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PUBL4: Neutral Beam Emission: The Motional Stark Effect

Luis Fernández-Menchero, Stuart Henderson and Hugh Summers

Department of Physics, University of Strathclyde, Glasgow, UK

Abstract: The report focuses mainly on two areas of the Motional Stark Effect (MSE) with respect
to neutral beam atoms entering in a tokamak — field ionisation and asymmetric cross sections.
Detail is also given to the labelling of quantum states when dealing with the MSE. In addition,
the integration of these effects into the Atomic Data Analysis Structure (ADAS) code, ADAS305 , is
described. It is seen that the field ionisation effects on highly excited states can form an asymmetric
distribution of electrons. This asymmetry is then conserved as the electrons cascade down to lower
states. Therefore, due to these indirect cascade effects, it is seen that the field ionisation could be
a theoretical cause for an observed asymmetry in the Dα emission lines of the Stark multiplet.
The current method for calculating the cross sections presumes that the electrons are sitting in
isotropic, isolated atom states. These states are not true when the beam atoms are travelling at a
speed across the magnetic field lines of the plasma. It is seen that the electron distribution is pulled
to its k quantum number and stretched to its m magnetic number. A new means of calculating these
asymmetric cross sections are detailed.
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Preface

This article is the one of a series of technical notes which are being prepared as useful extracts during the longer term
construction of the next edition of the ADAS user manual. As such it reflects a change in style, planned for the new
manual. It will be more book-like, examining and explaining in detail the physics basis behind the commitment to
certain approaches in ADAS and how these work out in practice. The new manual will remain technically detailed with
extended appendices. However, it is hoped this will be ameliorated by much more emphasis on worked examples. That
is to say the actual manoeuvres, adopted by experienced ADAS users in getting the atomic modelling into application
scenarios will be mapped, rather as an expert system. It has become clear that, for some, ADAS operates in a somewhat
rarefied atmosphere in which too much is assumed. It is this which I wish to improve upon.
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Chapter 1

Introduction

The world energy problem is highly debated subject (Nuclear Power: Keeping the Options Open, 2003), with various
solutions put forward as a solution. This report is concerned with aspects of the magnetic confinement approach to
fusion as a long-term solution. In this approach, deuterium and tritium isotopes of hydrogen, in the form of an ionised
plasma, are confined by a magnetic field for sufficiently long times and at sufficiently high density and temperature
such that thermonuclear reactions can take place. These reactions release 15 MeV per reaction through the kinetic
energy of the neutron and alpha particle products. Once the process has achieved ‘ignition’, the reactions are self-
sustaining through the containment of the alpha particle product whose thermalised energy sustains the plasma. The
broad situation has been described in the introduction to the fourth year project of Henderson [1] and a full overview
of the fusion process can be found in Mc Cracken and Stott [2].

There are various different magnetic confinement fusion systems with different confining field geometries and
different methods for creating the fields, such as stellarators and tokamaks. The most successful to date is the tokamak
design which comprises a toroidal configuration. This is the principal method being followed by the international
community and details of the physical basis, systems and performance capabilities of the tokamak system can be found
in Wesson [3]. The largest current tokamak is the EFDA-JET Facility at Culham Laboratory near Oxford. Constructed
and operated by the European Union, it remains the lead system in the world. It had its first plasma in 1983 and then
went onto achieve the world’s first controlled release of fusion power in 1991 and then later in 1997 produced the
world’s highest release of fusion power — 16 megawatts of fusion from a total input power of 24 megawatts. The JET
machine is currently undergoing a large upgrade (EP2 — extended performance level 2) due for completion in April
2011, so that it can help and influence the design and scientific planning of the next stage in tokamak development for
fusion — ITER. This International Tokamak Experimental Reactor is a twelve billion Euro project, being constructed
at Cadarache in the South of France by a consortium of countries led by the European Union, USA, Japan, Russian
Federation, India, China and South Korea. A schematic of ITER can be seen in figure 1.1

In order for the plasma to reach the temperatures required to allow the fusion of two elements, the tokamak uses
a number of methods for heating, including ohmic heating (from the large toroidal current of the tokamak design),
radio waves heating for the ions at the cyclotron resonance frequency (ICRH), microwave heating for the electrons
at its cyclotron resonance frequency too (ECRH), and Neutral Beam Injection (NBI). It is the diagnostic capabilities
of the neutral beam injection method with which this report is concerned here. The principle is straightforward. An
energetic neutral atom, which because of its neutrality can pass through the plasma confining field, is injected into the
plasma. After it reaches a certain distance, generally within the core of the plasma region, the neutral atoms ionise and
thereafter disperse their kinetic energy among the plasma ions; thus heating the plasma. At JET, the primary function
of the neutral beams is for heating purposes, and therefore the injected species is deuterium atoms and ultimately will
be a mixture of deuterium and tritium at ITER. For JET, injected atom energies must be greater than of the order of
50 keV/amu to penetrate sufficiently into the core of the plasma (depending on the density and size of the plasma). In
addition, sustained power greater than of the order of 20 MW is required. The requirements for ITER are much more
demanding. At a recent science meeting at EFDA-JET the capabilities being put in place during the JET EP2 and the
requirements for ITER were summarised by Ciric [4] and Mc Adams [5].

The next section will summarise these meetings. The diagnostic beam being designed for ITER will lead us into
section 1.2 where the importance of beam emission spectroscopy with respect to monitoring key diagnostic parameters
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Figure 1.1: A schematic drawing of ITER.

of the plasma is explained. Section 1.3 will highlight the key issue of diagnosis with which this report will be looking
at more specifically — the motional Stark effect. The last section of this chapter will detail how the emission spectra
of the beam can be used to identify the key parameters.

1.1 Neutral Beam Characteristics

Figure 1.2: Neutral Beam principle for positive and negative ion sources. Here, H is used to denote the deuterium and
tritium atoms typically used in JET and ITER.

For magnetic confinement fusion, there are two types of neutral beam which accelerate either positive or negative
hydrogen isotope ions. When the energies of the beam are required to be greater than 60 keV/amu, the neutralization of
positive ions becomes inefficient and negative ion sources are preferred. In the case of ITER, where the neutral heating
beam energies are required to be of the order 1 MeV, the negative ion sources will be put into action. However, for
JET and other current machines, positive ions sources are used for heating. The first stage of the neutral beam is a
discharge (low temperature plasma). The discharge will contain species e, H, H+, H+

2 , H+
3 and H−. The abundance

of each species is optimised through temperature and density to favour the configuration being used. In particular for
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positive ion acceleration, the presence of the species H+, H+
2 , H+

3 is of greatest concern, while for negative acceleration
it is the H− concentration, formed by vibrational excitation of H2 followed by the dissociative attachment reaction

e− + H2(ν∗) → H2(ν′∗) + e−

e− + H2(ν∗) → H−2 → H− + H+ , (1.1)

which must be optimised. Cesium is used to aid this process as the minimum energy required to release its electrons
is very low so these electrons can then bind to the H to form H−. If there is a negative voltage applied across the
discharge, the positive ions will be accelerated into a neutralising chamber and there will be a backstream of electrons.
Conversely, a positive voltage will accelerate the negative species in the direction of the neutralising chamber and
create a backstream of positive ions. The backstream of electrons are relatively easy to decelerate however the positive
ions may cause a large amount of sputtering through collision with the source. There are therefore a number of
different design features associated with the negative and positive ion sources.

The neutralization stage then establishes the key neutral beam populations which matter for plasma heating and
diagnostic studies. Positive species then undergo Charge eXchange Recombination (CXR) reactions with a molecular
hydrogen gas cloud which neutralise the ion. The neutralising reactions can be written as

H+(E) + H → H(E) + X

H+
2 (E) + H → H(E/2) + X (1.2)

H+
3 (E) + H → H(E/3) + X ,

where E is the energy of the accelerated positive ions and X is defined as any other charged or slow reactants. There-
fore, there are now three energy fractions of H which enter the plasma. Negative ion neutralization is by stripping
reactions such as

H−(E) + H2 → H(E) + D2 + e , (1.3)

and only a single energy component is present in the final neutral beam. However, only a certain fraction of the ionic
species will be neutralised through these processes. An electromagnet must be put in place to deflect these residual
fast ions to a cooled ion dump that can withstand heavy ion bombardment. It is also important to ensure the purity
of the neutral beam by stopping any slow moving particles from the neutralising gas cloud from diffusing into the
plasma. This is achieved through using powerful vacuum pumping technology. A basic schematic for the neutral
beam is outlined in figure 1.2. Some further details of the JET and ITER neutral injection systems are given below.

1.1.1 JET Positive Ion Neutral Injection

The JET Neutral Beam Injection (NBI) System uses Positive Ion Neutral Injectors (PINIs). There are two Neutral
Injection Boxes (NIBs) which are both equipped with up to eight PINIs (Duesing et al. [6]). Within the NIB the PINIs
are arranged in two vertical banks of four, with each set of four then split into two pairs sharing the same deflecting
magnet. An outline of this arrangement can be seen in figure 1.3a). The maximum energy of these PINIs is sufficient
enough to penetrate into the core of JET (R ≈ 3 m). The EP1 system configuration of neutral beams in JET was
brought to an end in 2009. This enhancement program brought significant success in its last two years, providing
routine and reliable high power operation. It achieved the highest average injected power of 12.1 MW and longest
NBI pulse length of 7.2 s as well as other world records. The new EP2 system is being designed to produce a number
of upgrades to the old system. The deuterium NB power is to be increased to 34 MW, the beam pulse length at full
power to be increased to 20 s and the reliability and availability of the NBs have to be improved. This should be
achieved through a number of different methods. To summarise, the ion source will be changed from a so called
supercusp system (Duesing et al. [6]) to a chequerboard system. A supercusp system uses magnetic filters which
enhance the number of monoatomic ions, leading to a high fraction of full energy neutrals. The new chequerboard
magnetic configuration will produce a higher fraction of molecular ions, which leads to a higher fractional energy and
thus higher power. This can be seen in figure 1.4, where it is seen that the new EP2 system will produce more of the
fractional energy components which leads to a higher total power being injected into the plasma. This is a critical issue
for the development of beam emission diagnostic analysis. In addition, it will produce a uniform ion source plasma
leading to a lower beam divergence. Lastly, the high voltage power supplies serving the eight PINIs will be replaced
with four new 130 kV / 130 A High Voltage Power Supply modules.

During the summer months of 2009, two of these EP2 PINIs were installed in positions 1 and 3 of Octant 8 NIB.
They managed to produce a record injected power for a single JET PINI of 2.08 MW. The EP2 PINIs will also be tried
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Figure 1.3: a) An illustration of a JET Neutral Injection Box and b) a schematic of ITER neutral beam.

Figure 1.4: Two graphs showing the effect of changing the ion source on the positive ion neutral injectors used at JET
from the supercusp to the chequerboard system. Image Credit: Ciric [4].

with tritium and helium atoms. The inclusion of these new NB configurations along with the new ITER-Like Wall [7]
will contribute significantly to the success of the future JET campaigns in support of ITER.

1.1.2 ITER Negative Ion Neutral Injection

ITER will require neutral beams with a greater energy and thus penetration (ITER R ≈ 6 m) due to its larger radius
and higher density. Therefore, the NBI System in ITER will use a negative ion source as illustrated in figure 1.3b).
It can be seen from figure 1.5 that the energies of the beam must be of the order 1 MeV for efficient heating of the
ITER plasma. Due to the large diagnostic capabilities of the neutral beams, ITER will have two types of beam in
operation: one beam will be solely for heating and will inject neutral deuterium, these beam energies must be greater
than 1000 keV; the other beam will be purely for diagnostic use and will inject neutral hydrogen, for it the energies
being used will be of the order 100 keV. Therefore, as ITER will be relying heavily on the accuracy and reliability of
beam spectroscopy to monitor key plasma parameters, it is important that attention is turned to diagnosis of the beam
emission.

