

(r*

(i*

(1 *

¢!

(i
(i:‘:
(r:':

(r:'c
(r-k

(1%4)

(1 ¥

7':4)

4)
4)

7':4)

4)

12)

8)

4)

4)

7':4)

4)
4)
8)

8)
8)

4)

(1%4)

iptnca(,,)=

ncnct
icnctv()

iblmx

ismax

dnr_ele
dnr_ams

ispprQ

ispbr()

isstgrQ

idmax
itmax
ddens ()

dtev()
drcof(,,)

lres
Istan

lptn

2nd dim: member partition index in partition
level

component label (labelling starts at 0)

1st dim: partition level index

2nd dim: member partition index in partition
level

3rd dim: component index of member partition
number of elements in connection vector
connection vector of number of partitions

of each superstage in resolved case
including the bare nucleus

1st dim: connection vector index

number of (sstage, parent, base)

blocks in isonuclear master file

number of charge states

in isonuclear master file

(generalises to number of elements in

connection vector)

CX donor element name for iclass = 3 or 5

(blank if unset)

CX donor element mass for iclass = 3 or 5

(0.0d0 if unset)

1st (parent) index for each partition block

1st dim: index of (sstage, parent, base)
block in isonuclear master file

2nd (base) index for each partition block

1st dim: index of (sstage, parent, base)
block in isonuclear master file

sl for each resolved data block

(generalises to connection vector index)

1st dim: index of (sstage, parent, base)
block in isonuclear master file

number of dens values in
isonuclear master files
number of temp values in
isonuclear master files
logl®(electron density(cm-3)) from adfll
logl®(electron temperature (eV) from adfll
if(iclass <=9):
logl0(coll.-rad. coefft.) from
isonuclear master file
if(iclass >=10):
coll.-rad. coefft. from
isonuclear master file
1st dim: index of (sstage, parent, base)
block in isonuclear master file
2nd dim: electron temperature index
3rd dim: electron density index

.true. => partial file

.false. => not partial file

.true. => standard file

.false. => not standard file
.true. => partition block present

.false. => partition block not present

200

0N 00NN 00NN o000n0n0n0n0n0o0n0nNn0o0n00n0o0nno0o00nnonnnnNn

routines:
routine source brief description
idunit adas fetch unit number for output of messages
id4fctn adas convert string to integer form
xfelem adas return element name given nuclear charge
xxword adas extract position of number in buffer
xxslen adas find string less front and tail blanks
xXxcase adas convert a string to upper or lower case
XXrptn adas analyse an adfll file partition block

author: h. p. summers, university of strathclyde
ja7.08
tel. 0141-548-4196

date: 04/10/06

version: 1.1 date: 04/10/2006
modified: hugh summers
- first edition.

version: 1.2 date: 21/01/2007

modified: Allan Whiteford

- Commented out warning about lack of iclass,
all of the present ADAS files do not contain
this information
(first commit to CVS)

version: 1.3 date: 08/03/2007

modified: Hugh Summers

- adjustments for revised ecd formats.
charge exchange donor/donor mass checks and
dnr_ele, dnr_ams added to parameter return.

integer nddash , idword , hdstack , ndonors
character csrchl*4 , csrch2*4 , csrch3*4
character csrch4*4 , csrch5*4

character cdash*8 , cpart®3

parameter (nddash = 6 , idword = 256 , ndstack = 40)
parameter (csrchl = ’iprt’ , csrch2 = ’igrd’ ,csrch3 = '---/7)
parameter (csrch4 = ’ispp’ , csrch5 = ’ispb’)
parameter (cdash = "-------- ’, cpart = '//#°)
parameter (ndonors = 4)

integer iunit , 1dunit , i4fctn

integer iz® , islmin , islmax

integer iddimd , itdimd , isdimd

integer ndptnl , hdptn , hdptnc , hdcnct
integer iblmx , ismax , itmax , idmax
integer ischk

integer iclass , iclass_file

integer i , 1ic , it , id
integer icptn , labt , labtl , iabt2 s

201

& Jj , ndash_line

integer nptnl , ncnct , hcptn_stack

integer nfirst , iwords , nwords , ifirst , ilast
real*8 dnr_ams , dmass

character cstrg*80 , cstrgl*80, cterm*80 , ¢chindi*4

character xfelem*12 , strl2*12 , dnr_ele*12

logical 1res , lstan , 1lptn , lresol
logical Iptn_old , lwarn , ldonor , ldmass
integer idash_linea(nddash)

integer nptn(ndptnl) , hptnc(ndptnl,ndptn)
integer iptnla(ndptnl) , iptna(ndptnl,ndptn)
integer iptnca(ndptnl,ndptn,ndptnc)

integer icnctv(ndcnct)

integer isstgr(isdimd)

integer ifirsta(idword) , ilasta(idword)
integer ispbr(isdimd) , isppr(isdimd)
real*8 ddens (iddimd) , dtev(itdimd)

real*8 drcof(isdimd,itdimd,iddimd)
character cclass(12)*4 , cpatrn(12)*4
character cptrnl(12)*4 , cptrn2(12)*4
character cptn_stack(ndstack)*80

character cdonors(ndonors)*12

data cterm /’——-—-—- e
L e '/
data cclass/’/ACD’,’/SCD’,’ /CCD’,’ /PRB’,’ /PRC’,
& ’/QCb’,’/XCcp’,’ /PLT’,’ /PLS’,’ /ZCD’,
& ’/YCD’,’ /JECD’/
data cptrnl/’iprt’,’iprt’, iprt’, iprt’, iprt’,
& ’igrd’,’iprt’,’igrd’,’igrd’,’igrd’,
& 'igrd’,’igrd’/
data cptrn2/’ispp’,’ispp’, "ispp’,’ispp’, ispp’,
& ’ispb’,’ispp’, 'ispb’,’ispb’, ispb’,
& ’ispb’,’ispb’/
data cdonors/’ HYDROGEN ’,’DEUTERIUM ’,’TRITIUM 7,
& "HELIUM '/
Notes:

202

xxdata_15.for

NN N 00N n00o0n0n00nNn0o0n0nno0n00n0n0no0o0n0nn0o0nnnnNn

subroutine xxdata_15(C iunit , dsname ,
& nstore , ntdim , nddim ,
& ndptnl , ndptn , ndptnc , ndcnct ,
& ndstack, ndcmt ,
& iz® , is , isl , esym ,
& nptnl , nptn , nptnc ,
& iptnla , iptna , iptnca ,
& ncnct |, icnctv ,
& ncptn_stack , cptn_stack ,
& lres , lptn , lcmt , lsup ,
& nbsel , isela |,
& cwavel , cfile , ctype , cindm ,
& wavel , ispbr , isppr , isstgr , iszr ,
& ita , ida ,
& teta , teda ,
& pec , pec_max,
& ncmt_stack , cmt_stack
&)
implicit none
w3 whkkdkdkdkdkk fortran77 subroutine: xxdata_15 ik
purpose: To fetch data from an input photon emissivity file

for a given emitting element superstage .

calling programs: adas416/dxdata_15

data: Up to ’'nstore’ sets (data-blocks) of data may be read from
the file - each block forming a complete set of photon
emissivity coefft. values for given temp/density grid.
Each data-block is analysed independently of any other
datablock.
the units used in the data file are taken as follows:
temperatures : ev
densities cm-3
pec : phot. cm3 s-1

subroutine:

input : (i*4) dunit = unit to which input file is allocated.
(i*4) dsname = name of opened data set on iunit
(i*4) nstore = maximum number of input data-blocks that

can be stored.

(i*4) ntdim = max number of electron temperatures allowed
(i*4) nddim = max number of electron densities allowed
(i*4) ndptnl = maximum level of partitions
(i*4) ndptn = maximum no. of partitions in one level
(i*4) ndptnc = maximum no. of components in a partition
(i*4) ndcnct = maximum number of elements in connection
(i*4) ndstack = maximum number of partition text lines

203

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

output:

(1 *

(i
(¢!

¢!

(c-k

(1 *
(1 *

(¢!

(1 *

(i*

(¢!

(i*
:%4)

(¢!

(i:‘:
(c-k

(1 *

a

a

(1 ¥

(i-k
:':4)

¢!

(c:':

(C-k

(c:'c

4)

7':4)
7':4)

* 4)

2)

4)
4)

:':4)

4)

4)

:':4)

4)

4)
80)

4)

:':4)

7':4)

4)

4

10)

8)

8)

ndcmt = maximum number of comment text lines

vector
iz0 = read - emitting ion - nuclear charge
is = read - emitting ion - charge
(generalised to superstage label)
isl = read - emitting ion - charge + 1
(generalised to superstage index= is + 1)
esym = read - emitting ion - element symbol
nptnl = number of partition levels in block
nptn() = number of partitions in partition level
1st dim: partition level
nptnc(,) = number of components in partition
1st dim: partition level
2nd dim: member partition in partition level
iptnla() = partition level label (®=resolved root, 1=
unresolved root)
1st dim: partition level index
iptna(,) = partition member label (labelling starts at 0)
1st dim: partition level index
2nd dim: member partition index in partition
level
iptnca(,,)= component label (labelling starts at 0)
1st dim: partition level index
2nd dim: member partition index in partition
level
3rd dim: component index of member partition
ncnct = number of elements in connection vector
icnctv() = connection vector of number of partitions
of each superstage in resolved case
including the bare nucleus
1st dim: connection vector index
ncptn_stack = number of text lines in partition block

cptn_stack()= text lines in partition block
1st dim: text line index (l1->ncptn_stack)
lres = .true. => partial file
= .false. => not partial file
lptn = .true. => partition block present
= .false. => partition block not present
lcmt = .true. => comment text block present
= .false. => comment text block not present
lsup = .true. => ss use of filmem field
= .false. => old use of filmem field
nbsel = number of data-blocks accepted & read in.
isela() = read - data-set data-block entry indices
dimension: data-block index
cwavel() = wavelength string (angstroms)
1st dim: data-block index
cfile() = specific ion file source string in older
forms. Field not present in superstage
version, but reused for added information
1st dim: data-block index
ctype() = data type string

1st dim: data-block index

204

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

routine:

(C *

(r-k

¢!

(i*

(1 *

¢!

(1 *

(i:‘:
(r-k

(r:':

(r*

(r *

(i*
(c-k

(i

)
*4)
*4)
(i
(i
(i

¢!
(i
(i

(i-k

¢!
¢!
(¢!

(17‘:

(c:'c
(C-k

2)

8)

* 4)

4)

4)

:':4)

4)

4)

8)

8)

8)

8)

4)
80)

4)

4)
4)
4)

4

:':4)
:':4)
:':4)

4

D
2)

cindm()

wavel)
ispprO
ispbr()
isstgrQ)

iszr()

itaQ)

idaQ

teta(,)

teda(,)

pec(,,)

pec_max()

metastable index string
1st dim: data-block index

wavelength (angstroms)

dimension: data-block index

parent index for each line block

1st dim: index of block in adfl5 file
base index for each line block

1st dim: index of block in adfl5 file
sl for each resolved data block

1st dim: index of block in adfl5 file
ion charge relating to each line

1st dim: index of block in adfl5 file

number of electron temperatures
dimension: data-block index

read - number of electron densities
1st dim: data-block index

electron temperatures (units: ev)
1st dim: electron temperature index
2nd dim: data-block index

electron densities (units: cm-3)
1st dim: electron density index

2nd dim: data-block index

photon emissivity coeffts

1st dim: electron temperature index
2nd dim: electron density index

3rd dim: data-block index

photon emissivity coefft. maximum

as a function of Te at first Ne value
1st dim: data-block index

ncmt_stack = number of text lines in comment block
cmt_stack()= text lines in comment block

ideiz0
i4fctn
idunit
iblk
itt
itd
ntnum
ndnum
iabt
iposl

ipos2

1bend

cslash
c2

1st dim: text line index (1->ncmt_stack)

function - (see routines section below)
function - (see routines section below)
function - (see routines section below)
array index: data-block index

= array index: electron temperature index
= array index: electron density index

number of electron temperatures for current
data-block

number of electron densities for current
data-block

return code from ’i4dfctn’

general use string index variable

general use string index variable

identifies whether the last of the input
data sub-blocks has been located.

(.true. => end of sub-blocks reached)

’/’ - delimiter for ’xxhkey’
general use two byte character string

205

0O N N0 N0 N0 n00nNnN0o0nnNo0n00n0n0nNn0o0n0nn0o0n0n0o0n0nNo0o0n0n0o0n0o0ono0nNnonon~Nn

(g

NN N0 0NN on0o0nnn

routines:

author:

date:

update:

update:

update:

update:

unix-idl

version:

(c*5)
(c*6)
(c*4)
(c*4)
(c*4)
(c*80)

routine

ideiz0®
i4fctn
idunit
r8fctn
xxmkrp
Xxcase
xxhkey
XXrptn
xxword
xxslen

h. p. s
k1/1/57
jet ext

11/10/9

05/12/9

ionnam = emitting ion read from dataset
ckeyl = 'filmem’ - input block header key
ckey?2 = ’type ’ - input block header key
ckey3 = ’indm ’ - input block header key
ckey4 = ’isel ’ - input block header key
c80 = general use 80 byte character string for
the input of data-set records.
source brief description
adas returns z0 for given element symbol
adas convert character string to integer
adas fetch unit number for output of messages
adas convert string to real number
adas make up root partition text lines
adas convert a string to upper or lower case
adas obtain key/response strings from text
adas analyse an adfll file partition block
adas extract position of number in buffer
adas find string less front and tail blanks
ummers
. 4941
1
1 - pe briden: ionnam now allowed to occupy either
4 or 5 spaces in the header.
3 - pe briden - adas91: added i4unit function to write

23/04/9

24/05/9

27/2/95

port:

1.2

3

1. jalota

statements for screen messages

pe briden - adas91l: changed i4unit(0)-> idunit(-1)

- idl_adas : increased size dsname for
use under unix systems

date: 23-1-96

modified: tim hammond (tessella support services plc)
- corrected format statements for dsname length

notes: copied from e3data.for. this is v1.1 of xxdata_15.

version
date
modified

version

1.1
12-04

: martin o’mullane
- first version

1.2

-2005

206

NN N0 0NN o0o0nnon0nnn

date : 25-04-2005
modified : martin o’mullane
- increase c3 to character*3 to permit more than
100 entries in adfl5 file.
version : 1.3
date : 15-05-2006

modified : Hugh Summers
- extended to operation with superstages and partitions.

version : 1.4 date: 03/01/2007
modified: Hugh Summers
- remove redundant variables.

integer idword , idenct , izO®_max_res

parameter (idword = 256 , idcnct = 100)
parameter (iz®_max_res = 10)

integer ideiz0® , idfctn , idunit
integer iunit , nstore ,
& ntdim , nddim ,
& iz0® , 1s ,
& isl , hbsel
integer iblk ,
& itt , itd ,
& ntnum , ndnum ,
& iposl , ipos2 , iabt
integer ndptnl , hdptn , nhdptnc , hdcnct
integer ndstack , ndcmt
integer nptnl , hcnct , hcptn_stack , hcmt_stack ,
& iptnl
integer nfirst , iwords , nwords
integer i ,] , ifirst , ilast
integer max_indm , indm
real*8 pmax , r8fctn

logical 1bend

logical Iptn , lresol , lres , lsup

logical lcemt , lptn_temp

character dsname*80 , esym*2

character cslash*1 , colon*1

character c2%2 , €3*%3 s
& ckeyl1*6 , ckey2*4 s
& ckey3*4 , ckey4*4 s
& ckey5%2 , ckey6*2 s
& ckey7%2 , ckey8+*2 s
& ckey9*2 , ckeyl0*4 s
& ckeyll*4 ,
& ionnam*5 , c80*80 , cstrg*80

character cblnk8%*8

integer isela(nstore) ,
& ita(nstore) , ida(nstore)

207

integer nptn(ndptnl) , nptnc(ndptnl,ndptn)
integer iptnla(ndptnl) , iptna(ndptnl,ndptn)
integer iptnca(ndptnl,ndptn,ndptnc)
integer icnctv(ndenct)
integer ifirsta(idword) , ilasta(idword)
integer isstgr(nstore) , iszr(nstore)
integer ispbr(nstore) , isppr(nstore)
integer ncncta(izO_max_res) , icnctva(izO_max_res,idcnct)
character cindm(nstore)*2 , cfile(nstore)*8

& ctype(nstore) *8 , cwavel (nstore)*10
character cptn_stack(ndstack)*80,cmt_stack(ndcmt)*80
real*8 teta(ntdim,nstore) , teda(nddim,nstore)
real*8 wavel (nstore) , pec(ntdim,nddim,nstore)
real*8 pec_max (nstore)
save cslash ,

& ckeyl , ckey2 ,

& ckey3 , ckey4
data cslash / '/’ / , colon / ’:" /
data cblnk8 /’ '/
data ckeyl / ’filmem’ / , ckey2 / ’type’ /

& ckey3 / ’indm’ / , ckeyd / ’isel’ /

& ckey5 / ’pl’ / , ckey6 / ’ss’ /

& ckey7 / ’pb’ / , ckey8 / ’pp’ /

& ckey9 / ’sz’ / , ckeyl® / ’ispb’ /

& ckeyll / ’ispp’ /
data ncncta(l), (icenctva(l,i),i=1,2) / 2,1,1/
data ncncta(2), (icnctva(2,i),i=1,3) / 3,2,1,1/
data ncncta(3), (icnctva(3,i),i=1,4) / 4,1,2,1,1/
data ncncta(4), (icnctva(4,i),i=1,5) / 5,2,1,2,1,1/
data ncncta(5), (icnctva(5,i),i=1,6) / 6,2,2,1,2,1,1/
data ncncta(6), (icnctva(6,i),i=1,7) / 7,4,2,2,1,2,1,1/
data ncncta(7), (icenctva(7,i),i=1,8) / 8,3,4,2,2,1,2,1,1/
data ncncta(8),(icnctva(8,i),i=1,9) / 9,4,3,4,2,2,1,2,1,1/
data ncncta(9),(icnctva(9,i),i=1,10) /10,2,4,3,4,2,2,1,2,1,1/
data ncncta(l®), (icnctva(1e,i),i=1,11)/11,2,2,4,3,4,2,2,1,2,1,1/

Notes:

208

xxdata_23.for

subroutine xxdata_23(iunit ,

& ndlev , ndmet , ndtem , ndtext s
& seq , 1z0 , iz , izl s
& ctype ,

& bwno_f , nlvl_f , lmet_f , lestrg_f ,
& ia_f , code_f , cstrga_f ,

& isa_f , ila_f , xja_f , wa_f s
& nmet_f , imeta_f ,

& bwno_i , nlvl_i , lmet_i , lcstrg_i ,
& ia_i , code_i , cstrga_i ,

& isa_i , ila_i , Xja_i , wa_i s
& nmet_i , imeta_i ,

& nte_ion , tea_ion , lqred_ion , qred_ion ,
& nf_a , indf_a , lyld_a , yld_a s
& nte_exc , tea_exc , lqred_exc , qred_exc ,
& 1_ion , 1_aug , 1_exc ,

& ntext , ctext

&)

implicit none

**% fortran77 subroutine: xxdata_23 **
purpose: to fetch data from an adf23 data set.

input : (i*4) iunit

unit to which input file is allocated

(i*4) ndlev = maximum number of energy levels in
either ion stage

(i*4) ndmet = maximum number of metastables

(i*4) ndtem = maximum number of temperatures

(i*4) ndtext = maximum number of comment text lines
output: (c*2) seq = iso-electronic sequence symbol

(i*4) 1iz0 = nuclear charge

(i*4) iz = ionising ion charge

(i*4) izl = ioniswd ion charge (=iz+1)

(c*2) ctype = adf23 file resol. (’ca’, ’'ls’ or ’ic’)

(r*8) bwno_f = jonis. poten. of ionised ion (cm-1)

(i*4) nlvl_f£f = number of levels of ionised ion (cm-1)

(1*4) 1met_f = .true. => ionised metastables marked

.false. => ionised metastables unmarked
(default action - mark ground)

.true. => standard config strings for
ionised ion states

.false. => unreadable config string for
at least one ionised ion state

(i*4) ia_fQO = index of ionised ion levels

1st dim: ionised ion level index

met. or excit. DR parent marker (* or #)

1st dim: ionised ion level index

(1*4) 1lcstrg_f

(c*1) code_fQO

(i*(*))cstrga_f() = ionised ion configuration strings
1st dim: ionised ion level index
(i*4) idisa_f(Q = ionised ion level multiplicity

N NN 00N nN00o00n0n00nNn00n0nn0o0n000n0no0o0n0n0n0nnnNnN

1st dim: ionised ion level index

209

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

(i*
(r*
(r*
(i*
(i*

(r:':
:':4)
:':4)

¢!
a

(1 *

(¢!

(C ¥

(i*

(1 *

(i*

(r-k

(r *

(i
(i*

¢!

(r-k

(1%

(r-k

(i

¢!

4)
8)
8)
4)

4)

8)

4)

7':4)

D

ila_fQ
xja_fO
wa_fQ
nmet_£f

imeta_f(Q

bwno_i
nlvl_i
Imet_i

lcstrg_i

ia_iQ)

code_i()

(*))cstrga_iQ)

4)

4)

8)

8)

4)
4)

* 4)

8)

4)

8)

4)

7':4)

isa_iQ
ila_iQ
xja_i0Q
wa_iQ
nmet_i
imeta_i(Q)

nte_ion()

tea_ion(,)

lgred_ion(,)=

gqred_ion(, ,)

nf_a()

indf_a(,)

ionised ion total orb. ang. mom.

1st dim: ionised ion level index

ionised ion level (stat wt-1)/2

1st dim: ionised ion level index

ionised ion level wave number (cm-1)

1st dim: ionised ion level index

number of ionised ion metastables

pointers to ionised metastables in full

ionised ion state list

1st dim: ionised metastable index

= jonis. poten. of ionising ion (cm-1)

= number of levels of ionising ion (cm-1)

.true. => ionising metastable marked

.false. => ionising metastables unmarked
(default action - mark ground)

.true. => standard config strings for
ionising ion states

.false. => unreadable config string for
at least one ionising ion state

index of ionising ion levels

1st dim: ionising ion level index

met. or excit. DR parent marker (* or #)

1st dim: ionising ion level index

ionising ion configuration strings

1st dim: ionising ion level index

ionising ion level multiplicity

1st dim: ionising ion level index

ionising ion total orb. ang. mom.

1st dim: ionising ion level index

ionising ion level (stat wt-1)/2

1st dim: ionising ion level index

ionising ion level wave number (cm-1)

1st dim: ionising ion level index

number of ionising ion metastables

pointers to ionising metastables in full

ionising ion state list

1st dim: ionising metastable index

number of temperatures for direct ionis-

ation data for initial metastable block

1st dim: ionising ion metastable index

temperatures (K) for direct ionis-

ation data for initial metastable block

1st dim: ionising ion metastable index

2nd dim: temperature index

.true. => direct ionisation data line

present for ionised ion state
.false.=> data line not present for
ionised ion state.

1st dim: ionising ion metastable index

2nd dim: ionised ion state index

reduced direct ionisation rate coeffts.

1st dim: ionising ion metastable index

2nd dim: ionised ion state index

3rd dim: temperature index

number of Auger ionised ion final states

1st dim: ionising ion metastable index

Auger ionised ion final state

210

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

1st dim: ionising ion metastable index
2nd dim: final state index
.true. => Auger data for ionising ion excited state
.false.=> no Auger data
1st dim: ionising ion metastable index
2nd dim: initial state index
(r*8) vyld_.a(,,) = Auger yields
1st dim: ionising ion metastable index
2nd dim: ionising ion excited state index
3rd dim: ionised ion state index
(i*4) nte_exc(Q = number of temperatures for excitation
data for initial metastable block
1st dim: ionising ion metastable index
(r*8) tea_exc(,) = temperatures (K) for direct excit-
ation data for initial metastable block
1st dim: ionising ion metastable index
2nd dim: temperature index
(1*4) 1qred_exc(,)= .true. => direct excitation data line
present for excited ion state
.false.=> data line not present for
excited ion state.
1st dim: ionising ion metastable index
2nd dim: excited ionising ion state index
(r*8) qred_exc(,,)= reduced excitation rate coeffts.
1st dim: ionising ion metastable index
2nd dim: excited ionising ion state index
3rd dim: temperature index
A*4) 1_ion(QO = .true. => ionisation data present for metastable
.false.=> ionisation data not present
1st dim: ionising ion metastable index
(1*4) 1_augQ = .true. => Auger data present for metastable
.false.=> Auger data not present
1st dim: ionising ion metastable index
A*4) 1_exc(O = .true. => excitation data present for metastable
.false.=> excitation data not present
1st dim: ionising ion metastable index
(i*4) ntext = number of commment text lines
(c*80) ctext() = comment text lines
1st dim: index of text lines

(1*4) 1lyld_a(,)

routines:
routine source brief description
idunit adas fetch unit number for output of messages
ideiz0® adas fetch nuclear charge for element symbol
xfesym adas fetch element symbol for nuclear charge
xxcase adas convert string to lower or upper case
xxhkey adas extract a key name value from a string
xxlast adas find last occurence of char in string
xxslen adas find first and last characters of string
xxdtes adas detect if config string is eissner/standard
xxcftr adas covert config string between eissner/standard

author: hugh summers
date : 30-05-2008

211

0o N N N0 nn

version : 1.1
date : 30-05-2008
modified : hugh summers

- first version

integer idunit , 14eiz@® , lenstr
integer iunit
integer ndlev , hdmet , ndtem , ndtext
integer iz0 , iz , 1zl , izf
integer nlvl_f , nlvl_i
integer ind1 , ind2 , istart , istop s
& i ,] , indx_fb , indx_1b
integer iprf , it , nte
integer imet_1i , imet_count , indi , ilvl
integer iword , hwords ,
& ilen_index , ilen_cnfg , ilen_s ,
& ilen_1 , ilen_j , ilen_wnf
integer nvlce , ilen
integer nmet_i , nmet_f

integer ntext

real*8 bwno_f , bwno_i

character seq*2 , esym*2 , Ctype*2 , xfesym*2
character c10*10 , C22%22 , c80%80 , €256%256
character cline*80 , clong*256

character cbreak*1 , csrch*1

character f_1004%41 , f_1005%29

logical Imet_f , lmet_i , lcstrg_f , lestrg_i
logical Istan , leiss , lcheck

integer ia_f(ndlev)

integer isa_f(ndlev) , ila_f(ndlev)

integer ia_i(ndlev)

integer isa_i(ndlev) , i1la_i(ndlev)

integer ifirst(1l) , ilast(1l)

integer nte_ion(ndmet) , nte_exc(ndmet) , nf_a(ndmet)
integer indf_a(ndmet,ndlev)

integer imeta_i(ndmet) , imeta_f(ndmet)

real*8 xja_f(ndlev) , wa_f(ndlev)

real*8 xja_i(ndlev) , wa_i(ndlev)

real*8 tea_ion(ndmet,ndtem) , gred_ion(ndmet,ndlev,ndtem)
real*8 tea_exc(ndmet,ndtem) , gred_exc(ndmet,ndlev,ndtem)
real*8 yld_a(ndmet,ndlev,ndlev)

real*8 duma(idlev)

character code_f(ndlev)*1 , cstrga_f(ndlev)*(*)

character code_i(ndlev)*1 , cstrga_i(ndlev)*(*)

character ckey(3)*6 , cans(3)*4

character ctext(ndtext)*80

logical 1_ion(ndmet) , 1_aug(ndmet) , 1_exc(ndmet)
logical lgred_ion(ndmet,ndlev)

logical lgred_exc(ndmet,ndlev)

logical lyld_a(ndmet,ndlev)

data ckey/’seq’, 'nucchg’, ’type’/
data cbreak,csrch/’/’,’)’/
Notes:

213

xxdata_40.for

subroutine xxdata_40(iunit , dsname ,
& nstore , ndpix , ntdim , nddim ,
& ndptnl , ndptn , hdptnc , ndcnct ,
& ndstack, ndcmt s
& iz0 , is , isl , esym ,
& nptnl , nptn , hptnc ,
& iptnla , iptna , iptnca ,
& ncnct , icnctv
& ncptn_stack , cptn_stack ,
& lres , lptn , lemt , lsup ,
& nbsel , isela s
& npixa , cfile , ctype , cindm
& ispbr , isppr , isstgr , ilzr , ihzr ,
& wvmina , wvmaxa ,
& ita , ida s
& teta , teda s
& fpec , fpec_max,
& ncmt_stack , cmt_stack
&)

implicit none

ER R R R R R R R fortran77 subroutine . Xxdata_4® o R AR R A A S A R Rk

purpose: To fetch data from an input feature photon emissivity
file for a given emitting element superstage .

calling programs: adas416/dxdata_40

data: Up to ’'nstore’ sets (data-blocks) of data may be read from
the file - each block forming a complete feature photon
emissivity coefft. for given temp/density grid and wave-.
length range. Each data-block is analysed independently
of any other datablock.

the units used in the data file are taken as follows:

temperatures : ev

N NN 00N N0 00n00n0nN0n0o0n00nn0o00n0000n00no0o0nnnnnnNn

densities :cam-3
pec : phot. cm3 s-1 pixel-1
subroutine:
input : (i*4) iunit = unit to which input file is allocated.
(i*4) dsname = name of opened data set on iunit
(i*4) nstore = maximum number of input data-blocks that
can be stored.
(i*4) npix = maximum number of pixels in a data-blocks
that can be stored.
(i*4) ntdim = max number of electron temperatures allowed
(i*4) nddim = max number of electron densities allowed
(i*4) ndptnl = maximum level of partitions

214

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

output:

(i
(i
*4)
*4)
*4)

(¢!
(¢!
¢!

(i
(i*

(1 *

(C:':

¢!

(1 *

(¢!

(¢!

(1 *

¢!

(1 *
(C %

a

(1 ¥

(1%

a

(¢!

(1 ¥

(c:'c

4)
4)

4)
4)

4)

2)

7':4)
(i:‘:

4)

4)

7':4)

:':4)

4)

* 4)
(1 *

4)

4)
80)

7':4)

4)

4)

:':4)

:':4)
(i

4)

4)

8)

ndptn = maximum no. of partitions in one level

ndptnc = maximum no. of components in a partition

ndcnct = maximum number of elements in connection

ndstack = maximum number of partition text lines

ndcmt = maximum number of comment text lines
vector

iz0® = read - emitting ion - nuclear charge

is = read - emitting ion - charge
(generalised to superstage label)

isl = read - emitting ion - charge + 1
(generalised to superstage index= is + 1)

esym = read - emitting ion - element symbol

nptnl = number of partition levels in block

nptn() = number of partitions in partition level
1st dim: partition level

nptnc(,) = number of components in partition

1st dim: partition level

2nd dim: member partition in partition level

partition level label (O=resolved root,l=
unresolved root)

1st dim: partition level index

iptnla(Q)

iptna(,)

1st dim: partition level index

2nd dim: member partition index in partition

level
iptnca(,,)= component label (labelling starts at 0)

1st dim: partition level index

2nd dim: member partition index in partition

level

3rd dim: component index of member partition
ncnct = number of elements in connection vector
icnctv() = connection vector of number of partitions

of each superstage in resolved case

including the bare nucleus

1st dim: connection vector index
ncptn_stack = number of text lines in partition block

cptn_stack()= text lines in partition block
1st dim: text line index (l->ncptn_stack)
lres = .true. => partial file
= .false. => not partial file
lptn = .true. => partition block present
= .false. => partition block not present
lcmt = .true. => comment text block present
= .false. => comment text block not present
lsup = .true. => ss use of filmem field
= .false. => old use of filmem field
nbsel = number of data-blocks accepted & read in.
isela() = read - data-set data-block entry indices
dimension: data-block index
npixa() = number of pixels for data block
1st dim: data-block index
cfile() = specific ion file source string in older

forms. Field not present in superstage

215

partition member label (labelling starts at 0)

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

version, but reused for added information
1st dim: data-block index
(c*8) ctype() = data type string
1st dim: data-block index
(c*2) cindm() = metastable index string
1st dim: data-block index

(i*4) ispprQ = parent index for each feature block
1st dim: index of block in adf4® file
(i*4) dispbr(Q = base index for each feature block
1st dim: index of block in adf40® file
(i*4) disstgr() = sl for each resolved data block
1st dim: index of block in adf40 file
(i*4) ilzrQ = lowest ion charge relating to feature
1st dim: index of block in adf4® file
(i*4) ihzr(Q = highest ion charge relating to feature

1st dim: index of block in adf40 file

(r*8) wvmina() = lowest wavelength of feature block
dimension: data-block index

(r*8) wvmaxa() = highest wavelength of feature block
dimension: data-block index

(i*4) 1itaQ = number of electron temperatures
dimension: data-block index
(i*4) idaQ = read - number of electron densities

1st dim: data-block index

(r*8) teta(,) = electron temperatures (units: ev)
1st dim: electron temperature index
2nd dim: data-block index

(r*8) teda(,) = electron densities (units: cm-3)
1st dim: electron density index
2nd dim: data-block index

(r*8) fpec(,,,) = feature photon emissivity coeffts
1st dim: pixel index
2nd dim: electron temperature index
3rd dim: electron density index
4th dim: data-block index
(r*8) fpec_max()= feature photon emissivity coefft. power
integral maximum (over wavelength interval)
as a function of Te at first Ne value
1st dim: data-block index
(i*4) ncmt_stack = number of text lines in comment block
(c*80) cmt_stack()= text lines in comment block
1st dim: text line index (1->ncmt_stack)

function - (see routines section below)
function - (see routines section below)
function - (see routines section below)

routine: (i*4) i4eiz0®
(i*4) idfctn
(i*4) idunit

(i*4) iblk = array index: data-block index

(i*4) ittt = array index: electron temperature index

(i*4) itd = array index: electron density index

(i*4) ntnum = number of electron temperatures for current
data-block

(i*4) ndnum = number of electron densities for current

216

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

data-block

(i*4) iabt = return code from ’i4fctn’
(i*4) iposl = general use string index variable
(i*4) ipos2 = general use string index variable
(1*4) 1bend = identifies whether the last of the input
data sub-blocks has been located.
(.true. => end of sub-blocks reached)
(c*1) «cslash ="'/’ - delimiter for ’xxhkey’
(c*2) «c2 = general use two byte character string
(c*5) ionnam = emitting ion read from dataset
(c*6) ckeyl = "filmem’ - input block header key
(c*4) ckey2 = "type ’ - input block header key
(c*4) ckey3 = ’indm ’ - input block header key
(c*4) ckey4 = ’isel ’ - input block header key
(c*80) c80 = general use 80 byte character string for
the input of data-set records.
routines:
routine source brief description
ideiz0® adas returns z0 for given element symbol
i4fctn adas convert character string to integer
idunit adas fetch unit number for output of messages
r8fctn adas convert string to real number
xxmkrp adas make up root partition text lines
xxcase adas convert a string to upper or lower case
xxhkey adas obtain key/response strings from text
XXrptn adas analyse an adfll file partition block
xxword adas extract position of number in buffer
xxslen adas find string less front and tail blanks

author: h. p. summers, university of strathclyde
ja7.08
tel. 0141-548-4196

date: 13/06/06
version : 1.1
date 1 25-11-2004

modified : martin o’mullane
- first version

version : 1.2
date 1 29-11-2004
modified : martin o’mullane
- faulty 1001 format statement.

version : 1.3
date : 15-05-2006
modified : Hugh Summers
- complete rewrite for operation with superstages and
partitions, made similar to xxdata_15.for .

version : 1.4

217

NN N0 0NN ononn

date : 06-11-2006
modified : Allan Whiteford
- correction of indexing npixa by ipx rather than iblk.
version : 1.5
date : 15-01-2007

modified : Hugh Summers
- corrected metastable count for Ne+®.

integer idword , idenct , iz®_max_res

parameter (idword = 256 , idcnct = 100)
parameter (iz®_max_res = 10)

integer ideiz0 , idfctn , idunit
integer iunit , nstore , ndpix ,
& ntdim , nddim ,
& iz0® , 1s ,
& isl , hbsel
integer iblk ,
& itt , itd ,
& ntnum , ndnum ,
& iposl , ipos2 , iabt
integer ndptnl , hdptn , hdptnc , hdcnct
integer ndstack , ndcmt
integer nptnl , hcnct , ncptn_stack , ncmt_stack
& iptnl
integer nfirst , iwords , nwords
integer i ,] , ifirst , ilast
integer max_indm , indm , ipx
real*8 fpmax , r8fctn

logical 1bend

logical Iptn , lresol , lres , lsup

logical lcemt , lptn_temp

character dsname*80 , esym*2

character cslash*1 , colon*1

character c2%2 , €3%3 s
& ckeyl1*6 , ckey2*4 s
& ckey3*4 , ckey4*4 s
& ckey5%2 , ckey6*2 s
& ckey7%2 , ckey8+*2 s
& ckey9%2 , ckeyl0*2 s
& ckeyll*4 , ckeyl2*4 ,
& ionnam*5 , c80*%80 , cstrg*80

character cblnk8%*8

integer isela(nstore) ,

& ita(nstore) , ida(nstore)
integer nptn(ndptnl) , nptnc(ndptnl,ndptn)
integer iptnla(ndptnl) , iptna(ndptnl,ndptn)
integer iptnca(ndptnl,ndptn,ndptnc)
integer icnctv(ndcnct)
integer ifirsta(idword) , ilasta(idword)

218

integer isstgr(nstore) , ilzr(nstore) , ihzr(nstore)

integer ispbr(nstore) , isppr(nstore)
integer ncncta(izO_max_res) , icnctva(izO_max_res,idcnct)
integer npixa(nstore)
character cindm(nstore)*2 , cfile(nstore)*8
& ctype(nstore) *8

character cptn_stack(ndstack)*80,cmt_stack(ndcmt)*80

real*8 teta(ntdim,nstore) , teda(nddim,nstore)

real*8 wvmina(nstore) , wvmaxa(nstore)

real*8 fpec(ndpix,ntdim,nddim,nstore)

real*8 fpec_sum(ntdim,nddim,nstore)

real*8 fpec_max(nstore)

save cslash ,
& ckeyl , ckey2 ,
& ckey3 , ckey4

data cslash / '/’ / , colon / ’':" /

data cblnk8 /’ v/

data ckeyl / ’filmem’ / , ckey2 / ’type’ /
& ckey3 / ’indm’ / , ckeyd / ’isel’ /
& ckey5 / ’pl’ / , ckey6 / ’ss’ /
& ckey7 / ’pb’ / , ckey8 / ’pp’ /s
& ckey9 / ’1z’ / , ckeyl® / ’hz’ / ,
& ckeyll / ’ispb’ / , ckeyl2 / ’ispp’ /

data ncncta(l), (icnctva(l,i),i=1,2)
data ncncta(2), (icnctva(2,i),i=1,3)
data ncncta(3), (icenctva(3,i),i=1,4)
data ncncta(4), (icnctva(4,i),i=1,5)

/
/
/
/
/
data ncncta(6), (icnctva(6,i),i=1,7) /
/
/
/
/

1
2,1
data ncncta(5), (icnctva(5,i),i=1,6) ,2,2,1,2,1,1/
2,1,2,1,1/
data ncncta(7), (icnctva(7,i),i=1,8) ,3,4,2,2,1,2,1,1/
data ncncta(8), (icnctva(8,i),i=1,9) ,4,3,4,2,2,1,2,1,1/
data ncncta(9), (icnctva(9,i),i=1,10) 10,2,4,3,4,2,2,1,2,1,1/
data ncncta(l10), (icnctva(l0,i),i=1,11)/11,2,2,4,3,4,2,2,1,2,1,1/

1bend = .false.

Notes:

219

xxdata_46.for

subroutine xxdata_46(iunit ,

& ndlev , ndtrn , ndmet , ndprt y
& ndomgl , ndqd , ndrep , hdlrep ,
& ndte , hddens ,

& seq , 1z0 , iz , izl s
& ctype , esym ,

& bwno_i , nlvl_i , lmet_i , lcstrg_i ,
& ia_i , code_i , cstrga_i ,

& isa_i , ila_i , Xja_i , wa_i s
& nmet_i , imeta_i , nlexc_i ,

& bwno_f£f , nlvl_f , lmet_f , lecstrg_f ,
& ia_f , code_f , cstrga_f ,

& isa_f , ila_f , xja_f , wa_f s
& nmet_f , imeta_f , nlexc_f ,

& ntrn , idx1l , idxu , ityp ,
& aul , nomgl , omgl ,

& npol , idxp , dpol ,

& Imax_qd , qdl , qd2 ,

& nll , nl2 , nl3 ,

& inrep , nrep , ilrep , lrep ,
& nte , te , hdens , dens s
& ntp , tp , ndensp , densp s
& Zp , amsp ,

& 1_trn , 1_pol , 1_def , 1_rep ,
& 1 _plasma , 1_te , 1_dens , 1_tp s
& 1 densp , 1_zp , 1_amsp

&)

implicit none

€ o o el
C wrEkEE* fortran77 subroutine: xxdata_46 F¥FFFkkwkdddinkn
C

c purpose: to fetch data from an adf46 data set.

l

c input : (i*4) iunit = unit to which input file is allocated

C (i*4) ndlev = maximum number of energy levels in

C either ion stage

c (i*4) ndtrn = maximum number of transitions

c (i*4) ndmet = maximum number of metastables

C (i*4) ndprt = maximum number of parents (except

C metastables)

C (i*4) ndomgl = maximum number of partial waves

C (i*4) ndqd = maximum number of quantum defect expansion
c (i*4) ndrep = maximum number of representative

C n-shell

C (i*4) ndlrep = maximum number of representative

c 1-shells

C (i*4) ndte = maximum number of temperatures

c (i*4) nddens = maximum number of densities

C

c output: (c*2) seq = iso-electronic sequence symbol

C (i*4) iz® = nuclear charge

C (i*4) iz = recombined ion charge

220

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

@i
(c*
(r*
*4)
*4)

(¢!
a

(1%

¢!