1.2 Beam Emission and Spectroscopy

When the beam enters the plasma, the neutral atoms have collisions with the ions and electrons in the plasma and
interact with magnetic and electric fields present in the plasma. These interactions with the field and plasma species
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Figure 1.5: A graph showing the penetration distance of a neutral beam for various energies. Image Credit: Mc Adams
(2010) [5].

cause the neutral atoms to become excited and ionised. As the excited beam atoms relax back down to their ground
state, they emit radiation. This composite of processes leads to three principal effects — CXR spectroscopy, Beam
eMission Spectroscopy (BMS) and Beam Stopping (BS). CXR is how the beam causes the plasma ions to radiate,
BMS is the emission of the beam atoms themselves and BS is the effective loss rate of atoms from the beam caused
by ionisation or charge exchange with plasma ions.

As the beam leaves the NBI and enters the plasma, it firstly passes through the narrow Scrape Off Layer (SOL).
This layer is formed through the small amount of residual plasma separating the edge of the plasma (often referred to
as the separatrix) and the tokamak vessel. It is a low density region at relatively low temperatures. As this layer is
very narrow, the beam atoms pass straight through with little effect on the population structure of the neutral atoms.
Emission from the beam in this region is negligible compared with emission of thermal neutral deuterium always
present in the outer regions of the plasma near the vessel wall (Mc Neil, 1989 [8]). As the beam enters the confined
core plasma, the density of the electrons increases by a factor of three or four and temperature of the electron and
plasma ions rise dramatically to large values (' 3000 keV in the JET tokamak). Now, there is almost no thermal
deuterium as it has been ionised and recycled by the plasma. The principal emission driven by the beam is firstly that
from full ionised plasma impurity ions following charge exchange reactions between the fully ionised plasma species
(both hydrogen nuclei and impurities) and the neutral beam atoms.

Understanding this spectrum is of great diagnostic benefit and is projected to be used as a direct measure of fusion
‘ash’ in the new generation tokamak, ITER. Von Hellermann et al. [9] provide accurate data which can be used to
model this CX emission. Secondly there is the emission from the beam atoms themselves. Particularly the Balmer
series emission in the visible spectral region is evident and characteristically displaced from the natural wavelengths
due to Doppler effect (of the fast moving beam atoms with respect to the spectrometer line-of-sight). Generally, the
Dα lines are compared with computer simulated spectra which relies on key parameters within the plasma. The CX
and BM spectra can be used to find the ion temperature (Kallne et al. [10], plasma rotation, impurity concentrations
(Boileau et al. [11]), internal magnetic and electric fields (Mandl et al. [12]) and if the polarisation of the emission
is studied one may also determine the magnetic field pitch angle and therefore produce a current density profile [13].
The graph shown in figure 1.6 shows a visible spectrum in the vicinity of Hα. It shows the very broad CXR emission
approximately centered on the natural wavelength. This is broad due to the Doppler Effect because of the fact the
plasma species are at very high temperatures. The three complex Doppler shifted components are the beam emission
and are due to the three fractional energy components of the neutral beam (from the positive ion source). The narrow
lines at the natural position are emission of thermal (not beam) hydrogen and deuterium at the edge of the plasma in
the vicinity of the scrape-off-layer. They are sharper as they are at lower temperatures than the core plasma species.
All these emission are determined theoretically by modelling the collisional, radiative and recombination processes
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Figure 1.6: A graph showing the visible spectrum, near the Dα line, observed during a neutral beam pulse into a
magnetically confined plasma. The three Doppler shifted components are the beam emission due to the three fractional
energy components of the neutral beam. The thermal hydrogen and deuterium at the edge of the plasma cause the two
spiked features at longer wavelengths. The broad feature in the vicinity of these narrow spikes is due to the CXR
emission of the plasma species. Image credit: Von Hellermann et al. [9]

between the neutral beam atoms and the plasma ions and electrons.

The distance at which the neutral beam atoms become fully ionised is determined by a value known as the ‘stopping
coefficient’. The beam attenuation length is of great importance. If the beam travels too far it may cause significant
damage to the opposite plasma wall and if it does not travel far enough into the core, the heating will be very inefficient.
The fourth year report of Henderson [1], discussed in detail the various atomic processes used in calculating this
stopping coefficient. In particular, it paid close attention to the population structure of each principal and orbital
angular moment quantum shell of the beam atoms in a statistical sense from the balance of atomic processes.

The aim of this report, is to further the studies and discussions of the previous report into the field of BMS
combined with a more careful approach to the effects of the magnetic and induced Lorentz field on the emission
spectrum. When the beam atoms are travelling through the plasma at a speed, v, they are subject to a large Lorentz
electric field perpendicular to the direction of propagation and the magnetic field, this disturbs the atomic level structure
of the beam hydrogen atoms causing splitting up of the Hα emission into Stark components as seen in figure 1.6 and
modifies the population structure as discussed below.

10



ADAS-EU R(12)PU04

1.3 Motional Stark Effect

As described earlier, the hydrogen beam atom in a fusion plasma experiences a magnetic field ~B of intensity ∼ 3 T and
because of its velocity ~v across the magnetic field a large Lorentz electric field ~v × ~B of ∼ 100 kV/cm. In this typical
set up, the magnetic field is negligible compared to the Lorentz electric field. Therefore, the neutral beam atoms are
perturbed according to the first order disturbance (linear in electric field) of the energy eigenstates, this is known as
the Motional Stark Effect. If the speed of the neutral beam atoms was reduced to zero, then there would only be the
magnetic field acting on the atoms, this would again cause a first order disturbance (linear in magnetic field) on the
energy eigenstates which is known as the Paschen-Back Effect. With a non-hydrogenic atom, the Stark effect would
normally be quadratic and the magnetic field disturbance still linear but much weaker, called the Zeeman effect. These
differences occur because of the energy level separations of the isolated, field-free, atoms, isolated hydrogen atom
levels have an accidental degeneracy of the l-shells of the same n-shell which is not present in non-hydrogenic atoms
and ions.

In a detailed study of the following sections, it will become evident that the effects of the electric and magnetic field
disturbances must be examined for different magnitudes of field. This will include ranges where the field disturbances
can be treated purely as perturbation on the isolated atom states and where the field disturbances are the dominant
process in the determination of energy eigenstates. The induced Lorentz field is always perpendicular to the magnetic
field. For a pure magnetic field disturbance the angular momentum about the field direction is a constant of motion
with the m quantum number assigned. For the pure Lorentz field case, the angular momentum about the field direction
is again a constant of the motion with the m quantum number assigned, but this is perpendicular to the magnetic field.
Therefore, when the electric and magnetic fields are comparable, there is not an angular momentum component which
is a constant of the motion and so there is no well defined m quantum number. When solving for the pure electric field
case, the Schrödinger equation can be solved in parabolic coordinates with a new constant of motion (the Runge-Lenz
vector) which leads to a new quantum number, defined as k. However, now the usual orbital quantum number l arising
from the squared angular momentum operator is no longer a constant of motion. Therefore, there is a lot of confusion
as to what labelling convention to use on the atomic states as the fields are explored. Usual quantum numbers are no
longer exact and their breakdown must be examined carefully. The computer codes, used in the following sections
give correct solutions, but the interpretation in terms of usual quantum numbers, polarisation etc. is not immediate or
necessarily possible.

Figure 1.7: A magnetic field of 1.4 T and beam energy of 0.24 MeV/amu is present in a) then as we move through to
f) the effects of changing the beam energy down to 100 eV/amu and increasing the magnetic field to 40 T in six steps
are shown. The π and σ indicate the two types of polarisation. Although these magnetic and electric fields are not so
relevant to a fusion reactor, they have been chosen to exaggerate the evolution of moving from one field to another.
Graphs were obtained from the ADAS routine, ADAS305.
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These effects of exploring the different field perturbations are illustrated in figure 1.7. The evolution of the Hα

multiplet can be seen as the beam speed is decreased. One can immediately see the characteristic fifteen (although
only nine of which are visible) allowed transitions associated with the Stark effect initially begin to transform into the
characteristic three main transition lines of the Paschen-Back effect. However, an important feature of this evolution
is the polarisation, indicated by π and σ. It is clear that as you move from one regime to another, the two polarisations
interchange. Although this may not produce any problems in a computer calculation, it can cause confusion when
comparing experimental data to the simulated emission spectra.

When dealing with the field values at JET, there is a further independent non-orthogonal electric field which must
also be considered. First order perturbation theory in the non-relativistic isolated atom Hamiltonian may be used to
calculate both the Stark term (with the external field) and the Zeeman or Paschen-Back term.

1.4 Diagnostics

Spectroscopy on JET is key to interpreting what is happening inside the plasma. To do this, extensive studies must be
made into energy levels, oscillator strengths and electron-ion, ion-ion and ion-atom cross sections. The two spectral
scenarios that occur along the beam path can be used for diagnostic purposes, CXRS allows the light impurities in the
plasma to be studied where they would generally be fully ionised. The width and displacement of the charge exchange
induced spectral lines give the ion temperature and plasma rotation (Boileau et al. , [11]). However, to accurately
interpret these spectral lines, one must exclude the ‘cold effects’ of the plasma (that is emission from the cold edge of
the plasma not driven by the beams) and the bremsstrahlung background radiation. The cold effects are illustrated by
the narrow features of small thermal Doppler temperature, such as of HeII, BeII, HI and DI in the absence of beams
and superimposed on the spectral intervals used to analyst the charge exchange emission. In addition, the shape of the
spectral line is governed by the variation of CX cross section with energy.

At the beam emission stage, the Hα features become dominant. Again the cold components within the plasma
must be considered when dealing with beam emission. The Stark components of the beam emission are resolved into
their π and σ polarisations. As the beam atoms are travelling at such high speeds, the dominant excitation reaction
is through positive ion impact. The diagnostic potential of the beam emission is huge and Mandl et al. (1993) [12]
provide a detailed review of each procedure. To summarise, the combined Doppler shifts of the emission can provide
detail as to the radial and vertical position of the observation. If the observation volume is directly perpendicular
to the observation viewing point, then there should be no Doppler shift present. If the volume is before this point
along the observation line, then there will be a blue shift and likewise if it is after then there will be a red shift. This
is advantageous to know because it gives a good indication as to what part of the plasma is being diagnosed. The
strength of the Lorentz field acting on the beam can be calculated by working out the spacing between each of the
Stark components — the stronger the field, the larger the distance between each of the components. As the Lorentz
field is always perpendicular to the magnetic field, if the direction of the magnetic field changes this will also induce
a change to the direction of the Lorentz field. This is measured by studying the polarisation patterns of the emission
light. Being able to deduce the direction of the magnetic field is essential as this allows measurement of the pitch
angle. In addition, Zeff may be derived from the ratio of the Stark to CX feature. However this interpretation requires
accurate fundamental cross section knowledge [14].

The main focus of modern fusion plasma diagnosis has focused on polarisation measurements of particular com-
ponents of the Hα Stark multiplet for magnetic field characteristics. It is rather difficult to initiate this approach on
ITER and so fresh attention has been directed at full population and emission modelling of the sort carried out in
the ADAS subroutine, ADAS305. Experimental teams in Madison, Wisconsin and at General Atomics, San Diego
are collaborating with EFDA-JET on exploring the use of ADAS305 predictive capabilities in their spectral analysis.
Therefore, as these codes are in active use, it is important to explore the accuracy to which these generated emission
lines match that of the experimental emission lines. For example, in experiment, it is evident that there is a persistent
observation of a slight asymmetry between the blue and red shifted Stark components of the Hα Stark multiplet [15].
The ADAS305 does not give any indication of this asymmetry. It is possible that this asymmetry can arise from ge-
ometrical observation effects and line-of-sight superpositions for the multiple beams being fired into the tokamak at
JET. However, there are also possible theoretical reasons lying above perturbation theory.

The aim of this report is to examine refinement of the theoretical picture at the heart of ADAS305, with a view to
its upgrading. Therefore, the two new features of this report are field ionisation and asymmetric cross sections, field
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ionisation has the potential to cause an asymmetry within the population structure at high principal n-shells and has
not been included at this stage in ADAS305. This effect could then be passed on down to the lower shells which could
cause a distortion to the visible beam emission lines. In addition, the asymmetric Stark-state electron probability
distribution around the atom affects the model. The current method of dealing with cross sections is by use of the
impact parameter approach, this approach focuses on an isolated, isotropic atom case, however, the beam is no longer
isotropic when it enters the plasma, the colliding plasma ion is now approaching the target distorted hydrogen atom
from a cone of directions, so one can no assume the simple isotropic case. The next chapter will detail the atomic
physics of the motional Stark effect which will provide the foundation for the rest of the report. In chapter 3, the
methods used to find the field ionisation rates will be reviewed, the chapter will then focus on implementing one of
the methods discussed. H ow the field ionisation effects the population structure will then be the topic of chapter 5. In
the chapter 4 it will be detailed the method of the complex coordinate integration to solve the Stark effect in neutral
hydrogen atom beyond perturbation theory, and get exact results for the position of the resonances, the widths and
the wave functions. From that point, the focus will turn to these so called asymmetric cross sections, chapter 6 will
first review the methods of solving the cross sections for the isolated atom case, and then it will turn to focus on the
asymmetric atom case. A summary of these findings will then be put forward in chapter 7.
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Chapter 2

Field Perturbation

The basic components of a tokamak magnetic confinement system are the toroidal and poloidal field coils. The toroidal
field coils surround the tokamak vessel, forcing the charged plasma species to orbit around the torus. There are two
poloidal field coils which produce a field around the plasma cross section. This set up can be seen from figure 2.1. The

Figure 2.1: The principle magnetic circuits of JET’s tokamak.

toroidal fields at JET are typically of the order B ∼ 3 T. When the neutral beam crosses this field, there is a generated
Lorentz field,

~FLor = ~v × ~B, (2.1)

where ~v is the speed of the atom, this field is generally of the order ∼ 105 V/cm. To this field, one has to add the
electric one present in the tokamak ~F, for example, this which produces the toroidal current. The various field values
can be seen in figure 2.2 for two different magnetic field values.

The non-relativistic, field-free Hamiltonian for the hydrogen atom is

H0 =
p2

2µe
−

e2

4πε0r
, (2.2)
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Figure 2.2: A graph showing the field values typically generated at JET. The x-axis shows the energy of the neutral
beam and the three different lines correspond to three different magnetic fields, 2 T, 2.5 T and 3 T. The field values are
given in the commonly used units of V/cm.

where ~p is the momentum operator, e the electron charge, r the relative radial coordinate with origin in the nucleus
and µe is the reduced mass of the electron given by,

µe =
memp

me + mp
, (2.3)

mp may represent a proton or deuteron and me is the electron mass.

The eigenstates of this Hamiltonian are commonly expressed as | nlmlms〉 where n is the principal quantum number
associated with the energy eigenvalue. l the orbital angular momentum quantum number and ml the orbital magnetic
quantum number are associated with the commuting observables L2 and Lz of the angular momentum operator ~L,
ms the spin magnetic quantum number (the spin angular momentum quantum number s takes only the value 1/2 in
hydrogen atom) is associated with the observable S z of the spin angular momentum ~S . H, L2 and Lz, S 2 and S z, form a
complete set of commuting observables (CSCO) which naturally arise in the spherical polar coordinate picture. They
have wave functions ψnlmlms (r, θ, φ, σ) and energy eigenvalues

Enlmlms =
IH

n2 , (2.4)

where IH the Rydberg energy unit for hydrogen. With no external fields and neglecting the fine structure, the energy
depends only in the n main quantum number.

The analytic expression of the orbital part of the normalised wave functions for the bounded states is

ψnlml (r, θ, φ) =

√(
2
n

)3 (n − l − 1)!
2n (n + l)!

e−
r
n

(
2r
n

)l

L2l+1
n−l−1

(
2r
n

)
Ylm(θ, φ) (2.5)

where L2l+1
n−l−1 is the Laguerre associated polynomial of grad n − l − 1 and Ylm is the spherical harmonic (see [16]).

A basis of states |nlmlsms〉 is used by ADAS305 for easy evaluation of the magnetic and electric perturbations. The
Breit-Pauli relativistic corrections given by Bethe and Salpeter [17], which include the one-body relativistic operators
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(mass variation, spin-orbit and Darwin terms) and the two-body relativistic terms (spin-other-orbit, spin-spin, spin-
orbit, Darwin, contact spin-spin and orbit-orbit), are evaluated by ADAS305. These relativistic corrections to the
above for hydrogen are quite small, however current BMS observations can distinguish. As the Breit-Pauli terms
include the spin-orbit interaction, this means that ml and ms are no longer good quantum numbers. Now, ~j = ~l + ~s
commutes with the Hamiltonian. Therefore j and m j, the quantum numbers associated with J2 and Jz replace ml and
ms and the relevant basis states are |nls jm〉. The spin-orbit interaction splits terms of different j into separate levels.
For ADAS305, it is convenient to evaluate the Breit-Pauli terms in the |nl jm〉 representation and transform back to the
|nlmlms〉 representation matrices before including the field perturbations. This step was implemented in ADAS305 by
Summers and Ghanghara (private communication).

Inclusion of external fields is correctly done within the Dirac Hamiltonian for hydrogen with the substitution
~p → ~p + e~A

c , where ~A ≡ (~A, iφ) is the field potential four-vector and ~p the momentum four-vector. As shown by
Bethe and Salpeter [17], the diamagnetic part involving A2 is negligible except for very strong fields, so only the part
which is linear in the field potential matter here. This can be resolved into separate magnetic and electric perturbations
expressible in terms of the magnetic and electric dipole moments of the hydrogen atom, which is the approach used in
ADAS305.

The perturbed Hamiltonian is H = H0 + Hmd + Hed. The magnetic part is

Hmd = −~µ · ~B (2.6)

where
~µ = −

µB

~
(~L + ge~S ) (2.7)

µB is the Bohr magneton and ge the gyromagnetic constant of the electron, which values

ge = 2 +
α

π
+ . . . = 2.0023 , (2.8)

α is the fine structure constant
α =

e
4πε0~c

≈
1

137
. (2.9)

This takes account of the spin contribution to the magnetic moment, including its anomalous moment which comes
from relativistic theory. The electric part is

Hed = −~d · ~F (2.10)

where F is the total electric field, counting the pure electric and the Lorentz ones, and

~d = −e~r . (2.11)

There is a similar electric dipole contribution to the perturbed Hamiltonian if there is any additional shear electric field
in the plasma.

2.1 Paschen-Back effect

For hydrogen in tokamaks, with magnetic fields B ∼ 3 T, the magnetic dipole perturbation greatly exceeds the spin-
orbit separation of fine structure levels, so the Rydberg states |nlmlms〉 should be used as appropriate basis set, neglect-
ing the spin-orbit contribution. With the z-axis of quantisation along the magnetic field direction, the Hmd matrix is
diagonal in this basis and the Paschen-Back energy levels are obtained immediately as

E(1)
nlmlms

=
µB

~
B (ml + gems) (2.12)

As the basis set functions are eigenfunctions of the z projection of the orbital and spin angular momenta, the
Paschen-Back operator does not couple different functions of the basis set, so the wave function at first order pertur-
bation theory is zero, only the energies are perturbed at first order.

If the atom is under an intense electric field and a magnetic one simultaneously we lose the spherical symmetry,
so we can not choose the magnetic field pointing in the z direction without losing generality, as in the case of only
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magnetic field. In this case it is convenient to choose the z direction as the electric field vector, and the magnetic
field vector is contained in the zx plane, so it is decomposed in a parallel and perpendicular component to the electric
field ~F:

~F = F ẑ
~B = B‖ ẑ + B⊥ x̂ . (2.13)

Then the equation 2.7 must be written as:

HPB =
µB

~
[
B‖ (Lz + geS z) + B⊥ (Lx + geS x)

]
. (2.14)

The parallel term is 2.12, and to calculate the perpendicular one, we write the angular momentum Lx as a combination
of the raising and lowering operators [18]

j+ = jx + i jy
j− = jx − i jy , (2.15)

which fulfil

jz | j m〉 = ~ j | j m〉

j+ | j m〉 = ~
√

j( j + 1) − m(m + 1) | j m + 1〉

j− | j m〉 = ~
√

j( j + 1) − m(m − 1) | j m − 1〉 , (2.16)

which leads to the matrix elements of the Hamiltonian:

µB

~
B⊥

〈
n l ml s ms | Lx + geS x | n′ l′ m′l s m′s

〉
=

µB

2~
B⊥

[√
l′(l′ + 1) − m′l(m

′
l + 1) δnn′ δll′ δmlm′l +1 δmsm′s

+

√
l′(l′ + 1) − m′l(m

′
l − 1) δnn′ δll′ δmlm′l−1 δmsm′s

+ ge
√

3/4 − m′s(m′s + 1) δnn′ δll′ δmlm′l δmsm′s+1

+ ge
√

3/4 − m′s(m′s − 1) δnn′ δll′ δmlm′l δmsm′s−1

]
. (2.17)

For a magnetic field which does not point in the z direction, there are couplings between the states of different ml

and ms.

ADAS305 correctly obtains these values if the Lorentz field is switched-off apart from a weak disturbance and
splitting (since it includes the Breit-Pauli relativistic corrections).

The transition lines for the Paschen-Back effect, from the hydrogen 3d 2D→ 2p 2P shell, can be seen in figure 2.3.
There are nine transitions in this case, split into three degenerate energy levels, ∆M = 0,±1. These three characteristic
emission lines are shown in figure 2.4.

2.2 Fine structure

If the external fields are weak or null, the fine structure is the dominant perturbation. In general, the order of this
perturbation is

E(1)

E(0) = α2 ∼ 10−4 (2.18)

where α is the fine structure constant 2.9.

The fine structure Hamiltonian comes from the series expansion of the Dirac equation and it has three terms:
relativistic, spin-orbit coupling and Darwin, which can be written as [19]:

H f e = −
p4

8µ3c2 +
1
2

Ze2

4πε0

1
r3
~L · ~S +

~2

8µ2c2

Ze2

4πε0
4πδ(3)(~r) . (2.19)
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Figure 2.3: A diagram showing the allowed transitions from the hydrogen levels, 3d 2D→ 2p 2P. The diagram labels
the levels in terms of their ml quantum number. Allowed transitions are transitions where ∆ml = ±1, 0. There are three
∆ml = 0, or π transitions and six ∆ml = ±1, or σ transitions.