(C-k

(1 *

(i

(¢!

(r:':
(r-k

(1 *
(1 *

¢!

(r *
* 4)
(1 *

¢!

(17‘:

(¢!

(C *

(i

(i-k

¢!

(r:':
(r-k

(i:‘:
@i

4)
2)
8)

4)

:':4)

D

(*))cstrga_iQ)

4)

7':4)

8)
8)

4)
4)

7':4)

8)

4)

4

:':4)

D

(*))cstrga_£fQ)

4

* 4)

8)

8)

4)
4)

izl
ctype
bwno_i
nlvl_i
Imet_i

lcstrg_i

ia_iQ

code_iQ)

isa_iQ)
ila_iQ
xja_iQ
wa_i(Q)
nmet_i

imeta_i(Q)

nlexc_i
bwno_f
nlvl_£f
Imet_f

lcstrg_£

ia_fQ

code_f()

isa_fQ
ila_fQ
xja_fQO
wa_fQ

nmet_f
imeta_f(Q)

recombining ion charge (=iz+1)
adf46 file resol. (’ca’, ’1ls’ or ’ic’)
ionis. potential of recombining ion (cm-1)
number of levels of recombining ion
.true. => recombined metastables marked
.false. => recombining metastables unmarked
(default action - mark ground)
.true. => standard config strings for
recombining ion states
.false. => unreadable config string for
at least one recombining ion state
index of recombining ion levels
1st dim: recombining ion level index
met. or excit. DR parent marker (* or #)
1st dim: recombining ion level index
ionised ion configuration strings
1st dim: recombining ion level index
ionised ion level multiplicity
1st dim: recombining ion level index
ionised ion total orb. ang. mom.
1st dim: recombining ion level index
recombining ion level (stat wt-1)/2
1st dim: recombining ion level index
recombining ion level wave number (cm-1)
1st dim: recombining ion level index
number of recombining ion metastables
pointers to recombining metastables in full
recombined ion state list
1st dim: recombining metastable index
number of recombining ion excited levels
ionis. potential of recombined ion (cm-1)
number of levels of recombined ion (cm-1)
.true. => recombined metastables marked
.false. => recombined metastables unmarked
(default action - mark ground)
.true. => standard config strings for
recombined ion states
.false. => unreadable config string for
at least one recombined ion state
index of recombined ion levels
1st dim: recombined ion level index
met. or excit. DR parent marker (* or #)
1st dim: recombined ion level index
ionised ion configuration strings
1st dim: recombined ion level index
ionised ion level multiplicity
1st dim: recombined ion level index
ionised ion total orb. ang. mom.
1st dim: recombined ion level index
recombined ion level (stat wt-1)/2
1st dim: recombined ion level index
recombined ion level wave number (cm-1)
1st dim: recombined ion level index
number of recombined ion metastables
pointers to recombined metastables in full
recombined ion state list
1st dim: recombined metastable index

221

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

(i:‘:
(i*
7':4)

(i

¢!

(i

(r *

(r:':

(r *

(i
7':4)

(¢!

(r*

(i
(r-k

(r:':

(¢!
¢!

(i

(i-k
(i:‘:

(¢!
(¢!

(1 *
(r*

(i*
(r-k

¢!

(i
(r-k

(i:‘:
@i
:':4)

a

4)
4)

* 4)

4)

8)

8)

8)

4)

8)

4)

8)

8)

* 4)
* 4)

4)

4
4)

:':4)
:':4)

4)
8)

4)
8)

* 4)
(r *

8)

4)
8)

4)
4)

nlexc_f
ntrn
idx10O
idxu(Q)

itypQ

aul QO

nomgl)

Omgl(,)

npol
idxpO

dpol ()

Imax_qd
qdal(,)

qdaz(,)

nlil

nl2

nl3

inrep
nrep()

ilrep
lrepO)

nte

te()

ndens
dens()

ntp
tpQ

ndensp
densp()

zZp
amsp
1_trn

number of recombined ion excited levels

number of transitions

index of lower parent ion level of trans.

1st dim: transition index

index of upper parent ion level of trans.

1st dim: transition index

type of parent transition (l=dipol,
2=non-dipol, 3=spin change)

1st dim: transition index

transition probabilities (s-1)

ist dim: transition index

number threshold partial wave collision

strengths for parent transitions

1st dim: transition index

threshold partial wave collision

strengths for parent transitions

1st dim: partial wave index (=1+1)

2nd dim: transition index

number of polarisabilies

index of parent ion level

1st dim: polarisabilities index

dipole polarisability of parent level

1st dim: polarisability index

largest quantum defect l-series expansion

quantum defect expansion coefficient a0

1st dim: quantum defect l-series +1

2nd dim: polarisability index

quantun defect expansion coefficient al

1st dim: quantum defect l-series +1

2nd dim: polarisability index

lowest n-shell of recombined ion for DR

lowest l-resolved shell of recombined ion

for DR

highest bundle-n n-shell for recombined

ion for DR

number of representative n-shell

representative n-shells

1st dim: representative n-shell index

number of representative l-shells

representative l-shells

1st dim: representative 1-shell index

number of electron temperatures

electron temperatures (K)

1st dim: electron temperatures index

number of electron densities

electron densities (cm-3)

1st dim: electron densities index

number of positive ion temperatures

positive ion temperatures (K)

1st dim: ion temperatures index

number of positive ion densities

positive ion densities (cm-3)

1st dim: ion densities index

projectile ion effective charge

projectile ion effective mass number

.true. => transition data present

.false.=> transition data not present

222

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

(1*4) 1_pol = .true. => polarisability data present
.false.=> polarisability data not present

(1*4) 1_def = .true. => quantum defect data present
.false.=> quantum defect data not present
(1*4) 1_rep = .true. => representative n data present

.false.=> representative n data not present
.true. => plasma data present
.false.=> plasma data not present

(1*4) 1_plasma

(1*4) 1_te = .true. => electron temperature data present
.false.=> electron temperature data not present
(1*4) 1_dens = .true. => electron density data present
.false.=> electron density data not present
(1*4) 1_tp = .true. => ion temperature data present
.false.=> ion temperature data not present
(1*4) 1_densp = .true. => ion density data present
.false.=> ion density data not present
(1*4) 1_zp = .true. => ion effective z data present
.false.=> ion effective z data not present
(1*4) 1_amsp = .true. => ion effective mass data present

.false.=> ion effective mass data not present

routines:
routine source brief description
idunit adas fetch unit number for output of messages
ideiz0® adas fetch nuclear charge for element symbol
xfesym adas fetch element symbol for nuclear charge
xXxcase adas convert string to lower or upper case
xxword adas convert string to separate words
xxhkey adas extract a key name value from a string
xxlast adas find last occurence of char in string
xxslen adas find first and last characters of string
xxdtes adas detect if config string is eissner/standard
xxcftr adas covert config string between eissner/standard

author: Alessandra Giunta

date : 13-02-2008
version : 1.1

date : 13-02-2008
modified :

- first version

version : 1.2
date 1 30-05-2008
modified : Hugh Summers, University of Strathclyde
- logic change for sequence symbol reading from input
file.

version : 1.3
date 1 13-02-2009
modified : Hugh Summers, University of Strathclyde
- changed to adf46 with substantial re-positioning
and re-definition of fields.

223

integer idunit , 14eiz@® , lenstr

integer iunit , lcount

integer ind1 , ind2 , istart , istop ,
& i ,] , indx_fb , indx_1b

integer nte , ntp ,
& ndens , hdensp , hqd

integer ndlev , hdtrn , hdmet , ndte ,
& ndprt , ndomgl , hdrep , ndlrep ,
& nddens , ndad

integer iz® , iz , izl , izp

integer nlvl_i , nlvl_f

integer nfirst , iwords , hwords , iword ,
& ilen_index , ilen_cnfg , ilen_s ,
& ilen_1 , ilen_j , ilen_wnf

integer nmet_i , nlexc_i

integer nmet_f , nlexc_f

integer nvlce , ilen

integer ilexc_i , ilexc_f , ntrn

integer Imax_omgl , lmax_qd , npol

integer nll , nl2 , nl3 s
& inrep , ilrep

real*8 bwno_f , bwno_i , amsp , Zp

character cdelim*1

character seq*2 , esym*2 , ctype*2 , xfesym*2

character c80*80 , cl0*10 , C22%22 , €256%256 ,
& c200*200

character cline*80 , clong*256

character cbreak*1 , csrch*1l

character f_1004*41 , £_1005*29 , f_1006%*30

logical Imet_f , lestrg_f ,
& Imet_i , lcstrg_i

logical 1stan , leiss

logical 1_trn , 1_pol , 1_def , 1_rep ,
& 1_plasma , 1_te , 1_dens , 1_tp ,
& 1_densp , 1_zp , 1_amsp

logical 1_nl1 , 1.nl2 , 1.nl3 ,
& 1 _nrep , 1_1lrep

integer ia_i(ndlev) , indpol(ndlev)

integer isa_i(ndlev) , 1la_i(ndlev)

integer ia_f(ndlev)

integer isa_f(ndlev) , ila_f(ndlev)

integer ifirst(ndword) , ilast(ndword)

integer imeta_i(ndmet) , imeta_f(ndmet)

integer idx1l(ndtrn) , idxu(ndtrn) , idxp(ndlev)

integer nrep(ndrep) , lrep(ndlrep) , nomgl(ndtrn)

224

integer indi(ndtrn) , indf(ndtrn) , ityp(ndtrn)

real*8 xja_i(ndlev) , wa_i(ndlev)
real*8 xja_f(ndlev) , wa_f(ndlev)
real*8 te(ndte) , tp(ndte)
real*8 dens (nddens) , densp(nddens)
real*8 aul (ndtrn) , dpol(ndlev)

real*8 omgl (ndomgl ,ndtrn
real*8 qdl(ndqgd,ndlev) , qd2(ndqd,ndlev)

character code_f(ndlev)*1 , cstrga_f(ndlev)*(*) ,

& code_i(ndlev)*1 , cstrga_i(ndlev)*(*)
character ckey(3)*6 , cans(3)*4
data ckey/’seq’, 'nucchg’, ’type’/
data cbreak,csrch/’/’,’)’/
Notes:

225

xxdtes.for

N

NN N 00N N0 o0n0n00nNn000nNnN0000n00n0nNo000n00nn0o00n00n000n0n0o0o0nn0no0o0O00n0nNnonon~nN

subroutine xxdtes(cstrg , leiss , lstan , nvlce)

implicit none

B R R R R R R fortran77 Subrou‘tinE' Xxdtes R R R R R R S

purpose: Detects if the configuration string from a specific ion

level list line is of eissner form , standard form or
neither.

If neither, the subroutine checks to see if it is a
bundle (* in the string) or based on a parent ([..] in
the string). If the string is of Eissner or standard
form, the n-shell and 1-shell of the outermost
(valence) -electron is returned.

A version of this routine with a more extended return of
parameters and bale to handle very long configuration
strings is available as ’g5dtes.for’.

calling programs: general use

subroutine:
input : (c*(*)) cstrg = configuration character string
output: (1%4) leiss = .true. => eissner form
.false. => not eissner form
output: (1*4) Istan = .true. => standard form
.false. => not standard form
output: (i*4) nvlce = outer electron n-shell if recognisable

(1%4) 1bndl = .true. => bundled form (’*’ found)
.false. => not bundled form
(1%4) lprnt = .true. => parent form ('[...]° found)

.false. => not parent form
(c*19) cstr_top = leading part of config. string in Eissner
format (no leading blank, trailing blanks)
(c*(*)) cstr_tail= trailing part of config. string in Eissner
format (no leading blank, trailing blanks)

(i*4) lvlce = outer electron 1l-shell if recognisable
(1i*4d) i = general use
(i*4) iabt = return code (see specific function)
0 => ok
1 => fault detected
(i*4) icfsel = 1 => standard form out, standard form in

2 => eissner form out, standard form in
3 => standard form out, eissner form in
4 => eissner form out, eissner form in

(i*4) ishel = shell counter
(i*4) ip = parity of configuration
(i*4) maxn = n_shell sum for configuration

226

N ONOOOONOhOOOOONOn NN nN0n0nNn0n0n00n0nNo0n0n00nNnn00n0no0nnNnN0n0o0n0nN0n0n00nn 0000 nnn0nnNn

(i*4d) nshel = number of shells identified ffrom string

(1i*4) ndword = maximum number of words in string
(i*4) nfirst = first word to be extracted from string
(i*4) nwords = number of words in string

(i*4) nela() = number of electrons in each shell

(i*4d) ifirst()= position of first char. of word in string
(i*4) ilast() = position of last char. of word in string

(c*1) cdelim = separators for words in string
(c*19) cstrgo = general use string

(c*19) strg = standard form configuration string
(c*19) strge = eissner form configuration string

(c*D) cheisa()= eissner character for orbitals

(c*2) chstda()= standard orbital spec. for each shell

(c*2) cnela() = chars. for no. of equiv. elec. in shell
(eissner form case)

(c*D) chga() = index to hexadecimal conversions

(c*1) chra() = char. for no. of. equiv. elec. in shell
(standard form case)

routines:
routine source brief description
i4fctn adas converts character string to integer
idngrp adas returns n quantum number in the
eissner single hexadecimal character form
idpgrp adas returns parity of orbital given the
eissner single hexadecimal character form
i4schr adas returns numerical value for number of
equivalent electrons given as hex> char.
cstgrp adas returns term of orbital given in the
eissner single hexadecimal character form
ceigrp adas returns eissner code for orbital
xxword adas finds number of words in a string
XXCmps adas compare standard config. strings

author: h. p. summers, university of strathclyde
ja8.08
tel. 0141-553-4196

date: 19/02/03
VERSION: 1.1 DATE: 19-1-96
MODIFIED: TIM HAMMOND (TESSELLA SUPPORT SERVICES PLC)
- PUT UNDER S.C.C.S. CONTROL
VERSION: 1.2 DATE: 14-10-96
MODIFIED: WILLTIAM OSBORN (TESSELLA SUPPORT SERVICES PLC)
- ADDED CHANGES DATED 01/10/96 ABOVE
VERSION: 1.3 DATE: 28-08-97
MODIFIED: HUGH SUMMERS
- ADDED CHANGES TO CHECK ’G’ STATES

VERSION: 1.4 DATE: 19/02/03

227

MODIFIED: HUGH SUMMERS
- Rewrite based on g5dtes.for

C
C
C
C VERSION: 1.5 DATE: 28/09/2004

C MODIFIED: Martin O’Mullane

C - Incorrect redirection when checking the Eissner pattern.
C The if statement block checking ir jumped out of the

C current sub-block to the end of the previous sub-block
C rather than to the end of its own sub-block.