The fine structure Hamiltonian is diagonal in the basis set |nl jm j〉, one have to introduce the total angular momen-
tum quantum number j, resulting of coupling the orbital and spin angular momenta ~J = ~L+ ~S . Then the coupled states
|nl jm j〉 can be written in terms of the uncoupled ones |nlmlms〉 through the Clebsch-Gordan coefficients:

| n l j m j〉 =
∑
mlms

〈l ml 1/2 ms | j m j〉 | n l ml ms〉 (2.20)

where 〈 j1m1 j2m2|JM〉 are the Clebsch-Gordan coefficients, whose expression, values and properties can be found in
any basic quantum mechanics book. The energies are obtained as [19]

E(1)
nl jm j

= (Zα)4 µc2

2n3

(
1

j + 1/2
−

3
4n

)
. (2.21)

In basis set |nlmlms〉 the fine structure Hamiltonian becomes non-diagonal, and its matrix elements value, apply-
ing 2.20

〈n l ml ms |H f e | n′ l′ m′l m′s〉 = (Zα)4 µc2

2n3

∑
jm j

〈l ml 1/2 ms | j m j〉
∗ 〈l′ m′l 1/2 m′s | j m j〉

(
1

j + 1/2
−

3
4n

)
δnn′ . (2.22)

2.22 shows that the perturbation Hamiltonian becomes block-diagonal in the main quantum number n, which deter-
mines the zero-order energy, which is degenerate in l, ml and ms, and at perturbation theory the zero-order degenerate
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Figure 2.4: The pseudo-Paschen-Back lines are simulated in ADAS305 by turning the energy of the beam down to
5 keV/amu and setting the toroidal field, B = 3.5 T. This emission still therefore contains a small perturbation from
the Lorentz electric field.

states are not coupled at first order, only at second and following ones, so in this case the first-order perturbation wave
function is also zero, the first-order eigenfunctions are obtained just by the unitary transformation 2.20.

2.3 Zeeman effect

For completeness, the case when the magnetic dipole perturbation is much less than the spin-orbit, separation of fine
structure levels is also considered, although this is not relevant to hydrogen in tokamak plasma. The modified basis
states |nl jm j〉 are appropriate and the expectation of Hmd is evaluated for these states to give

E(1)
nl jm j

=
IH

n2 + E( f e)
n j + µBg jBm j (2.23)

with E( f e)
nl j the fine-structure correction for the energy level and g j the generalised Zeeman gyromagnetic constant

g j = 1 +
j( j + 1) + s(s + 1) − l(l + 1)

2 j( j + 1)
. (2.24)

Again ADAS305 can reproduce this case.

2.4 Linear Stark Effect

We suppose now that the Lorentz electric field, ~FLor, is acting in the z-direction, this will produce a force on the
hydrogen atom’s electron cloud in the opposite way of z-direction. Eigenstates of the field perturbed Hamiltonian
will have electron probability distributions distorted along the z-direction, with lower energy states in the antiparallel
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direction and higher energy states in the parallel direction. The effect of this perturbation was discovered by Stark [20],
and was therefore known as the Stark effect. The Stark effect is considerably more complex than the Zeeman effect
and was the first application of the perturbation theory in quantum mechanics. An in-depth overview of the theory can
be found in Condon and Shortley [21], Bethe and Salpeter [17] and Gallagher [22]. Anyway later works proved that
perturbation theory has several inconsistencies when it is applied to Stark effect, we are going to show in this section
the results which it leads. In chapter 4 we shall show the technique of complex coordinate integration, which leads to
exact results for the Stark effect problem.

For the |nlmlms〉 basis of ADAS305, and assuming the axis of quantisation is in the Lorentz electric field direction,
then the ml and ms (and so also m = ml +ms) are good quantum numbers, the n and l however are not. For electric fields
of the order ∼ 100 kV/cm and for states n ≤ 4, the energy level disturbance is small compared with the separation
between n-shells. So ADAS305 evaluates the perturbation Hed between all states of the same n but not between states
of different n, this allows l-shell mixing but not n-shell mixing. The Hed is parity breaking and this coupled with
the effective degeneracy of the l substates allows the linear Stark effect in hydrogen. Up until the studies of this
report, ADAS305 operated as above, with resolved n-shells up to n = 4. For the present investigation, ADAS305
has been extended to deal with n-shells up to ∼ 12, for such shells, the field disturbance approaches and exceeds the
unperturbed separation between n-shells. It might be considered appropriate therefore to evaluate the Hed matrix also
between different n-shells. In practice this is not correct since there is another quantum number (k) associated with
Stark oriented states whose selection rules allow crossing of levels of different n. So n-shell mixing is not of concern
until above another limit - that of field ionisation. This is a new complexity, not included in ADAS305 and requires a
different viewpoint. For that reason, treatment of the hydrogen atom in parabolic coordinates is reviewed below.

There is a second point. Diagonalising Hed gives first order Stark field perturbed energy levels, but does not
identify these states, other than by index number in the computer code. In principle, the ml and ms quantum numbers
remains good, but are only identifiable explicitly if initially |nlmlms〉 states are set up in the field direction. For the
mixed electric and magnetic field case, this is not necessarily so and, as already pointed out, ml and ms would also
breakdown. There are two possible routes, namely to use the transformation matrix diagonalising Hed to transform
the Lz and S z matrices and the matrix of the operator associated with k (the Runge-Lenz vector). This would give
the purity of states in any situation. Another route is to follow the locus of a state from a known situation (pure
Stark or pure Paschen-back) as the further perturbative fields are switched on. At this stage neither strategy has been
implemented in ADAS305, as the main concern is situations close to the Stark limit. However, for the latter case, in
section 2.7, a procedure for state identification is presented. Without state identification, the whole physical situation
can be examined within the computer code, including radiation emission, polarisation etc. It is only at the connection
with experiment that identifications may be helpful. Finally, what experience shows is that the effort of labelling the
states, taking in account n-mixing or going to second or third order perturbation theory is not valuable in comparison
with using an exact method as complex coordinate integration, so we have changed our strategy for ADAS305 and
next improvements will include exact Stark wave functions obtained in terms of complex coordinate integration as is
explained in chapter 4.

To summarise, for the present objectives, the Stark effect can be thought of as two separate areas — one area that
deals with the atomic energies and intensities of the distorted electrons and another area which deals with the field’s
ability to remove an electron entirely from the nucleus. The first part is the area of concern in this section and the
second part will be dealt with in chapter 3.

As shown by Schrödinger [23] and Epstein [24], explicit solution of the electric field perturbed hydrogen atom
is also possible in using parabolic coordinates. These coordinates can be defined through Cartesian and spherical
coordinates by

ξ = r + z = r (1 + cos θ)
η = r − z = r (1 − cos θ) (2.25)

φ = tan−1 y

x
,

or alternatively
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x =
√
ξη cos φ

y =
√
ξη sin φ

z =
ξ − η

2
(2.26)

r =
ξ + η

2
.

The coordinate surfaces are paraboloids of revolutions for ξ and η and meridian planes for φ. This is shown through a
3D graphical picture in figure 2.5. It is seen that those with ξ = A extend to z = −∞ and those with η = A extend to
z = ∞ where A is a positive constant.

Figure 2.5: Coordinate surfaces of the 3D parabolic coordinates. The red paraboloid corresponds to ξ = 2 and the
blue paraboloid corresponds to η = 1 and the yellow half plane corresponds to φ = 600. The three surfaces intersect at
point P, shown as a small black sphere.

Using these coordinates, the Schrödinger equation for an electron orbiting a singly charged ion with an external
field F pointing in the z-direction, is given by[

−
∇2

2
−

2
ξ + η

+ F
ξ − η

2

]
ψ = E ψ , (2.27)

where

∇2 =
4

ξ + η

∂

∂ξ

(
ξ
∂

∂ξ

)
+

4
ξ + η

∂

∂η

(
η
∂

∂η

)
+

1
ξη

∂2

∂φ2 , (2.28)

and E is the energy. Now, the wave function can be separated in terms of the two parabolic variables, ξ and η:

ψ =
1
√

2π
u(ξ) v(η) eimφ , (2.29)

which allow equations for the separated functions u and v to be written as

d
dξ

(
ξ

du
dξ

)
+

(
E
ξ

2
+ Z1 −

m2

4ξ
− F

ξ2

4

)
u = 0

d
dη

(
η

dv
dη

)
+

(
E
η

2
+ Z2 −

m2

4η
+ F

η2

4

)
v = 0 . (2.30)
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This firstly shows the wave functions are degenerate for ±m. The separation constants, Z1 and Z2 are known as the
generalised charges , and can be though as which bind the electron in the ξ and η coordinates, they are coupled by

Z1 + Z2 = 1 . (2.31)

If the the equations are solved for bounded states (E < 0) in the zero field case, where the effect of field is calculated
through perturbation theory, then the zero-order functions, u and v can be solved in terms of Laguerre polynomials.
This gives

un1n2m(ξ) = Nu
√
ε e−

1
2 εξ (εξ)

|m|
2 L|m|n1

(εξ)

vn1n2m(η) = Nv

√
ε e−

1
2 εη (εη)

|m|
2 L|m|n2

(εη) , (2.32)

where E = − 1
2 ε

2 and

n1 = 0, 1, 2, . . .
n2 = 0, 1, 2, . . . , (2.33)

the two new quantum numbers obtained from the relations in equation 2.32, they are related with the nodes of the
Laguerre polynomials and to the original quantum numbers, n and m, through

n = n1 + n2 + |m| + 1 . (2.34)

Often, these two new quantum numbers are defined as one quantum number k,

k = n1 − n2 . (2.35)

k is related to the Runge-Lenz vector, which is defined as [25]

~K = m Z e2 r̂ −
1
2

(
~p × ~L − ~L × ~p

)
. (2.36)

Classically, the Runge-Lenz vectors points in the direction along the major axis of the ellipse which describes the
trajectory of the classical particle in the Coulomb potential, and its length is equal to the eccentricity of the orbit. The
z component of the Runge Lenz vector is expressed in parabolic coordinates as

Kz =
ξ − η

ξ + η
−

2η
ξ + η

∂

∂ξ

(
ξ
∂

∂ξ

)
+

2ξ
ξ + η

∂

∂η

(
η
∂

∂η

)
+
ξ − η

2ξη
∂2

∂φ2 , (2.37)

which commutes with the Hamiltonian and the z component of the angular momentum.

In these terms the generalised charges 2.31 result

Z1n1n2m =
2n1 + |m| + 1

2(n1 + n2 + |m| + 1)

Z2n1n2m =
2n2 + |m| + 1

2(n1 + n2 + |m| + 1)
, (2.38)

and the energy

εn1n2m =
1

n1 + n2 + |m| + 1
=

1
n

(2.39)

The normalisation constants Nu, Nv result:

Nu =

4√2
√

(n1 + n2 + |m| + 1)

√
n1!

(n1 + |m|)!

Nv =

4√2
√

(n1 + n2 + |m| + 1)

√
n2!

(n2 + |m|)!
, (2.40)
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which leads to the expression of the total zero-order wave function as follows:

Ψn1n2m(ξ, η, ϕ) =
1

n
√
π

√
n1!

(n1 + |m|)!

√
n2!

(n2 + |m|)!
eimϕ e−

1
2 ε(ξ+η) ε |m|+1(ξη)

|m|
2 L|m|n1

(εξ) L|m|n2
(εη) (2.41)

This solution makes also diagonal the z component of the Runge-Lenz vector, being its eigenvalues

Kz | n k m 〉 =
k
n
| n k m 〉 (2.42)

Now, to solve the calculation of the perturbation of the atom due to an electric field in the z-direction, the matrix
of 〈z〉 with regard to the states of the same n is required. This is done through using known properties of Laguerre
polynomials [16]. The diagonal elements, to first order perturbation with field strength F, have the value

〈n k m | z | n k m〉 =
3
2

n k . (2.43)

Therefore, the first order alteration to the energy level, E, in atomic units is given by

E = −
1

2n2 +
3
2

F n k . (2.44)

Although there is no explicit dependence on m, there is an indirect dependence through the dependence of n and k on
m. It can also be seen that states that lie on the +z-axis will have higher energies than those which lie on the −z-axis.
By setting n1 and n2 to n − 1 and 0, the highest and lowest energies are obtained respectively. The separation between
these points is given by,

∆E = 3 F n (n − 1) . (2.45)

Therefore, the larger the diameter of the electrons classical orbit the greater the potential difference between opposite
points in that orbit.

Although higher order terms are negligible in equation 2.44 in low lying n-states in a JET plasma, they become
more significant at higher n-states. The correction to this energy was calculated by Ishida and Hiyama [26]. Their
result is

E = −
1

2n2 +
3
2

F n k −

1
16

F2 n4
(
17 n2 − 3 k2 − 9 m2 + 19

)
+ (2.46)

3
32

F3 n7 k
(
23 n2 − k2 + 11 m2 + 39

)
.

Now, there is also a direct dependence on m given in the second order shift. In addition, the second order shift is
always to lower energies and remains unaltered on interchange of k and −k. So the atom configuration effects the first
and third order shift, not the second.

The expression of the wave functions at higher order perturbation theory is very tedious and requires a great effort
to obtain, so as it was mentioned above, an alternative method becomes valuable to get the energies and wave functions.

These energy levels given by equation 2.47 can be plotted as a function of field. There are two situations that
can occur: an adiabatic reaction and a diabatic one, if the coupling between the states is strong, one can think of the
reaction to be of diabatic nature and the crossing will occur, this is shown in figure 2.6. However, if the coupling is
weak, then it can be thought of as adiabatic and the energy levels will get to the point of crossing then veer off in the
opposite direction as shown in figure 2.7. Therefore one must consider the field at which these reactions are occurring
and the nucleus of the species to determine the coupling. It is seen from figure 2.6 that for a hydrogen nucleus in JET
conditions, the mixing begins to occur for n > 6 before the point at which the level classically ionises.

If the diabatic reactions are considered, one must carefully consider how the wave functions are treated at the
point of mixing. The reason why the levels cross despite having the same m is because the parabolic coordinates also
diagonalise the Runge-Lenz vector, where there are different eigenvalues in the two crossing states. The Runge-Lenz
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Figure 2.6: A graph showing the mixing of Stark energy levels for hydrogen at various field intensities with m = 0.
The dashed line shows the classical ionisation limit.

vector is used classically to describe the shape and orientation of the orbit of one body around another. At zero field
the Runge-Lenz vector and angular momentum are conserved and Park (1960) [28] showed that using this fact one
could relate the parabolic and spherical states through a Clebsch-Gordan coefficient. This transformation coefficient
is given in terms of Wigner-3J symbols as

〈n k m | n l m〉 = (−1)
1−n+k+m

2 +l
√

2l + 1
( n−1

2
n−1

2 l
m+k

2
m−k

2 −m

)
, (2.47)

where

| n k m〉 =

n−1∑
l=0

| n l m〉 〈n l m | n k m〉 . (2.48)

These two equations allow the two coordinate states to be transformed from one to another at zero field.

This configuration of solving with respect to z-axis is an important point to note, and one which this report shall
come back to in section 6.7. The transitions associated with the Hα line can be seen in figure 2.8. The allowed
transitions are the usual ∆m = 0,±1. Although there are no specific selection rules with respect to the parabolic
quantum numbers, transitions which involve a change in sign in k are mostly weak, that is the reason why generally
only nine main transition lines are seen for the Hα transition instead of fifteen. The intensities for the first four Balmer
transition lines can be seen in figure 2.9.
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Figure 2.7: A graph showing the mixing of Stark energy levels for lithium at various fields with m = 0. Image credit:
Courtney et al. [27].

2.5 Matrix elements of Stark perturbations

At first order perturbation theory, we can treat the Stark Hamiltonian as a perturbation over the Rydberg states
|nlmlsms〉 as usual 〈

n l ml s ms | Fz | n′ l′ m′l s m′s
〉
. (2.49)

Writing z = r cos θ =

√
4π
3 rY10(θ, φ), and applying the Wigner-Eckart theorem [29], we can separate the integral in a

radial and angular part:

〈
n l ml s ms | Fz | n′ l′ m′l s m′s

〉
= F

〈
n l || r || n′ l′

〉 √
(2l + 1)(2l′ + 1) (−1)ml

(
l 1 l′

0 0 0

) (
l 1 l′

−ml 0 m′l

)
= F

〈
n l || r || n′ l′

〉
(−1)l−l′−1

√
2l + 1
2l′ + 1

〈l 0 1 0 | l′ 0〉 〈l ml 1 0 | l′ m′l〉 (2.50)

where the reduced matrix element 〈nl || r || n′l′〉 is the integral

〈nl || r || n′l′〉 =

√(
4

nn′

)3 (n − l − 1)!
2n(n + l)!

(n′ − l′ − 1)!
2n′(n′ + l′)!

∫ ∞

0
dr e−

n+n′
nn′ r 2l+l′

nl n′l′
rl+l′+1 L2l+1

n−l−1

(
2r
n

)
L2l′+1

n′−l′−1

(
2r
n′

)
. (2.51)

This operation is mainly which makes ADAS305 to get the Stark perturbation terms.

2.6 Polarisation

Now that splitting of spectral lines has been established for each perturbation term, it is important to consider the
polarisations of the ∆ml = 0 and ∆ml = 1 transitions. The radiation can either be linearly or circularly polarised with
respect to the field axis. Generally, the linear (∆ml = 0) and perpendicular (∆ml = 1) components of the radiation are
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Figure 2.8: A diagram showing the 15 allowed Stark transitions of the Balmer alpha line.

labelled π and σ respectively, ADAS305 has the ability to quench or amplify either type of radiation. In experiment
this is done by using polarises set up to deal with each type of radiation, the observed asymmetry of the motional Stark
multiplet is mainly in the π radiation, therefore, it is useful to have the ability of quenching either the π or σ radiation
as it allows analysis of one certain set of transitions. Condon and Shortley [21] provide an overview of the dipole
radiation field, a general summary can be written by considering the average Poynting vector given by

S av =
c

4π

(
~F × ~B∗ + ~F∗ × ~B

)
(2.52)

where ~F and ~B are the electric and magnetic field vectors. The Poynting vector (Poynting, 1884 [30]) is directed along
the energy flux of the electromagnetic field.

Firstly the π radiation is considered, for this analysis it is assumed that the dipole moment is directed along the z-
axis, in a fusion plasma, this assumption is correct if the magnetic field is labelled the x-axis and the beam is travelling
along the y-axis, the dipole is oscillating in the xy plane therefore the radiation is linearly polarised with the electric
vector in the plane determined by r0 and the dipole moment. The intensity, at an angle θ with the z-axis, is therefore

S av =
ck4

8πr2 V(r)2 sin2 θ~r0 . (2.53)

Now, for the σ radiation, the dipole is now oscillating in the xz plane. The vector is now circularly polarised and the
intensity is given by

S av =
ck4

8πr2

1
2

V(r)2 (1 + cos2 θ)~r0 . (2.54)

Keeping the plasma orientation as stated above, this means that if the viewing angle of the beam emission was set
to look along the xy plane (θ = 900), then one would receive half the amount of σ radiation and the full amount of
π radiation. If the viewing angle is rotated to θ = 0, one would only receive the full amount σ radiation and no π
radiation. This change in intensity can be seen in figure 2.10.
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Figure 2.9: Graphs showing the relative intensities and polarisations of the first four lines of the Balmer series. Image
credit: Condon & Shortley [21]

2.7 Motional Stark Effect

The previous six sections have developed a strategy for describing the perturbations for the separate electric and
magnetic field cases. However, it becomes slightly more complex when dealing with the motional Stark effect of the
neutral beam. Now, there is a Lorentz electric field and a magnetic field which must be treated together. It was briefly
mentioned in section 2.4 how this idea of two different fields may have the potential to cause a misinterpretation of
experimental measurements. The polarisation labels, π and σ must be treated with their respective dipole moment
axis. In addition, the quantum numbers used to describe the transitions must always commute with the Hamiltonian.

A solution to this problem is to try and find a way of ‘grading’ the set of quantum numbers. More specifically, in
the purely Lorentz case, the Runge-Lenz vector is multiplied by the transformation matrix and a diagonal matrix will
be generated. All off-diagonals elements should be zero while the diagonal elements should be equal to the k quantum
numbers. As the magnetic field is increased, these off-diagonal elements will begin to stray from zero. The amount by
which they stray coupled by a visual analysis of the emission lines can be used as a guide to which labelling system to
use.

So, although there is a certain grade to the quantum number, there is no real definition to this grade, i.e. what
grade tells us when the Lorentz term is comparable to the Paschen-Back term. To get around this problem, one would
also look to diagonalise the Lz and S z matrices to obtain the ml and ms quantum numbers along the diagonal of the
respective generated matrices. Again, in a pure Paschen-Back case, the off-diagonals in these matrices should be zero.
So, if the code is set up initially with the Paschen-Back term being negligible compared to the Lorentz term, then
off-diagonal terms from the generated matrices of Lz and S z should roughly be at their maximum deviation away from
zero. The order of the maximum deviation is set as a normalisation value for each off-diagonal term in the k, ml and
ms matrix. Now, with each grade normalised, it is more clear when the two field terms are equal to each other and
when one can say which field effect is in dominance. ADAS305 does not yet transform the angular and other matrices,
however this step is not complex and is hoped to be carried out in the near future.
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Chapter 3

Field ionisation

The atomic levels of an atom in the presence of a field become narrow bands of a continuum which get wider as the
field increases. Therefore, in order to fully describe the Stark effect, the center of the band, E0, and the band width, Γ,
should be determined, the band width can be thought of as a complex eigenvalue, i.e. E = E0 + iΓ, the imaginary part
of this complex eigenvalue contribute with a decaying factor in the phase evolution of the time-dependent Schrödinger
equation, so it is interpreted as the probability that will field will altogether remove the electron from the nucleus. The
method of finding the center of the band or resonance E0 through perturbation theory was described in section 2.4.
This chapter will be concerned with a semiempirical theory of calculating Γ and how it may be a possible theoretical
solution to the slight persistent asymmetry experimentally observed within the Stark Halpha multiplet. This chapter will
also provide a broad overview of the different methods put forward to try and solve this complex energy eigenvalue
problem to give an indication as to the benefits and downfalls of each method.

The imaginary part of the energy can be also calculated through perturbation theory at order higher than second,
including in the perturbation matrix the states of the continuum of the field-free hydrogen atom. Once again the effort
necessary to do that is larger than making an exact calculation through complex coordinate integration and the quality
of the results is poor, so it is not valuable and in this chapter we will focus in the semiempirical methods much faster.

The possibility of removing an electron entirely from the atom through applying an external field was first dis-
cussed by Oppenheimer (1928) [31], Oppenheimer deduced an expression for the ionisation probability for the ground
state, no long after, Rausch von Traubenberg (1929) [32] [33] produced experimental results which verified the field
ionisation concept. It was found that the higher energy Stark shifted states were harder to ionise than the lower energy
Stark shifted ones, this poses a complex problem involving asymmetries within the Stark multiplet. It is advantageous
to find out at what atomic configuration this asymmetry becomes dominant at various field values, this will allow
determination of whether the ionisation rate is greater than other processes occurring in the atom in plasma, such as
radiative decay and collisional processes. More specifically, it will be looked at with respect to the processes occur-
ring in BMS calculated by ADAS305, if it is a dominant process then one would expect this to filter through into
Stark shifted spectral lines. Throughout the years, there have been many different methods proposed to calculate the
reasoning and theory behind this. In section 3.2, the different methods in calculating the field ionisation rates will be
discussed and compared in detail. The final sections will then move to focus on the method chosen for this report and
how it can be integrated into ADAS305.