C

C

C

C

C

C

VERSION: 1.6 DATE: 17/05/2007
MODIFIED: Allan Whiteford
- Updated comments as part of subroutine documentation

procedure.
Com o
€ o
integer ndword
€ o o e
parameter (ndword = 21)
Com o
integer nvlce , lvlce
integer i , nfirst , iwords , nwords
integer idunit
integer i4ngrp , 14lgrp , i4pgrp , idschr , i4fctn
integer ishel , hshel , ip , maxn , icfsel
integer iabt , i1 , 12 , 13 , ir
integer lenstr , lenwrd , nwd
€ o o
character cstrg*(*) , cstr_top*19 , cstr_tail*40 , fmt*12
character cstrgo*19 , strg*24 , strge*19
character cstr19*19 , cdelim*1
character cstgrp*2 , ceigrp*l , Cstr2*2 , cstrl*l
€ o o
logical*4 leiss , lstan , lequiv
logical*4 1lbndl , lprnt
G oo o
integer nela(ndword) , ifirst(ndword) , ilast(ndword)
€ o
character cheisa(ndword)*1 , chstda(ndword)*2 , cnela(ndword)*2
character chqa(61)*1 , chra(ndword)*1
C ___
data chqga /717,727,737 ,'4)°’5° 7’6’ ,’7°,’8",’9’,
& A’,’B’,’C’,’D’,’E’ ’F’,’G R, T,
& ’)’,’K’,’L’,’m’,’N’,’0°,’P’,’Q’ , 'R,
& st u v W ,’X 'Y’z ’a’,
& 'b’,’c’,’d’,’e’,’f,’g’,’h’ 17,50,
& 'k’,’1’,’m’,’n’,’0’,’p’,’q’,’r’,’s’,
& vu v)w 'k y 2/
data cdelim /' ’/
€ o e
Notes:
xxcftr.for

228

@]

@)

NN nNnnN

SUBROUTINE XXCFTR(ICFSEL , CSTRGI , CSTRGO)

IMPLICIT NONE

B R R R Tk R L R FORTRAN77 SUBROUTINE: XXCFTR B R R R S R S R R

PURPOSE: CONVERTS A CONFIGURATION CHARACTER STRING, SUCH AS OCCURS
IN A SPECIFIC ION FILE LEVEL LIST, BETWEEN EISSNER AND
STANDARD FORMS

CALLING PROGRAMS: GENERAL USE

SUBROUTINE:

INPUT : (I%4)

INPUT : (C*(*))
OUTPUT: (C*(*))

(1%4)
(1%4)
(1%4)
(1%4)
(1%4)
(1%4)
(174)
(1%4)
(1%4)

(C*19)
(C*19)
(c*1)
(c*2)

(€*1)
(€*1)

(L*4)

ROUTINES:
ROUTINE

T4UNIT
I4NGRP

I4PGRP

I4SCHR

CSTGRP

ICFSEL

CSTRGI
CSTRGO

I
ISHEL
IP
MAXN
NSHEL
ISTART
ISTOP
IREM
NELAQ

STRG
STRGE

CHEISAQ=

1 => STANDARD FORM OUT, STANDARD FORM IN
2 => EISSNER FORM OUT, STANDARD FORM IN
3 => STANDARD FORM OUT, EISSNER FORM IN
4 => EISSNER FORM OUT, EISSNER FORM IN
CONFIGURATION STRING IN INPUT FORM
CONFIGURATION STRING IN OUTPUT FORM

GENERAL USE

SHELL COUNTER

PARITY OF CONFIGURATION

N_SHELL SUM FOR CONFIGURATION

NUMBER OF SHELLS IDENTIFIED fFROM STRING
START OF STRING EXCLUDING INITIAL BLANKS
END OF STRING EXCLUDING FINAL BLANKS
REMAINDER OF EISSNER STRING MOD 3

NUMBER OF ELECTRONS IN EACH SHELL

STANDARD FORM CONFIGURATION STRING
EISSNER FORM CONFIGURATION STRING
EISSNER CHARACTER FOR ORBITALS

CHSTDA()= STANDARD ORBITAL SPEC. FOR EACH SHELL

CHQAQ
CHRAQ)

LEISS

SOURCE

(EISSNER FORM CASE)

INDEX TO HEXADECIMAL CONVERSIONS

CHAR. FOR NO. OF. EQUIV. ELEC. IN SHELL
(STANDARD FORM CASE)

.TRUE. => EISSNER FORM
.FALSE. => NOT EISSNER FORM

BRIEF DESCRIPTION

FETCH UNIT NUMBER FOR OUTPUT OF MESSAGES
RETURNS N QUANTUM NUMBER IN THE

EISSNER SINGLE HEXADECIMAL CHARACTER FORM
RETURNS PARITY OF ORBITAL GIVEN THE
EISSNER SINGLE HEXADECIMAL CHARACTER FORM
RETURNS NUMERICAL VALUE FOR NUMBER OF
EQUIVALENT ELECTRONS GIVEN AS HEX> CHAR.
RETURNS TERM OF ORBITAL GIVEN IN THE

229

NO OO0 nN

EISSNER SINGLE HEXADECIMAL CHARACTER FORM
CEIGRP ADAS RETURNS EISSNER CODE FOR ORBITAL
XXSLEN ADAS FINDS STRING LENGTH EXCLUDING LEADING AND
TRAILING BLANKS

NOTE: THE ROUTINE IS USED TO CONVERT THE CONFIGURATION CHARACTER
STRING OCCURRING IN ADF04 FILE LEVEL LISTS. THE STRING
LENGTH ALLOCATED TO THIS IS *18 FOLLOWING 1 BLANK SPACE
AFTER THE LEVEL INDEX. A PROBLEM ARISES WHEN THE FIRST
SHELL CONTAINS MORE THAN 9 EQUIVALENT ELECTRONS. IN THIS
CASE, OVERSPILL IS ALLOWED INTO THE BLANK CHARACTER SPACE.
THE ROUTINE WILL ANALYSE A *19 STRING INCLUDING THE USUALLY
BLANK LOCATION OR A *18 STRING EXCLUDING IT. 1IN THE LATTER
CASE AN INTELLIGENT GUESS IS MADE AS TO WHETHER THE OMITTED
BLANK SHOULD IN FACT BE A ’1’. THIS SITUATION OCCURS FOR A
LEADING CLOSED D-SHELL.

AUTHOR: H. P. SUMMERS, UNIVERSITY OF STRATHCLYDE
JA8.08
TEL. 0141-553-4196

DATE: 25/10/95

UPDATE: 19/02/03 H. P. SUMMERS - EXTENDED RANGE AND STRINGS

UPDATE: 09/05/04 H. P. SUMMERS - CATCH FULL EISSNER FORM (IE. +50)
FOR 1ST SHELL DISPLACED TO COL. 2
IN 19 CHAR STRING

UNIX-IDL PORT:

VERSION: 1.1 DATE: 19-1-96
MODIFIED: TIM HAMMOND (TESSELLA SUPPORT SERVICES PLC)
- PUT UNDER SCCS CONTROL

VERSION: 1.2 DATE: 19-02-03
MODIFIED: H. P. SUMMERS
- EXTENDED RANGE AND STRINGS

VERSION: 1.3 DATE: 09-05-04
MODIFIED: H. P. SUMMERS
- CATCH EISSNER FULL STRING FORM PROBLEM

INTEGER ICFSEL , 1

INTEGER T4UNIT , I4NGRP , 14PGRP , TI4SCHR
INTEGER ISHEL , NSHEL , 1P , MAXN
INTEGER IABT , ISTART , 1STOP , IREM

CHARACTER CSTRGI*(*), CSTRGO*(*) , CSTR19%*25
CHARACTER STRG*19 , STRGE*19
CHARACTER CSTGRP*2 , CEIGRP*1

230

C ___
INTEGER NELA(6)
Com oo
CHARACTER CHEISA(6)*1 , CHSTDA(6)*2
CHARACTER CHQA(61)*1 , CHRA(6)*1
C ___
DATA CHQA /’1,’2°,°37,’4” ’5° [’6’,’7’,’8°,°97,
& A’,’B’,’C’,’D’,’E’ ’F G, HY T,
&)3’ ,)’k’,’L’,’m’,’N’,’07,’P7,’Q°, 'R,
& st)’V W, ’X 'Y’’’z ’a’,
& 'b’,’c’,’d’,’e’,’f",’g’,’h’,’i",],
& ’k’,’1’,’m’,’n’,’0’,’p’,’q’,’r’,’s’,
& a0 w7y, 'z
Com oo oo
Notes:
gSdtes.for
subroutine g5dtes(cstrg , leiss , lstan , lbndl , lprnt ,
& cstr_top , cstr_tail ,
& nvlce , lvlce
&)
e
implicit none
Com o
Fedededddedefhffhdfhddh fortran77 subroutine: ngteS Fedededddedefhdfhdfhddhhi

purpose: detects if the configuration string from a specific ion
level list line is of eissner form , standard form or
neither. If neither, the subroutine checks to see if it
is a bundle (* in the string) or based on a parent ([..]
in the string). If the string is of Eissner or standard
form, the n-shell and 1-shell of the outermost (valence)
electron is returned.

calling programs: general use
subroutine:

input : (c*(*)) cstrg configuration character string

output: (1%4) leiss = .true. => eissner form
.false. => not eissner form

output: (1*4) Istan = .true. => standard form
.false. => not standard form

output: (1%4) 1bndl = .true. => bundled form (’*’ found)
.false. => not bundled form

output: (1%*4) lprnt = .true. => parent form (’[...]’ found)

.false. => not parent form
output: (c*19) cstr_top = leading part of config. string in Eissner

NN N0 0NN 000N n0n0o0n0o0o0nn00o00n0no00nnnN

231

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

output:

output:
output:

routines:

author:

format (no leading blank, trailing blanks)

(c*(*)) cstr_tail= trailing part of config. string in Eissner

(i*4)
(i*4)

(i*4)
(i*4)

(i*4)

(i*4)
(i*4)
(i*4)
(i*4)
(i*4)
(i*4)
(i*4)
(i*4)
(i*4)
(i*4)

(c*1)
(c*19)
(c*19)
(c*19)
(c*1)
(c*2)
(c*2)

(c*1)
(c*D)

routine

nvlce
lvlce

iabt =

icfsel =

ishel =
ip =
maxn =
nshel =
ndword =
nfirst =
nwords =
nela() =
ifirstQ=
ilast() =

cdelim =
cstrgo =
strg =
strge =
cheisa()=
chstda(Q=
cnela() =

chqa() =
chra() =

source

format (no leading blank, trailing blanks)
outer electron n-shell if recognisable
outer electron 1-shell if recognisable

= general use

return code (see specific function)