3.1 Classical ionisation limit

The combined Coulomb-Stark potential acting on the atom is given in atomic units by

V = −
1
r

+ ~FLor ~r . (3.1)

Therefore, if the electron is lying along the z-axis, the potential is of the form shown in figure 3.1 for positive and
negative z. This shows that the motion in the positive z direction is bounded for all energies as V(z) → FLorz for
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z → ∞. However the motion is unbounded in the negative z direction as V(z) → −FLor|z| for z → −∞. It is seen that
once the electron has reached potential, V = −2

√
FLor it becomes classically ionised, this corresponds to z = −

√
FLor.

It should be noted though that this result is only valid for m = 0 where r = |z|, when m , 0 then r =
√

x2 + y2 + z2.

Figure 3.1: The combined Coulomb-Stark potential of an atom sitting along the z-axis in an electric field FLor =

0.008 a.u.

This classical picture is not adequate to describe the field ionisation. It does not account for the fact that the
higher energy, ‘blue’ Stark states are harder to ionise than the lower energy, ‘red’ Stark states, Bethe and Salpeter [17]
stipulated a rule, based on equation 3.1, where energetically lower substates of the same n are less stable, in other
words, states present on the −z side of the atom are more easily ionised than states on the +z side. If the parabolic
states described in section 2.4 are again considered, then this corresponds to states with high n2 and low n1 (or k
negative). Evidence for this was found for this by Lanczos (1930) [34], who showed that ‘blue’ components of the Hγ

line remained sharper and stronger as higher fields were applied. This is a rather surprising result as one would expect
the states of higher energy to have a more penetrable barrier to go through, however, the red components, although
they rise from a lower state of energy, are on the energetically unstable side of the atom. There exists a point where
the ‘leaking’ of electrons can occur, as shown in figure 3.1, at this point the electron is ionised, although, this rule is
not absolute. Results from Bailey et al. [35] proved that this rule could be broken at high values of n. In other words,
the ionisation curves for high n2 begin to cross curves of lower n2. Therefore, to understand this further, it is necessary
to study this quantum tunnelling of the potential barrier in more detail.

3.2 Potential barrier penetration

To understand the barrier penetration one needs to consider the two expressions written in equation 2.30 from chapter
2. They can be re-written in the form

d2χi

dσ2
i

+
χi

2
[W − V(σi)] = 0 , (3.2)

where i = 1, 2, W is the energy, χ1 and χ2 are the wave functions u and v respectively and the σ1 and σ2 are the
parabolic coordinates ξ and η respectively which are given by

V(ξ) = 2
(
−

Z1

ξ
+

m2 − 1
4ξ2 +

FLor ξ

4

)
, (3.3)

and

V(η) = 2
(
−

Z2

η
+

m2 − 1
4η2 −

FLor η

4

)
. (3.4)

These two potentials show the same characteristics as the classical potential given in equation 3.1, with V(ξ) represent-
ing the +z-axis and V(η) representing the −z-axis. The effective potential in equation 3.4 has a maximum and tends
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to −∞ when η tends to infinity, therefore the eigenvalues of the potential have a quasi-discrete spectrum and can be
considered to be complex. The imaginary part is connected with the tunnelling through the potential barrier.

There have been many different ways of treating this problem. Firstly, Lanczos (1930) [34] studied the problem
using the Wentzel-Kramers-Brillouin (WKB) approximation in the one-dimensional Schrödinger case. In the WKB
approximation, the wave function is recast as an exponential function, semi-classically expanded, and then either the
amplitude or the phase is taken to be slowly changing (Karnakov and Krainov, 2012 [36]), in other words, for this
example the WKB approximation presumes that ∂2χi

∂σ2
i

= 0, however, the WKB approximation breaks down where the
potential reaches the classical turning point, therefore Lanczos calculated results only for the levels which were well
below the peak of the effective potential barrier. Rice and Good (1962) [37] later reviewed the problem and treated
it with the full three-dimensional picture in the WKB approximation, this enabled them to calculate the half-widths
(Γ) near the potential barrier. Bailey et al. [35] produced a review of the two methods described by Lanczos and Rice
and Good, they found that Rice and Good neglected the (m2 − 1) term which Lanczos did include in his results, this
term proved to be of significance in the ordering of thresholds for large m-values, in addition, Rice and Good used an
iterative formula for the energy levels whereas Lanczos used the perturbation method to third order in his evaluation,
these two different means of calculating the energy levels at high field conditions caused the highest discrepancy,
which was however less than experimental uncertainties. At lower fields the two methods gave very good agreement
with each other.

This WKB method provided very reliable results, however as this method is based on a tunnelling process it
cannot describe the ionisation rates above the potential barrier, so an exact method of solution was then the ultimate
goal. Alexander [38] carried out calculations for the ionisation rate from the ground state of hydrogen using the
Breit-Wigner parametrisation formula, these results were then backed up by Hehenberger et al. (1974) [39] by using
the method of exploiting the poles of Weyl’s m-function in the complex plane. However, a method which could
have been seen as benchmark at the time, was then produced by Damburg and Kolosov [40], they provided an exact
numerical solution for both the energy levels and their width, they took explicit advantage of the exact separability of
the Schrödinger equation in parabolic coordinates and used recurrence relations to find the solutions, the only limiting
factor in their method was the fact that it must be repeated for each state and each intensity of the field. Luc-Koenig
and Bachelier (1980) [41] tried to then find a quicker exact solution using the Breit-Wigner parametrisation formula,
however this still proved to be a long way around the problem. Later, Farrely and Reinhardt (1983) [42] found a
discrepancy in the exact calculations by Damburg and Kolosov, they used a semiclassical complex rotation, r → reiθ.

There have been more recent attempts to build an exact solution to this problem (Tian, 2002 [43]), but due to the
time restrictions of this report, analytical expressions were sought after instead which can be used to quickly work out
the ionisation rates at each regime, this is also an important issue for this theory to be efficiently added into ADAS305.
It is a big ask for the ADAS305 to include a thorough calculation, as those describe above, for each individual level
along with the complex calculations it is already performing and still be used in an efficient manner, these analytical
expressions could be done by using certain assumptions, applicable to the regime in question, which simplify the
problem.

If the first regime is taken to be states lying well below the potential barrier, Damburg and Kolosov [44] pro-
vide a semi-empirical formula to calculate these states, the expression they give was formulated through applying an
asymptotic expansion in Γ, this gives reasonable agreement with their previous exact numerical results. Two more
papers then followed to expand on the work of Rice and Good by finding the ionisation rates near the potential barrier
(Drukarev [45]; Kadomtsev and Smirnov [46]), the formulae obtained by Kadomtsev and Smirnov however turned out
to be erroneous (Drukarev [47]) and the calculations from Drukarev [45] didn’t give good agreement with the exact
results of Damburg and Kolosov [40]. Therefore, to try and find a reliable solution to this regime, Kolosov (1983)
came up with a method using the Breit-Wigner parametrisation formula, this method provided good agreement with
the exact numerical calculations. The last regime approximation, states lying well above the potential barrier, was then
completed by Kolosov [48], however, this method still required a rather complex solution as it adopted the asymptotic
expression of the amplitude of the incoming wave at infinity and the Wronskian of the Schrödinger equation solutions
to calculate the ionisation rate. No further method of this regime has so far been found, so this report will work on
the basis of applying the second regime equation the third. The next three sections will describe the exact method
of calculating the ionisation rates in each regime and will go on to give a summary of the results found using these
equations.
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3.3 Below Potential Barrier

The well known asymptotic expansion of E0 in a power series of FLor is derived through means of perturbation theory,
Damburg and Kolosov [44] describe a procedure for finding the asymptotic expansion of FLor for Γ, again this theory
starts by considering the two parabolic solutions to the Schrödinger equation as described in equation 2.30. When
using the perturbation theory, both of these potentials are treated as one-dimensional Schrödinger equations having
bound states, however, this is only actually true for the solution to the wave function, u. This potential always has
bound states therefore n1 is always a good quantum number, however, it is only true to say that the solution to v has
bound states well below the potential i.e. n2 is only a good quantum number below the barrier. To get around this
problem, Damburg and Kolosov suggest a slightly modified solution of equation 2.30. By changing the variable η to
ρ:

ρ = (−2E)
1
2 η (3.5)

and introducing the new parameters

R =
(−2E)

3
2

FLor
(3.6)

and
λ = Z2 (−E)−

1
2 . (3.7)

The solution then becomes
d2U
dρ2 +

(
1 − m2

4ρ
+
λ

ρ
−

1
4

+
ρ

4R

)
U = 0 . (3.8)

The method then goes on to solve this equation in two regions; the first region 0 ≤ ρ < ρ1, where ρ1 � R and the
second region ρ0 < ρ < ∞ where ρ0 < ρ1. Once these solutions are obtained, they are linked together in a matching
region ρ0 < ρ < ρ1, where both of them are valid. The asymptotic expression they derive for Γ is given by

Γ =
(4R)2n2+m+1

n3n2!(n2 + m)!
exp[y] , (3.9)

with

y = −
2
3

R −
1
4

n3 FLor

(
34 n2

2 + 34 n2 m + 46 n2 + 7 m2 + 23 m +
53
3

)
. (3.10)

This formula is only valid for field strengths

FLor �
[
8 n3 (2 n2 + m + 1)

]−1
(3.11)

which can be also be written as R � 16λ.

Due to the nature of this equation, it is necessary to build up a test module in Fortran before it is implemented
into the already complex ADAS305, the code written in Fortran was named f ldizn. To calculate the energy level the
third order perturbation method, described by the equation 2.47, was used. In order to calculate the field ionisation,
firstly a system for labelling states must be determined, this requires three main loops for each principal n-shell —
magnetic number m and parabolic quantum numbers n1 and n2. For each configuration the code tests the numbers
against equation 2.34, if they are valid then the states are stored in a vector for each number and the code progresses.
This method assumes a degeneracy in spin, which will not be sufficient when dealing with magnetic processes in
ADAS305.

Due to the exponential term, the equation has the ability to overload the computer with large factors which in
reality should cancel out each other, the exponential becomes very large at high fields, n-shell or n2, in addition, at
high values of n2, the factorial and the exponent of the R term also becomes very large. Because of that is more
practical to deal with the logarithm of Γ and calculate it as

log Γ = (2n2 + m + 1) log(4R) − 3 log n − log(n2!) − log ((n2 + m)!) + y . (3.12)

This expression does not overflow the machine.
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3.4 Near Potential Barrier

Now, using the same notation as that given in section 3.3, Kolosov (1983) [49] considered the regime R ≈ 16λ
(FLor ≈ [8n3(2n2 + m + 1)]−1). For the analysis, it is assumed that there is no incoming wave at infinity, it then follows
the same principle as described in the previous section, the final solution involves a rather complex iterative solution
to find the energy level which is then used to find the ionisation rate. The iterative method they suggest is outlined as
follows: firstly, there are three variables which should be iterated together: λ1, ε and R. The λ1 value is given by

λ1 = n1 +
1
2

(m + 1) +
1

4R
(6n2

1 + 6n1m + 6n1 + m2 + 3m + 2) , (3.13)

and ε by

ε =

√
2 R

3 − π (2n2 + m + 1) + arg Γ
(

1
2 + iε

)
log 4

√
2 R

, (3.14)

where arg Γ denotes the argument of the complex number (angle with the real positive axis) of the Euler Γ function,
and its expressions are given in full in Kolosov (1983) [49]. The method for evaluating R involves an iterative process
using an equation provided for the energy level,

E = −
1
2

(
λ1 +

1
16

R −
ε
√

2

)−2

. (3.15)

If this value is substituted into equation 3.6, then R is calculated through the Newton-Rabson algorithm:

Rn+1 =
1
2

Rn +

(
λ1 +

1
16

Rn −
ε
√

2

)−3 1
FLor

 , (3.16)

where the initial guess R0 is given by

R0 =
3π
√

2
(2n2 + m + 1) . (3.17)

The method starts by calculating λ1 using R0, this value of λ1 along with R0 is then substituted into equation 3.17, for
the first iteration ε is set to zero. Once R1 has been found, the starting value of ε is found through solving equations
3.6 and 3.15, then the new value of R is substituted back into lambda1 and then on calculating R2, the new values of
λ1 and ε are used. This method is repeated until the energy rounds off to its final value, after this energy is found, the
level width is found through using the following expression,

Γ =
FLor log[1 + exp(−2πε)]

2
√
−E

[(
1
4 + λ1

R

) (
log 4

√
2 R − Reψ

(
1
2 + iε

))
− 1

] , (3.18)

where Reψ
(

1
2 + iε

)
means the real part of the complex number and the analytical expression of the function ψ is shown

again in Kolosov (1983) [49].

It was found that this method managed to reproduce the tabled ionisation rates given in Kolosov (1983) [49], how-
ever for other field values at various n-shell within this regime, the method provided rather temperamental results for
the ionisation rate as described in the next section. This is due to the fact that a small change in energy level produced
a massive change in ionisation rate, an easier way of implementing this method was through using known values of
energy level using the perturbation theory. Now, an iterative process is not needed, as the equations can be solved
directly by substituting in the energy level, this makes the method more robust to different electron configurations and
field values, although due to the fact that this regime is now dealing with stronger fields than in the previous section,
one must be cautious as to where the perturbation method of calculating the energy level breaks down.

3.5 Implementing Code

With the methods for calculating the ionisation rates now discussed, there are three main questions which need to be
addressed: i) at what configuration the codes break down, ii) at what quantum shells and field values do the ionisation
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rates become important, and iii) how will the independent code need to be altered to fit into the main population code,
ADAS305. To answer the first question, the typical field values of JET will be neglected, and the code will be used in
a more exploratory manner, a plot of results from the independent code f ldizn. f or can be seen in figure 3.2, there are
a number of points which can be seen through these plots. Firstly, it can be seen that the two methods have reasonable
agreement in ionisation rates approaching the potential barrier, however, after this point, the ionisation rates calculated
using the method described in section 3.3 (method one from now on) tend to ‘overshoot’ the rates calculated using
the theory in section 3.4 (method two from now on), however, the point at which the dotted curve begins to turn back
on itself could be considered the point at which both the energy equations and method two equations break down. It
is difficult to compare this point as there have been very limited results given in the regime just above the potential
barrier (after the point of classical ionisation). The paper which dealt with this regime (Kolosov, 1987 [48]) produced
values for fields much larger than of interest to this report (FLor > 2× 1013 V/cm). From a classical point of view, this
seems quite contradictory that the field ionisation rates should begin decrease after this point as the field.

(a) (b)

(c) (d)

Figure 3.2: This figure provides an analysis of two principal n-shells: n = 4 and n = 7. In graphs a) and c) the
ionisation rates are plotted against field. The solid lines represent the rates calculated using the method described in
section 3.3 and the dotted lines represent the rates calculated using the method described in section 3.4. The plots in b)
and d) show the regimes in which the two graphs in a) and c) are being projected through. The electron configurations
are shown in the format | n k m〉.

To provide some clarity on how well these results can be trusted, table 3.1 compares tabulated results from
Damburg and Kolosov [44] and Kolosov (1983) [49] with the computed results from the independent code f ldizn.
It is seen that as the field increases the results tend away from the tabulated values of Damburg and Kolosov, this
could be due to the method of calculating the energy level, in the case of the results calculated by Kolosov (1983)
[49], this method was found to show a very large change of ionisation rate with energy level, this made this adopted
method quite volatile as a very small discrepancy between the energy value calculated against the energy value used
by Kolosov saw a very large difference as shown by the | 5 − 4 0〉 ionisation probability, however this method did
provide reasonable accuracy for the majority of results. For the purposes of this report, the errors of these values are
of an acceptable range, this is due to the fact that this report is being used to show a general picture of the effects of
field ionisation, the degree of accuracy will become valid when this general picture is accepted and implemented into
a full diagnostic of the beam emission spectra. In addition, it will be seen that when this method is implemented into
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| n k m〉 Field (AU) Damburg and Kolosov [44] Calculated
| 5 3 1〉 1.4 × 10−04 1.55 × 10−11 1.66 × 10−11

1.6 × 10−04 1.07 × 10−09 1.18 × 10−09

1.8 × 10−04 2.67 × 10−08 3.04 × 10−08

| 2 − 1 0〉 2.5 × 10−03 8.55 × 10−11 1.03 × 10−10

3.0 × 10−03 1.03 × 10−08 1.40 × 10−08

3.5 × 10−03 2.62 × 10−07 4.23 × 10−07

|10 9 0〉 1.4 × 10−05 1.07 × 10−12 2.32 × 10−12

1.6 × 10−05 2.75 × 10−10 4.29 × 10−10

1.8 × 10−05 1.19 × 10−08 2.17 × 10−08

Kolosov (1983) [49] Calculated
| 5 − 4 0〉 1.0 × 10−04 1.92 × 10−06 1.03 × 10−11

| 10 − 9 0〉 1.0 × 10−05 2.54 × 10−08 3.88 × 10−08

1.1 × 10−05 7.46 × 10−07 1.23 × 10−07

| 13 − 2 2〉 4.3 × 10−06 9.38 × 10−09 8.40 × 10−09

| 5 − 4 0〉 2.9 × 10−06 1.10 × 10−08 1.94 × 10−08

Table 3.1: Tabulated results of Damburg and Kolosov [44] and Kolosov (1983) [49] compared against the approach
adopted in this report for method one and method two.

ADAS305, it can use the already calculated energy levels to aid the calculations providing more robust results.

Now the independent testing has been studied, the focus will be turned to implementing these rates into the popula-
tion model, ADAS305. The first problem to tackle, is the assignment of parabolic states to the energy values calculated
in ADAS305, detail is first needed to describe how the code creates the array of energy values, the code solves for
the eigenvalues by directly solving the matrix of wave functions with respect to the z-axis, this produces an array
of dimension 2n2. The energy levels are produced from highest to lowest, or from −k → +k, with each k quantum
number there is a degenerate magnetic number and in addition the code now takes into the spin of the electron. The
integrated field ionisation code must produce three arrays of the same dimension for n1, n2 and m corresponding to the
energy array.

One can go about solving this from a top down approach. Firstly a loop around k is started, the next loop to start
is that around spin, in this case this will name both spin systems with the same parabolic quantum numbers, Within
this spin loop lies a loop around n1 and n2, it is important to note that this loop starts at n1 = n2 = n − 1 and works
back until n1 = n2 = 0. Going through these parabolic numbers, the code calculates a value of m from the condition,
|m| = n − n1 − n2 − 1, if the value of m calculated is less than n then the code stores the set of n1, n2 and m, then on the
next array point places n1, n2 and −m, this method produces an array which provides an accurate assignment system
to any principal n-shell. A demonstration of the code used to assign these quantum numbers, namely getpn. f or, is
shown in figure 3.3, the graph on the left is a plot of the energy values produced in ADAS305 in order of the array
position, on the right, the calculated parabolic numbers have been used to work out the energy in the code f ldizn. It
does not matter that the energy values are different, it is the trend that is of importance in this case.

With the numbering scheme in place, focus can be turned back to the ionisation rates. To test the code had been
implemented successfully, a plot of ionisation rates and energy values were compared to the same plot produced by
the independent code. The results can be seen in figure 3.4.

There is quite a dramatic difference between the two ionisation rates calculated for the different codes, in the
independent code, the ionisation rates are rapidly decreasing due to the high field condition, however, in the ADAS305
code, the ionisation are still giving ‘reasonable’ rates. The plots show very different values of energy between the two
codes, at this point some attention should be drawn to the method by which ADAS305 calculates the energy levels.

The independent code, as discussed, calculates energy levels using a perturbation method, therefore, the zero-field
Hamiltonian is diagonalised with respect to the z-axis, and then the perturbations are added to the eigenvalues. The
ADAS305 code on the other hand, diagonalises the perturbed Hamiltonian with respect to the z-axis, it does this
by using the LA-PACK code, ZHPEV , the Z implies that it solves for the double precision complex Hamiltonian,
therefore, one can conclude that by implementing the code into ADAS305, it has improved the robustness of the code
through it is more accurate means of determining the energy level.
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Figure 3.3: Two graphs to compare the parabolic quantum numbering scheme used in the subroutine getpn. The graph
on the left shows the energies produced by ADAS305 plotted as a function of index. The graph on the right shows
the energies produced by f ldizn using the parabolic quantum numbers assigned to each array position. This was done
for n = 8.

However, there still remains the problem of the high field scenario, it is seen from figure 3.5 that the levels still
have a levelling off point where the high field kicks in. The results are still not accurate for this high field regime,
however, the rates behave slightly less erratic, chapter 5 will describe how the field ionisation effects the population
structure of the atom, this will ultimately go on to show if there are distortions or asymmetries to the beam emission
Stark multiplet due to the field ionisation.
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(a) (b)

(c) (d)

Figure 3.4: A comparison between ADAS305 and fldizn is drawn. In a) and b) the ionisation rates for various |nkm〉
states are produced by ADAS305 and fldizn respectively. The energy levels for the two codes respectively are then
shown in c) and d).

(a) (b)

Figure 3.5: Two graphs showing the behaviour of the ionisation rates in different regimes. In a) the ionisation rates for
given | n k m〉 states are plotted and in b) the regime is given for the same field and | n k m〉 states.
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Chapter 4

Exact Stark effect, the complex coordinate
method

4.1 Inconsistencies of perturbation theory for Stark effect

In last two chapters we showed the application of the perturbation theory to a neutral hydrogen atom under a constant
electric field. Nevertheless we did not checked whether the system in treatment fulfils the hypothesis of perturbation
theory:

H = H0 + V (4.1)

H0 φ
(0)
k = ε(0)

k φ(0)
k , (4.2)

with the perturbation V that must fulfil
〈φk |V | φk〉 � ε(0)

k (4.3)

and
〈φk |V | φl〉 � ε(0)

k − ε(0)
l (4.4)

for all k and l.

In figure 3.1 is shown the combined potential Coulomb and constant electric field. The perturbation is a linear
term in z, and it is the dominating one asymptotically in comparison with the Coulomb one, which goes like 1

r , it does
not matter how small is the field. A potential which does not tend to zero asymptotically is not a perturbation, so it
can not be treated in terms of perturbation theory.

In the other hand, the spectrum of the hydrogen atom under a constant electric field has also a topology absolutely
different to the field-free one. The Stark atom has no bounded states, but resonances, and any real number is an eigen-
value of the Stark Hamiltonian, so we have a continuum spectrum which is the hole real line. Inside this continuum
spectrum, one can find resonances, which tend to the hydrogen bounded states eigenvalues when the field intensity
tends to zero. These resonances have a continuum component, so they have a certain time of live, even the ground
state, and their wave functions are not square integrable.

Taking in account that, perturbation theory has critical inconsistencies when it is applied to the problem of a
hydrogen atom under a constant electric field which makes its results non trustful. If we want to get proper results for
energies, state widths and wave functions through perturbation theory we need to go to high order, second or third, and
include states of the continuum in the perturbative series, the only way to get an imaginary part for the eigenvalues,
such work requires an effort as big as using a consistent ab initio method, what is going to be shown in this chapter.