® => ok

1 => fault detected

1 => standard form out, standard form in
2 => eissner form out, standard form in
3 => standard form out, eissner form in
4 => eissner form out, eissner form in
shell counter

parity of configuration

n_shell sum for configuration

number of shells identified ffrom string
maximum number of words in string

first word to be extracted from string
number of words in string

number of electrons in each shell
position of first char. of word in string
position of last char. of word in string

separators for words in string

general use string

standard form configuration string
eissner form configuration string
eissner character for orbitals

standard orbital spec. for each shell
chars. for no. of equiv. elec. in shell
(eissner form case)

index to hexadecimal conversions

char. for no. of. equiv. elec. in shell
(standard form case)

brief description

idpgrp
i4schr
cstgrp
ceigrp

xxword
XXCmps

adas
adas
adas

converts character string to integer
returns n quantum number in the

eissner single hexadecimal character form
returns parity of orbital given the
eissner single hexadecimal character form
returns numerical value for number of
equivalent electrons given as hex> char.
returns term of orbital given in the
eissner single hexadecimal character form
returns eissner code for orbital

finds number of words in a string

compare standard config. strings

h. p. summers, university of strathclyde

ja8.08

232

C tel. 0141-553-4196
C
c date: 11/09/01
C
c update: 28/09/2004 Martin O’Mullane
C - Incorrect redirection when checking the Eissner pattern.
C The if statement block checking ir jumped out of the
C current sub-block to the end of the previous sub-block
C rather than to the end of its own sub-block.
C
€ oo
€ o
integer ndword
€ o o el
parameter (ndword = 21)
Com o
integer nvlce , lvlce
integer i , nfirst , iwords , nwords
integer idunit
integer i4ngrp , 14lgrp , i4pgrp , idschr , i4fctn
integer ishel , hshel , ip , maxn , icfsel
integer iabt , i1 , 12 , 13 , ir
integer lenstr , lenwrd , nwéd
€ o e
character cstrg*(*) , cstr_top*19 , cstr_tail*(*) , fmt*12
character cstrgo*19 , strg*24 , strge*19
character cstr19*19 , cdelim*1
character cstgrp*2 , ceigrp*l , Cstr2*2 , cstrl*l
€ o o
logical*4 leiss , lstan , lequiv
logical*4 1lbndl , lprnt
Com o o
integer nela(ndword) , ifirst(ndword) , ilast(ndword)
€ o o
character cheisa(ndword)*1 , chstda(ndword)*2 , cnela(ndword)*2
character chqa(61)*1 , chra(ndword)*1
C ___
data chqga /717,027,737 ,'4)5 ,°6°,’7’,’8",’9’,
& A’,’B’,’C’,’D’,’E’,’F’,’G R, T,
& ’)’,’K’,’L’,’m’,’nN’,’0°,’P’,’Q’ , 'R,
& st T U,V W ,’X’ 'Y, 2 ’a’,
& 'b’,’c’,’d’,’e’,’f,’g’,’h’,’17, 5,
& 'k’,’1’,’m’,’n’,’0’,’p’,’q’,’r’,’s’,
& v w 'k y 2/
data cdelim /' ’/
€ o
Notes:
xxdrbf.for
subroutine xxdrbf(izl , eij , fij ,
& ndte , nte , tea ,
& adgf

233

0N N0 N0 N0 N0 0nNnN0o0n0n00n0n0o0n0nNn0o0n0o00n00n0o0o0nno00n0nnn~nN

implicit none

el dededek fortran77 Subroutine: Xxdrbf.for Fedededededehddedehdedefdddhddn
purpose: to evaluate dielectronic recombination coefficients
using the Burgess General Formula in its original

form.

calling program: various

subroutine:
input : (i*4) izl = recombining ion charge
input : (r*8) eij = z-scaled parent transition energy (Rydberg)
(note absolute energy =(izl+1)**2%*eij)
input : (r*8) fij = parent transition oscillator strength
input : (i*4) ndte = maximum no. of electron temperatures
input : (i*4) nte = number of electron temperatures
input : (r*8) tea(Q) = electron temperatures(Kelvin)
1st dim: electron temperature index
output: (r*8) adgf(Q) = zero density dielectronic recombination rate
coefft. (cm3 s-1)
1st dim: electron temperature index
routines:
none

author: Alessandra Giunta, University of Strathclyde

date: 25-01-2008
version : 1.1
date : 25-01-2008

modified : Alessandra Giunta
- first version.

integer i4unit
integer ndte , nte , it
integer izl

real*8 eij , fij
real*8 zl , zzl , Z2 , 222
real*8 a , b , sa ,
& X Y
real*8 tea(ndte) , adgf(ndte)
Notes:

234

xxdrbp.for

NN N 00NN 00000 nNn000n0nnNo000n0n00n0nNo0o0n0nn0o00n0o0n0o0nno0o0nononononnN

subroutine xxdrbp(ndpwv , ndcor , ndte ,
& iz® , izl s
& ep , fp , Wp_tr , tr_ev ,
& jcor , cor s
& n , defn s
& nte , tea_ev s
& adrn_red , frac_nl ,
& adrn , adrn_ps , adrn_pi
&)

implicit none

e oo o e ole oo e ol ol ot ol ot OO R RN RONORORONORORUSORORONORON

Feh A h b ATt hhd fortran77 subroutine : Xxdrbp . for Fehdhhhhh i i i i s
purpose: to evaluate n-shell and nl-shell selective dielectronic
recombination using the Burgess General Program in its

original form.

calling program: various

subroutine:
input : (i*4) ndpwv = maximum no. of partial waves (l-subshells)
input : (i*4) ndcor = maximum no. of Bethe correction factors
input : (i*4) ndte = maximum no. of electron temperatures
input : (i*4) iz0 = nuclear charge
input : (i*4) izl = recombining ion charge
input : (r*8) ep = parent transition energy (cm-1)
input : (r*8) fp = parent transition oscillator strength
input : (r*8) wp_tr = parent trans. external radiation field
dilution factor
input : (r*8) tr_ev = external radiation field Planckian
temperature (eV)
input : (i*4) jcor = number of Bethe correction factors
input : (r*8) cor(Q) = Bethe correction factors
1st dim: partial wave index (=1+1)
input : (i*4) n = principal quantum shell
input : (r*8) defn = mean quantum defect for n-shell
input : (i*4) nte = number of electron temperatures

input : (r*8) tea_ev() = electron temperatures (eV)
1st dim: electron temperature index

output: (r*8) adrn_red = reduced dielectronic recombination coefft. to
n-shell

output: (r*8) frac_nl()= frac. of n-shell recomb. to selected 1l-shell
1st dim: 1-shell index (=1+1)

output: (r*8) adrn() = dielectronic recombination rate coefft. to
n-shell (cm3 s-1)
1st dim: electron temperature index

output: (r*8) adrn_ps()= stimulated dielectronic recombination rate
coefft. to n-shell
1st dim: electron temperature index

output: (r*8) adrn_pi()= dielectronic photo-ionisation rate
coefft. from n-shell via resonance state

235

N N0 00N N0 00000 nno0o00nn0n00nnn

1st dim: electron temperature index

routines:

xxbfme adas bound-free hydrogenic radial integrals
idunit adas fetch unit number for output of messages

author: H. P. Summers, University of Strathclyde
tel: 0141-548-4196

date: 01/11/07
version : 1.1
date : 29-05-2009

modified : H P Summers
- first version.

real*8 ryd_wno , ev_kel , ryd_ev , boltz_kel
real*8 zZero , zero_e , zero_d
parameter (idpwv = 1000 , ryd_wno = 109727.26d0)

parameter (ev_kel = 11605.4d0® , ryd_ev = 13.6048d0)
parameter (boltz_kel = 157890.0d0)

parameter (zero = 1.0d-72 , zero_e = -1.65d2 , zero_d = -7.2d1)
integer idunit

integer ndpwv , ndcor , ndte

integer iz0® , izl , jcor

integer n

integer nte

integer jl y] ,it
real*8 ep , fp , Wp_tr , tr_ev , defn
real*8 adrn_red
real*8 z , eij , T , t , def
& ad , ZZ , z1 , en , tl
& z2 , e , a , b
& tj , th , t3 , €3 ,
& X , ate , fac , wep_tr
real*8 cor(ndcor)
real*8 theta(idpwv)
real*8 frac_nl(ndpwv)
real*8 tea_ev(ndte)
real*8 adrn(ndte) , adrn_ps(ndte) , adrn_pi(ndte)

236

Notes:

gxdrbp.for
subroutine gxdrbp(ndrep , ndte , ndcor ,
& iz0 , izl ,
& ep , fp , np , 1p ,
& ng , 1g s
& jcor , cor , df ,
& nmin , def_nmin , phfrac , corfac ,
& inrep , nrep ,
& nte , tea_ev , dens ,
& adrn_rep , adr_tot ,
& 1rep , lcut , lcor
&)

NN N0 00N N0 o0n0n00n0nN0o0n0nno0n0o0n0n0nNon0o0nnn0o00o0no0nono0nnnN

implicit none

E R R R R R LR

edededhhhk fortran77 subroutine: gxdrbp B R R R R R T T R

purpose : to evaluate the total dielectronic rate coefficient at a
set of electron temperatures using the Burgess General
Program. A finite electron density reduction of the total
coefft. may be applied. The partial rate coefficient to a
representative of n-shells is also evaluated.
notes: low partial wave Bethe collision strength correction factors
are applied according to the parent transition type as:
type transition (cor(j),j=1,jcor) df
1 ng=1,np>=2,1p=1g+1: 0.05,0.30,0.50,0.90 2.0
2 ng=2,np=3 ,lp=1g+1: 0.01,0.02,0.20,0.40,0.70,0.90 1.0
3 ng=2,np=3,1p=1g-1 : 0.01,0.01,0.01,0.08,0.30,0.70 1.0
4 np-ng=0, lp=1g+1 : 0.30,0.35,0.40,0.45,0.70,0.90 0.5
5 np-ng=0, lp=1g-1 : 0.30,0.35,0.40,0.45,0.70,0.90 0.5
6 np-ng>0, lp=1g+1 0.01,0.02,0.20,0.40,0.70,0.90 1.0
7 np-ng>0, lp=1g-1 0.01,0.01,0.01,0.08,0.30,0.70 1.0

Results are adjustable via two global parameters, phfrac and
corfac which adjust the phase space availability of the lowest
accessible n-shell and modify the Bethe corrections
respectively. phfrac is a simple multiplier. corfac applies
as:

cor_new(j)=exp(-corfac/((j-1)**df+0.5))*cor(j)

where j-1 = 1 (the partial wave).

calling program: various

subroutine:

input :

(i*4) ndrep = maximum no. of representative n-shells

237

el e s e e R e e e e e R e e R e R e N e R e R e N e R e BN e RN e NN e N e I o BN e B e R e BN o N e B e NN o N o N e R e N e B e N e B o N o N e B o BN o BN e N e NN o BN e B e BN e N o N e NN BN o NN e B e BN e B o}

input :
input :
input :
input :
input :
input :
input :
input :
input :
input :
input :
input :

input :

input :
input :

input :
input :

input :
input :

input :
input :

input :

output:

output:
output:
output:

output:

@Gax
@Gax
*4)
*4)
(r*
(r*
@Gax

(i
(¢!

(i-k

(1 *

(¢!

(1 *
(1 *
(1 *

(i
(r-k

(r*

(r-k

(1 *
(1 *

(¢!

(r *

(r-k

(r:':

a

(1 ¥

(1%

routines:

author:

routine

4)
4)

8)
8)
4)
4)

4)

:':4)

4)
4)
4)

4)
8)

8)

8)

4)
4)

:%4)
(r-k

8)

8)

8)

8)

7':4)

4)

4)

ndcor =
ndte =
iz0 =
izl =
ep =
fp =
np =
1p =
ng =
1g =
jcor =
cor() =

df =

nmin =
def_nmin =

phfrac =
corfac =

inrep =
nrep() =

nte =
tea_ev() =

dens =

adrn_rep(,)

adr_tot()

lrep

lcut

lcor

source

maximum no. of Bethe correction factors
maximum no. of electron temperatures
nuclear charge

recombining ion charge

parent transition energy (cm-1)

parent transition oscillator strength
active electron n-shell for upper level
of parent transition

active electron 1-shell for upper level
of parent transition

active electron n-shell for ground level
of parent transition

active electron 1-shell for ground level
of parent transition

number of partial wave corrections
partial wave corrections

partial wave scaling parameter

1st dim: partial wave index (=1+1)
lowest n-shell of recombined system
quantum defect applicable to lowest
n-shell for recombination

phase space occupancy availability

for lowest accessible n-shell

global adjustment for bethe corrections
in general program

number of representative levels
representative n-shells

1st dim: representative n-shell index
number of electron temperatatures
electron temperatures (eV)

1st dim: electron temperature index
electron density (cm-3)

= partial dielectronic coeffts. for
representative n-shells (cm”3 s"-1).
1st dim: representative n-shell index
2nd dim: electron temperature index
= total dielectronic coeffts (cm”3 s"-1.
1st dim: electron temperature index
.true => input represent. levels used
.false.=> default internal values used
= .true => input density used for cutoff
.false.=> default internal values used
= .true => input cor values used
.false.=> default internal values used

description

xxdrbp
xxbfme
idunit

Burgess program DR coefft. to n-shell
bound-free hydrogenic radial integrals
fetch unit number for output of messages

H. P. Summers, University of Strathclyde
tel: 01235-46-4459

238

NN N0 0NN ononn

date: 29/05/2009

version : 1.1
date : 29-05-2009
modified : H P Summers

- first version.

parameter (idrep = 30 , idte = 20 , idcor = 20 , ndpwv = 1000)
parameter (ev_kel = 11605.4d0 , ryd_ev = 13.6048d0)
parameter (boltz_kel = 157890.0d0 , ryd_wno = 109727.26d0)

integer idunit
integer ndrep , ndte , hdcor
integer iz0 , izl ,
& np , 1p , ng » 1g ,
& nmin , inrep , nte ,
& jcor_int
integer inrep_def , inrep_int , hmin_int ,
& nmax_int
integer i , 10 , il , iopt
& j , jcor , n , nl , it
real*8 a , b , ate ,
& defn , defnl , df
& \'% , vl ,
& x1 , z1 , zz1 ,
& vcut
real*8 ep , fp , df_int s
& def_nmin , phfrac , corfac |,
& dens
real*8 wp , Wp_tr , tr_ev ,
& adrn_red , adrnl_red
logical lrep , lcut , lcor
integer nrep_def(idrep), nrep_int(idrep), nrep(ndrep)
integer ncut(idte)
integer jcora(7)
real*8 cora(idcor,7) , dfa(7) , cor(ndcor)
real*8 tea_ev(ndte) , cor_int(idcor)
real*8 adrn(idte) , adrn_ps(idte) , adrn_pi(idte)
real*8 adrnl(idte) , adrnl_ps(idte) ,adrnl_pi(idte)
real*8 adrn_rep(ndrep,ndte) , adr_tot(ndte)
real*8 frac_nl(ndpwv)

data jcora/20,20,20,20,20,20,20/

data dfa/2.0d0,1.0d0,1.0d0,0.5d0,0.5d0,1.0d0,1.0d0/

data (cora(j,1),j=1,20)/0.05d0,0.3d0,0.5d0,0.9d0,16*1.0d0/

data (cora(j,2),j=1,20)/0.01d0,0.02d0,0.20d0,0.40d0,0.70d0,0.90d0,

239

&14%1.0d0/

data (cora(j,3),j=1,20)/0.01d0,0.01d0,0.01d0,0.08d0,0.30d0,0.70d0,
&14*1.0d0/

data (cora(j,4),j=1,20)/60.30d0,0.35d0,0.40d0,0.45d0,0.70d0,0.90d0,
&14%1.0d0/

data (cora(j,5),j=1,20)/0.30d0,0.35d0,0.40d0,0.45d0,0.70d0,0.90d0,
&14%1.0d0/

data (cora(j,6),j=1,20)/0.01d0,0.02d0,0.20d0,0.40d0,0.70d0,0.90d0,
&14%1.0d0/

data (cora(j,7),j=1,20)/0.01d0,0.01d0,0.01d0,0.08d0,0.30d0,0.70d0,
&14%1.0d0/

data inrep_def / 30/

data nrep_def / 1, 2, 3, 4, 5, 6, 7, 8, 9,
& 10, 12, 15, 20, 30, 40, 50, 60, 70,
& 100, 150, 200, 250, 300, 400, 500, 600, 700,
& 800, 900, 1000/
Notes:

240

Appendix D

Shell scripts

Scripts adas1#1 Current location Central ADAS
CVS Rel

nist_get_data.pl /home/hps/adas_dev/offline_adas/adas1#1/scripts/ n n

process_nist_to_adf00.pl /home/hps/adas_dev/offline_adas/adas1#1/scripts/ n n

process_nist_to_adf04.pl /home/hps/adas_dev/offline_adas/adas1#1/scripts/ n n
Scripts adas7#3 Current location Central ADAS

CVS Rel
setup_isoseq_pwb_adf27.pl /home/hps/adas_dev/offline_adas/adas7#3/scripts/ n n
setup_isoseq_dw_adf27.pl /home/hps/adas_dev/offline_adas/adas7#3/scripts/ n n
setup_isoseq_dw_bbgp_adf27 /home/hps/adas_dev/offline_adas/adas7#3/scripts/ n n
process_ion_pwb_adf27_to_adf04.pl /home/hps/adas_dev/offline_adas/adas7#3/scripts/ n n
process_ion_dw_adf27_to_adf04.pl /home/hps/adas_dev/offline_adas/adas7#3/scripts/ n n
process_ion_dw_bbgp_adf27_to_adf04.pl /home/hps/adas_dev/offline_adas/adas7#3/scripts/ n n
adas7#3_pwb _llbatch.pl /home/hps/adas_dev/offline_adas/adas7#3/scripts/ n n
adas7#3_dw _llbatch.pl /home/hps/adas_dev/offline_adas/adas7#3/scripts/ n n
adas7#3_dw_bbgp_llbatch.pl /home/hps/adas_dev/offline_adas/adas7#3/scripts/ n n
Script Current location Local checks Central ADAS

Txt Opr Lnk CVS Rel

run_archive_808_scripts.pl /home/hps/adas_dev/idl/adaslib/read_adf/ y n n n n
run_archive_808_paper.pl /home/hps/adas_dev/idl/adaslib/read_adf/ y n n n n
run_808_offline.sh /home/hps/adas_dev/idl/adaslib/read_adf/ y n n n n
run_opt_808_offline.sh /home/hps/adas_dev/idl/adaslib/read_adf/ y n n n n
run_813_offline.sh /home/hps/adas_dev/idl/adaslib/read_adf/ y n n n n
generate_adf11_classes_10-12.p] /home/hps/adas_dev/idl/adaslib/read_adf/ 'y n n n n

241

nist_get_data.pl

#! /usr/bin/perl -w

PROJECT:
ADAS

NAME:
nist_get_data.pl

PURPOSE:
Extract energy level information from NIST for an element. The energy
level page for each ion of an element is obtained from the web, stripped
of redundant material and archived in an element directory.

PARAMETERS:
tempdir = temporary directory for calculation
nistroot = user root directory to nist energy level archive
(typically ’/home/<userid>/nist_energy_level_tables/’)
userpostfix = personal name postfix for use in archived data sets
(as ’/nistroot//<ion>_<userpostfix>.dat’)
element = element full name
NOTES:

Archives energy level tables from NIST as
“/nistroot/<element name>/<elem.sym.><ion charge>_<userpostfix>.dat

A typical command line call is:
nist_get_data.pl --nistroot=/home/hps/nist_energy_level_tables/
--userpostfix=hps --element=radon

WRITTEN:
Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 30/07/2012

FHOoH OH H OH OH O OH OH OH H OH HH KK HHOH O OH OH OHOHHHEHHHHH KK HH H R HHR

242

process_nist_to_adf00.pl

#! /usr/bin/perl -w

PROJECT:
ADAS

NAME:
process_nist_to_adf00.pl

PURPOSE:
Ionisation limit and ground state quantum number data are extracted from the ADAS
NIST data archive, assembled and written to adf00. The 2012 format adf®® with outer
quantum numbers of ground levels is used. Missing NIST data for an ion is substituted
with the 'T. H. Carlson, C. W. Nestor, N. Wassermann & J. D. McDowell (1970) Atomic
Data, 2, 63-99’ values from the pre 2012 adf0®0 data collection, with outer quantum
numbers drawn from the standard (high z) list
(see "/adas/adf00/adf00_extension_ground_level_list.dat).

PARAMETERS:
tempdir temporary directory for calculation
nistroot = user root directory to nist energy level archive
(typically ’/home/<userid>/nist_energy_level_tables/’)

userpostfix = personal name postfix for use in archived/archiving data sets
(as ’/nistroot/<ion>_<userpostfix>.dat’)
element = element full name
NOTES:
Procures energy level tables from NIST as
“/nistroot/<element name>/<elem.sym.><ion charge>_<userpostfix>.dat
Archives adf®0 dataset as
“/adas_dev/adas/adf00/<element name>/<elem.sym.><ion charge>_<userpostfix>.dat
A typical command line call is:
process_nist_to_adf00.pl --nistroot=/home/hps/nist_energy_level_tables/
--userpostfix=hps --element=radon
WRITTEN:

Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 13/07/2012

FHoH OH OH OH OH OH OH OH OH H O OHOH K OHOH OO OH K OHOHHHHHHH K OH OH OH OHHHEHEHHHH KK KR

243

process_nist_to_adf04.pl

#! /usr/bin/perl -w

PROJECT:
ADAS

NAME:
process_nist_to_adf04.pl

PURPOSE:
PARAMETERS:
tempdir = temporary directory for calculation
nistroot = user root directory to nist energy level archive
(typically ’/home/<userid>/nist_energy_level_tables/’)
userpostfix = personal name postfix for use in archived/archiving data sets
(as ’/nistroot/<ion>_<userpostfix>.dat’)
element = element full name
NOTES:

Processes energy level tables extracted and archived from NIST as
“/nistroot/<element name>/<elem.sym.><ion charge>_<userpostfix>.dat

Extracts quantum numbers and energy levels. Archives as adf®4 format dataset

energy level lists, but with no transition lines as
“/adas_dev/adas/adf04/nist#<nuclear charge>/<ion>.dat

A typical command line call is:
process_nist_to_adf04.pl --nistroot=/home/hps/nist_energy_level_tables/
--userpostfix=hps --element=radon

WARNING:
NIST data can have a configuration string with an unspecified n-shell (eg. Al®: ’'nd’).
Such energy level lines must be deleted from the NIST dataset before processing.
The program accepts ’?’ queried values in NIST data but removes the ’'7’.
Only the LS coupling scheme is recognised. Other schemes have the 2S+1 and L fields
set to blank in the output adf®4 dataset.
Repeated J-values for a single energy level in NIST data (eg. ’(1/2,3/2,5/2)’) give
an entry in the output adf04 datset for the last J-value only.
Parentage information in the NIST configuration field is removed.
Energy level displacement information in the NIST data (eg. ’+x’) is removed.
The ionisation potential in the output adf®4 dataset is taken from adf®0. It is
assumed that ionisation potential extraction from NIST for adf®0® update has been done
previously.

WRITTEN:
Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release

FHoFH OFH OH OH OH O OH OH OH H OH OH HHHOHOH O OH K OH HHEHHEHHHH K OH OH OH OHHHHEHHHH KKK H K HH R R

244

ADAS-EU R(10)PU03

#
VERSION:
1.1 30/07/2012

245

setup_isoseq_pwb_adf27.pl

#! /usr/bin/perl -w

PROJECT:
ADAS

NAME:
setup_isoseq_pwb_adf27.pl

PURPOSE:
Read /pwb/ adf27 template to set up /dw/ adf27 drivers for each ion
of an iso-electronic sequence.

PARAMETERS:
tempdir = temporary directory for calculation
adasroot = user root directory to adas code directories
(typically ’/home/<userid>/adas_dev’)
userdircode = personal name prefix for adf27 and adf04 files
(such as ’cophps’ for hps produced datasets
isoseq = iso-electronic sequence symbol
NOTES:

The standard file directory structure for adf27 is assumed
adf27: <adasroot>/adas/adf27/pwb/<isoseqg>like/<userdircode>#<isoseq>
with member template
with targets

adf27: <adasroot>/adas/adf27/pwb/<isoseq>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat

A typical command line call is:
setup_isoseq_pwb_adf27.pl --adasroot=/home/hps/adas_dev --userdircode=cophps
--isoseqg=al

WRITTEN:
Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 26/10/2011

FHOoFH OH O OH OH OH OH OH OH OH H HHHOHOHOHOH OH OHHHEHHHHH KK OH OH OH HHEHHHHHH KK

setup_isoseq_dw_adf27.pl

#! /usr/bin/perl -w

246

PROJECT:

ADAS

#

NAME:

setup_isoseq_dw_adf27.pl
#

PURPOSE:

Read /dw/ adf27 template and associated /pwb/ adf04 datasets produced
by Autostructure to set up /dw/ adf27 drivers for each ion
of an iso-electronic sequence present in the /pwb/ archive.

PARAMETERS:
tempdir = temporary directory for calculation
adasroot = user root directory to adas code directories
(typically ’/home/<userid>/adas_dev’)
userdircode = personal name prefix for adf27 and adf04 files
(such as ’cophps’ for hps produced datasets
isoseq = iso-electronic sequence symbol
NOTES:

The standard file directory structure for adf27 and adf04 is assumed
adf27: <adasroot>/adas/adf27/pwb/<isoseqg>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat
adf27: <adasroot>/adas/adf27/dw/<isoseq>like/<userdircode>#<isoseq>
with member template
adf04: <adasroot>/adas/adf04/<userdircode>#<isoseq>/pwb/
with members /ic_<ion>.dat, /ic_<ion>tl.dat>,
/ls_<ion>.dat, /ls_<ion>tl.dat>,
with targets

adf27: <adasroot>/adas/adf27/dw/<isoseq>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat

adf04: <adasroot>/adas/adf04/<userdircode>#<isoseq>/dw/
with members /ic_<ion>.dat, /ic_<ion>_t5.dat>,
/1ls_<ion>.dat, /ls_<ion>_t5.dat>,

A typical command line call is:
setup_isoseq_dw_adf27.pl --adasroot=/home/hps/adas_dev --userdircode=cophps
--isoseq=al

WRITTEN:
Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 16/12/2011

FHOoHOH OH OH OH O OH OH OH OH OH H H K HH O OHOH OH OHOHHHHHHHH K OH OH OH K HEHEHHHHHH KR

setup_isoseq_dw_bbgp_adf27.pl

247

#! /usr/bin/perl -w

FHOoH O H OH O OH K OH H OH OH K K OHOH OH O OH OH OH OHHHHHHH O OHOHOH OH K HHEHHHHHH KK OH OH HHHHHHH K

PROJECT:

NAME:

ADAS

setup_isoseq_dw_bbgp_adf27.pl

PURPOSE:

Read /dw_bbgp/ adf27 template and associated /pwb/ adf04 datasets produced
by Autostructure to set up /dw_bbgp/ adf27 drivers for each ion
of an iso-electronic sequence present in the /pwb/ archive.

PARAMETERS:
tempdir = temporary directory for calculation
adasroot = user root directory to adas code directories

NOTES:

(typically ’/home/<userid>/adas_dev’)
userdircode = personal name prefix for adf27 and adf04 files
(such as ’cophps’ for hps produced datasets
iso-electronic sequence symbol

isoseq

The standard file directory structure for adf27 and adf04 is assumed
adf27: <adasroot>/adas/adf27/pwb/<isoseq>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat
adf27: <adasroot>/adas/adf27/dw_bbgp/<isoseq>like/<userdircode>#<isoseq>
with member template
adf04: <adasroot>/adas/adf04/<userdircode>#<isoseq>/pwb/
with members /ic_<ion>.dat, /ic_<ion>tl.dat>,
/ls_<ion>.dat, /ls_<ion>tl.dat>,
with targets

adf27: <adasroot>/adas/adf27/dw_bbgp/<isoseq>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat

adf®4: <adasroot>/adas/adf04/<userdircode>#<isoseq>/dw_bbgp/
with members /ic_<ion>.dat, /ic_<ion>_t6.dat>,
/ls_<ion>.dat, /ls_<ion>_t6.dat>,

A typical command line call is:
setup_isoseq_dw_bbgp_adf27.pl --adasroot=/home/hps/adas_dev
--userdircode=cophps --isoseqg=al

WRITTEN:

Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 19/09/2011

process_ion_pwb_adf27_to_adf04.pl

#! /usr/bin/perl -w

PROJECT:
ADAS

NAME:
process_ion_pwb_adf27_to_adf04.pl

PURPOSE:
Script for single ion execution of Autostructure for preparation of
plane wave Born (pwb) approximations of adf®4 datasets in 1ls and ic
resolution and in types 1 and 3 from an adf27 driver. Can be used
directly or as the executable in loadleveler batch processing types 1

and 3.
PARAMETERS:
tempdir = temporary directory for calculation
adasroot = user root directory to adas code directories
(typically ’/home/<userid>/adas_dev’)
userdircode = personal name prefix for adf27 and adf04 files
(such as ’cophps’ for hps produced datasets
isoseq = iso-electronic sequence symbol
ion = specific series member (eg ar5 equivalent to Ar~+5)

NOTES:
The standard file directory structure for adf27 and adf®4 is assumned
adf27: <adasroot>/adas/adf27/pwb/<isoseqg>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat
adf04: <adasroot>/adas/adf04/<userdircode>#<isoseq>/pwb/
with members /ic_<ion>.dat, /ic_<ion>tl.dat>,
/ls_<ion>.dat, /ls_<ion>tl.dat>,

A typical command line call is:
process_ion_pwb_adf27_to_adf04.pl --adasroot=/home/hps/adas_dev
--userdircode=cophps --isoseq=al --ion=s3

WRITTEN:
Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 12/09/2011

FHOoH OH O OH OH OH OH OH OH OH OH H HHOH K OH O OH OH OH HHHHHHHH K OH OH OH OH HHEHHHHH KKK KR

process_ion_dw_adf27_to_adf04.pl

249

#! /usr/bin/perl -w

PROJECT:
ADAS

NAME:
process_ion_dw_adf27_to_adf04.pl

PURPOSE:
Script for single ion execution of Autostructure for preparation of
distorted wave (dw) approximations of adf®4 datasets in 1ls and ic
resolution and in types 5 and 3 from an adf27 driver. Can be used
directly or as the executable in loadleveler batch processing types 5

and 3.
PARAMETERS:
tempdir = temporary directory for calculation
adasroot = user root directory to adas code directories
(typically ’/home/<userid>/adas_dev’)
userdircode = personal name prefix for adf27 and adf04 files
(such as ’cophps’ for hps produced datasets
isoseq = iso-electronic sequence symbol
ion = specific series member (eg ar5 equivalent to Ar”+5)

NOTES:
The standard file directory structure for adf27 and adf04 is assumned
adf27: <adasroot>/adas/adf27/dw/<isoseg>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat
adf04: <adasroot>/adas/adf04/<userdircode>#<isoseq>/dw/
with members /ic_<ion>.dat, /ic_<ion>t5.dat>,
/ls_<ion>.dat, /ls_<ion>t5.dat>,

A typical command line call is:
process_ion_dw_adf27_to_adf®4.pl --adasroot=/home/hps/adas_dev
--userdircode=cophps --isoseq=al --ion=s3

WRITTEN:
Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 12/09/2011

FHOoH OH O O OH OH OH H OH OH H HHHOH K OH O OH OHOH HHEHHHHHH K H OH OHHHEHEHHHHH KK HH R

process_ion_dw_bbgp_adf27_to_adf04.pl

#! /usr/bin/perl -w

250

PROJECT:
ADAS

NAME:
process_ion_dw_bbgp_adf27_to_adf04.pl

PURPOSE:
Script for single ion execution of Autostructure for preparation of
distorted wave (dw_bbgp) approximations of adf04 datasets in ls and ic
resolution and in type 6 from an adf27 driver. Can be used
directly or as the executable in loadleveler batch processing type 6.

PARAMETERS:
tempdir = temporary directory for calculation
adasroot = user root directory to adas code directories
(typically ’/home/<userid>/adas_dev’)
userdircode = personal name prefix for adf27 and adf04 files
(such as ’cophps’ for hps produced datasets
isoseq = iso-electronic sequence symbol
ion = specific series member (eg ar5 equivalent to Ar”+5)
NOTES:

The standard file directory structure for adf27 and adf®4 is assumned
adf27: <adasroot>/adas/adf27/dw_bbgp/<isoseq>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat
adf®4: <adasroot>/adas/adf04/<userdircode>#<isoseq>/dw_bbgp/
with members /ic_<ion>.dat, /ic_<ion>t6.dat>,
/1s_<ion>.dat, /ls_<ion>t6.dat>,

A typical command line call is:
process_ion_dw_bbgp_adf27_to_adf04.pl --adasroot=/home/hps/adas_dev
--userdircode=cophps --isoseqg=al
--ion=s3

WRITTEN:
Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 19/09/2011

FHoFH OH OH OH H O OH OH OH H OH OH H K HOHH O OH OH OH OH HHHHEHHHHHOH OHOH K HHHEHHHHHH KK

adas7#3_pwb_llbatch.pl

#! /usr/bin/perl -w

251

PROJECT:

ADAS

#

NAME:

adas7#3_pwb_batch.pl
#

PURPOSE:

Batch execution of Autostructure for preparation of plane wave Born
(pwb) approximations of adf04 datasets in 1ls and ic resolution and in
types 1 and 3.

PARAMETERS:
tempdir = temporary directory for calculation
adasroot = user root directory to adas code directories

(typically ’/home/<userid>/adas_dev’)
userdircode = personal name prefix for adf27 and adf04 files
(such as ’cophps’ for hps produced datasets
iso-electronic sequence symbol

isoseq

NOTES:
The standard file directory structure for adf27 and adf0@4 is assumned
adf27: <adasroot>/adas/adf27/pwb/<isoseq>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat
adf®4: <adasroot>/adas/adf04/<userdircode>#<isoseq>/pwb
with members /ic_<ion>.dat, /ic_<ion>tl.dat>,
/1s_<ion>.dat, /ls_<ion>tl.dat>,

A typical command line call is:
adas7#3_pwb_llbatch.pl --adasroot=/home/hps/adas_dev --userdircode=cophps
--isoseg=al

Batch runs are set up under loadleveler with email with notification to user

<userid> and loadleveler output and error data to
<adasroot>/adas.pass/adasa7#3_pwb_llbatch_<ion>.out
<adasroot>/adas.pass/adasa7#3_pwb_llbatch_<ion>.err

WRITTEN:
Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 12/09/2011

FHOoH OH H OH OH O O OH OH OH OH HH K H K HOH OH OHOH OH OH HHEHHHHHH KK HHH R R

adas7#3_dw _llbatch.pl

#! /usr/bin/perl -w

e e o
#

PROJECT:

ADAS

252

FHOoFH OFH OH O OH OH OH OH OH OH H H HHOH OH K O OH K OH HHHHHHHH K OH OH OH HHHHHHHH KK

NAME:

adas7#3_dw_batch.pl

PURPOSE:

Batch execution of Autostructure for preparation of distorted wave
(dw) approximations of adf04 datasets in 1ls and ic resolution and in
types 5 and 3.

PARAMETERS:
tempdir = temporary directory for calculation
adasroot = user root directory to adas code directories
(typically ’/home/<userid>/adas_dev’)
userdircode = personal name prefix for adf27 and adf04 files
(such as ’cophps’ for hps produced datasets
isoseq = iso-electronic sequence symbol
NOTES:

The standard file directory structure for adf27 and adf®4 is assumned
adf27: <adasroot>/adas/adf27/dw/<isoseq>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat
adf04: <adasroot>/adas/adf04/<userdircode>#<isoseq>/dw
with members /ic_<ion>.dat, /ic_<ion>t5.dat>,
/ls_<ion>.dat, /ls_<ion>t5.dat>,

A typical command line call is:
adas7#3_dw_l1lbatch.pl --adasroot=/home/hps/adas_dev --userdircode=cophps
--isoseg=al

Batch runs are set up under loadleveler with email with notification to user

<userid> and loadleveler output and error data to
<adasroot>/adas.pass/adasa7#3_dw_llbatch_<ion>.out
<adasroot>/adas.pass/adasa7#3_dw_llbatch_<ion>.err

WRITTEN:

Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 19/09/2011

adas7#3_dw_bbgp_llbatch.pl

#! /usr/bin/perl -w

PROJECT:

#
#
#

NAME:

ADAS

253

FHOoH OH OH OH H O OH OH OH OH OH H H K H K H OO OH OH OH OH HEHHHHHHH KK OH K H KR HHHHR

adas7#3_dw_bbgp_batch.pl

PURPOSE:

Batch execution of Autostructure for preparation of distorted wave
(dw) approximations of adf04 datasets in 1ls and ic resolution
and in types 6.

PARAMETERS:
tempdir = temporary directory for calculation
adasroot = user root directory to adas code directories
(typically ’/home/<userid>/adas_dev’)
userdircode = personal name prefix for adf27 and adf04 files
(such as ’cophps’ for hps produced datasets
isoseq = iso-electronic sequence symbol
NOTES:

The standard file directory structure for adf27 and adf®4 is assumned
adf27: <adasroot>/adas/adf27/dw_bbgp/<isoseq>like/<userdircode>#<isoseq>
with members ic_<ion>.dat and ls_<ion>.dat
adf®4: <adasroot>/adas/adf04/<userdircode>#<isoseq>/dw_bbgp
with members /ic_<ion>.dat, /ic_<ion>t6.dat>,
/ls_<ion>.dat, /ls_<ion>t6.dat>,

A typical command line call is:
adas7#3_dw_bbgp_llbatch.pl --adasroot=/home/hps/adas_dev
--userdircode=cophps --isoseqg=al

Batch runs are set up under loadleveler with email with notification to user

<userid> and loadleveler output and error data to
<adasroot>/adas.pass/adasa7#3_dw_bbgp_llbatch_<ion>.out
<adasroot>/adas.pass/adasa7#3_dw_bbgp_llbatch_<ion>.err

WRITTEN:

Hugh Summers, University of Strathclyde

MODIFIED:
1.1 Hugh Summers
- First release
VERSION:

1.1 19/09/2011

254

Index

ADAS204, 9 Burgess general program, 50

ADAS316, 9, 54

ADAS407, 53 c5dplr, 10, 145

ADAS408, 53 cd, 7

ADAS414, 12 cfg2occ, 17, 154

ADAS415, 12 child condensation, 58

ADAS416, 63 collisional-dielectronic, 7

ADASR8O01, 18, 19, 25,42, 113 collisional-radiative, 4, 6-8, 12, 20, 37, 38, 46, 47, 49, 53,
ADASR802, 42, 112 54, 57-59, 62, 83

ADASS808, 30, 33 condensation, 3, 4, 9, 37, 55, 59, 62

ADASS810, 21, 23, 25, 120 config_orbital_energies, 40, 48, 167

ADASS#1, 22 configuration, 4

ADASS8#2, 42 Cowan, 5, 8, 19, 66

adas8xx_ionis_promotion_rules.pro, 44 Cowan code, 17, 30, 33, 66

adas_vector, 13, 147 Cowan form, 47

adf00, 4, 40, 62, 63,71 cr,6,8,9, 12,55

adf03, 74

adf04, 5, 12, 18-21, 25, 37. 51, 53, 81 dielectronic recombination, 8, 9, 18, 37, 46, 49-51, 53,
adf07, 43, 46, 85 93, 121

adf08, 89 Eissner, 5

adf09, 37, 51, 93
adf11, 7, 13, 22, 23, 25, 53, 54, 59, 62, 63, 65, 104
adf15, 12, 13, 22, 23, 59, 65, 105

Eissner form, 5, 47, 83

feature photon emssivity, 35, 61, 116

adf23, 37, 43, 44, 46, 106 fpec, 10-13, 33
adf32, 37, 42,46, 112
adf34, 18, 19, 22, 37,42, 113 g5dtes, 221
adf40, 12, 22, 23, 59, 65, 116 gcr, 6-9, 37, 50, 51, 55-57, 62
adfd2,21-23, 120 generalised-collisional-radiative, 6, 55, 83
adf46, 37, 121 ngI‘bp, 50’ 227
adf48, 49, 127
adf54, 15, 16, 29, 30, 35, 37, 42, 44, 128 Hullac, 66, 69
adfs5, 37, 132
adf56, 37, 42, 44, 136 partition, 12
alf_d_bbgp, 179 pec, 10, 12, 33
alf_d_bgf, 50, 176 photon emssivity, 10, 105
alf_d_bgp, 50, 177 plt, 9, 13, 25, 30, 33, 63
alf_r_bdn, 47, 172 preview _natural_partition, 59, 181
alf _r_bdnl, 47, 173
alf_r_tot, 48, 49, 174 r8fbeh, 38, 165
Autostructure, 18, 49, 51, 66, 69 r8n'<301.p, 38, 166 o
radiative recombination, 9, 4649, 54, 66, 89, 127
baseline, 12 read_adf00, 4, 40, 142
bgf, 50 read_adf15, 13, 146
bgp, 50, 51 read_adf54, 15, 149
Burgess, 37, 39, 49 read_adf55, 181
Burgess and Chidichimo, 38, 39 read_adf56, 42, 171
Burgess and Summers, 38, 47 rho, 20
Burgess general formula, 50 run_808_offline, 27, 33, 44, 53

255

run_813_offline, 44

run_adas407, 54

run_adas408, 54

run_adas416, 65

run_adas808, 23-26

run_adas808.sh, 26

run_adas813, 43

run_opt_808_offline, 33, 35
run_optimise_promotion_rules, 30, 31
runadas808, 26

sbchid_cfg_tot, 41, 170

standard form, 5, 47

Summers, 50

superstage, 55, 57-59, 61-63, 65, 69
superstage condensation, 59, 62, 63, 65

tev_alf_s, 40, 168
theta, 20

xxcftr, 5, 144, 218
xxdata_00, 4, 62, 184
xxdata_11, 65, 187
xxdata_15, 65, 193
xxdata_23, 199
xxdata_40, 65, 204
xxdata_46, 210
xxdrbf, 50, 223
xxdrbp, 50, 225
xxdtes, 5, 143, 216

256