However the results here obtained are not going to be included in ADAS305 during present campaign, they are a
good comparison with the ones obtained by semiempirical methods explained in chapters 2 and 3 and the scientific
quality of the work is very high.
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4.2 The complex coordinate rotation

The method is explained in detail in [50] and [51], the radial coordinate r is rotated in complex plane an angle ϑ

r′ = r eiϑ , (4.5)

so the Hamiltonian is transformed as follows:

H(ϑ) = −
e−2iϑ

2
∇2 −

e−iϑ

r
+ eiϑ F r cos θ . (4.6)

The rotated Hamiltonian 4.6 has lost the hermiticity, so its eigenvalues are now complex. The new complex type
of the coordinate transform the oscillatory behaviour of the resonances in an exponential decay, making them square
integrable. In general there are three types of transformation of the eigenvalues:

• Bounded states remain unchanged.

• Continuum branches are rotated an angle 2ϑ with the real axis, with origin in the threshold energy.

• Resonances are exposed in the complex plane once the rotation angle ϑ is greater then the argument of the
complex root of the resonance.

Let the complex energy of the resonance be:

E = Er − i
Γ

2
= |E| eiβ , (4.7)

where Er is the position of the resonance and Γ the width. If the rotation angle ϑ is greater than the argument of the
resonance β, the resonance becomes visible in the complex plane in a position independent of the rotation angle from
this threshold.

We write the Hamiltonian 4.6 in parabolic coordinates:

H(ϑ) = −
2 e−2iϑ

ξ + η

∂

∂ξ

(
ξ
∂

∂ξ

)
−

2 e−2iϑ

ξ + η

∂

∂η

(
η
∂

∂η

)
−

e−2iϑ

2ξη
∂2

∂ϕ2 −
2 e−iϑ

ξ + η
+

eiϑ

2
F (ξ − η) , (4.8)

and the wave function as an expansion in a basis set separating the variables

Ψ(ξ, η, ϕ) =
1
√

2π
eimϕ

N∑
k=1

N∑
l=1

cklm gk(ξ) gl(η) , (4.9)

where {gk(x)}Nk=1 are basis set functions.

Then we can obtain the matrix elements of the Hamiltonian in terms of the proposed basis set as follows:

Hklk′l′m(ϑ) = 〈gk gl |H(ϑ) | gk′ gl′〉

=

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η) g∗k(ξ) g∗l (η) H(ϑ) gk(ξ) gl(η)

=

∫ ∞

0
dξ

∫ ∞

0
dη g∗k(ξ) g∗l (η)

[
−

e−2iϑ

2
∂

∂ξ

(
ξ
∂

∂ξ

)
−

e−2iϑ

2
∂

∂η

(
η
∂

∂η

)
+

e−2iϑ m2

8

(
1
ξ

+
1
η

)
−

e−iϑ

2
+

eiϑ

8
F (ξ2 − η2)

]
gk(ξ) gl(η) , (4.10)

and the overlaps:

S klk′l′m = 〈gk gl | gk′ gl′〉

=

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η) g∗k(ξ) g∗l (η) gk′ (ξ) gl′ (η) , (4.11)
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where the variable ϕ has been already integrated. In equation 4.10, the term in m2 becomes singular in ξ, η = 0 if the
basis functions have not an appropriate behaviour, and it can lead to numerical instabilities, this can be fixed making
the transformation

gk(x) = x
|m|
2 fk(x) , (4.12)

so the Hamiltonian matrix results in terms of f :

Hklk′l′m(ϑ) =

∫ ∞

0
dξ

∫ ∞

0
dη ξ|m| η|m| f ∗k (ξ) f ∗l (η)

[
−

e−2iϑ

2

(
ξ

d2 fk′ (ξ)
dξ2 fl′ (η) + η fk′ (ξ)

d2 fl′ (η)
dη2

+ (|m| + 1)
d fk′ (ξ)

dξ
fl′ (η) + (|m| + 1) fk′ (ξ)

d fl′ (η)
dη

)
+

(
−

e−iϑ

2
+

eiϑ

8
F (ξ2 − η2)

)
fk′ (ξ) fl′ (η)

]
(4.13)

and the overlaps:

S klk′l′m =

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η) ξ|m| η|m| f ∗k (ξ) f ∗l (η) fk′ (ξ) fl′ (η) , (4.14)

remaining all the terms now regular.

Operating the expression for Hamiltonian and overlap matrixes 4.13 and 4.14 they are simplified splitting the
double integrals as follows:

Hklk′l′m(ϑ) = −
e−2iϑ

2
(Tkk′ Ill′ + Ikk′ Tll′ ) −

e−iϑ

2
Ikk′ Ill′ +

eiϑ

8
F (Fkk′ Ill′ − Ikk′ Fll′ ) (4.15)

and
S klk′l′m =

1
4

(Skk′ Ill′ + Ikk′ Sll′ ) (4.16)

where we have defined the matrix of the single integrals

Tkk′ =

∫ ∞

0
dx x|m| f ∗k (x)

[
x

d2

dx2 + (|m| + 1)
d
dx

]
fk′ (x)

Ikk′ =

∫ ∞

0
dx x|m| f ∗k (x) fk′ (x)

Fkk′ =

∫ ∞

0
dx x|m|+2 f ∗k (x) fk′ (x)

Skk′ =

∫ ∞

0
dx x|m|+1 f ∗k (x) fk′ (x) . (4.17)

Then we can determine the coefficients of the expansion solving the secular equation

(H − E S) C = 0 (4.18)

4.3 The choose of a basis set

In [52] it is used a basis set of Laguerre-mesh functions { fi}Ni=1, defined as follows [53]:

fi(x) = (−1)i √xi
LN(x) e−

x
2

x − xi
, (4.19)

where LN(x) is the Laguerre polynomial of grad N, and xi is its i-th zero. The efficiency and stability of this basis set
for hydrogen atom problems was analysed by Vinke and collaborators 1993 in [54].

In Baye and Heenen 1986 [53] it is made the algebra with rigorous proving of the properties of a Lagrange-mesh
basis set. The functions must fulfil two properties:

fi(x j) = λ
− 1

2
i δi j , (4.20)
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and ∫ b

a
dx fi(x) f j(x) = δi j . (4.21)

Then the integral of any function can be with a good accuracy approximated by the Gauss quadrature formula∫ b

a
dx g(x) ≈

N∑
i=1

λi g(xi) . (4.22)

This method allows us to calculate the integrals involved in the variational method by a very fast way with quite good
accuracy.

The quotient LN (x)
x− xi

has an avoidable singularity in x = xi, and it is a polynomial of grad N − 1 in the hole complex
plane except this singularity. Even when the basis functions are changed just in the point of this avoidable singularity
all of them become analytical, this singularity can lead to computational problems in its neighbourhood, which can
slow considerably the calculations and even crush them. To avoid this singularity we expand the Laguerre polynomials
in its Taylor series centered in it as follows:

LN(x) =

N∑
j=0

1
j!

d jLN(x)
dx j

∣∣∣∣∣∣
x=xi

(x − xi) j . (4.23)

As xi is by definition a zero of the Laguerre polynomial, the zero order term of 4.23 cancels, we also use the derivative
property of the Laguerre polynomials

d j

dx j Lα
N(x) = (−1) j Lα+ j

N− j(x) . (4.24)

We define the Laguerre-mesh polynomials ΛNi as

ΛNi(x) = (−1)i √xi
LN(x)
x − xi

, (4.25)

and introducing 4.23 and 4.24 in 4.25 we get a closed expression for ΛNi(x) as follows:

ΛNi(x) = (−1)i √xi

N−1∑
j=0

(−1) j+1

( j + 1)!
L j+1

N− j−1(xi) (x − xi) j . (4.26)

Comparing with the property 4.20 we obtain the value of the weights λi as

λi =
exi

xi (L1
N−1(xi))2

, (4.27)

and the property 4.21 can be proved through the properties of the Laguerre generalised polynomials, in the interval
(a, b) ≡ (0,+∞) of the real line.

For calculations, it is useful to know the expressions of the first and second derivatives of ΛNi(x) too, which can
be easily calculated from expansion 4.26:

Λ′Ni(x) = (−1)i+1 √xi

L1
N−1(x)

x − xi
+

LN(x)
(x − xi)2


= (−1)i √xi

N−2∑
j=0

(−1) j ( j + 1)
( j + 2)!

L j+2
N− j−2(xi) (x − xi) j , (4.28)

Λ′′Ni(x) = (−1)i √xi

L2
N−2(x)

x − xi
+ 2

L1
N−1(x)

(x − xi)2 + 2
LN(x)

(x − xi)3


= (−1)i √xi

N−3∑
j=0

(−1) j+1 ( j + 1) ( j + 2)
( j + 3)!

L j+3
N− j−3(xi) (x − xi) j , (4.29)
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so the kinetic term of 4.17 is expressed as

Tkk′ =

∫ ∞

0
dx x|m| e−x ΛNk(x)

[
x Λ′′Nk′ (x) + (|m| + 1 − x) Λ′Nk′ (x) +

(
1
4

x −
1
2
|m| −

1
2

)
ΛNk′ (x)

]
, (4.30)

and the others

Ikk′ =

∫ ∞

0
dx x|m| e−x ΛNk(x) ΛNk′ (x)

Fkk′ =

∫ ∞

0
dx x|m|+2 e−x ΛNk(x) ΛNk′ (x)

Skk′ =

∫ ∞

0
dx x|m|+1 e−x ΛNk(x) ΛNk′ (x) (4.31)

To calculate the matrix elements it is necessary to get the roots of the Laguerre polynomials as accurate as possible,
to do that we took advantage of the property of the roots of the Laguerre polynomials, that all of them are real, positive
and of multiplicity one. We made a search on the positive real line starting at zero and increasing the step in 10−3

units, when we found two points x1 and x2 such as L(x1)L(x2) < 0 then we have a root in between, then we applied
a bisection method with precision 10−12 and obtained the root. To evaluate the Laguerre polynomial we used the
recursive formula

L0(x) = 1
L1(x) = 1 − x

N LN(x) = (2N − 1 − x) LN−1(x) − (N − 1) LN−2(x) . (4.32)

The calculated roots of the Laguerre polynomials are shown in appendix B.

Now we will check the stability of the calculation respect the accuracy of the roots of the Laguerre polynomials,
for that goal we make an error analysis of expression 4.25 of Laguerre-mesh polynomials

δΛNi =

(
√

xi
|LN |

(x − xi)2 +
1

2
√

xi

∣∣∣∣∣ LN

x − xi

∣∣∣∣∣) δxi , (4.33)

and the expression 4.26 of its Taylor expansion

δΛNi =

√xi

N−2∑
j=0

( j + 1)
( j + 2)!

|L j+2
N− j−2(xi)| |x − xi|

j +
1

2
√

xi

N−1∑
j=0

1
( j + 1)!

|L j+1
N− j−1(xi)| |x − xi|

j

 δxi . (4.34)

The error in direct expression 4.25 is proportional to the relation 1
(x−xi)2 , so it is large in the neighbourhood of

the singularity, and even diverge on it. On the other hand, the error of the Taylor expansion 4.26 is proportional to a
power of (x − xi), it tends to constant in the neighbourhood of the singularity and it blows up as x spreads of it. So we
have two complementary regions and to optimise the calculation we choose for the evaluation of the Laguerre-mesh
polynomials the direct expression 4.25 in the region far of the singularity x < xi−1; x > xi+1, and the Taylor expansion
4.26 in its neighbourhood xi−1 ≤ x ≤ xi+1, for the extremes we take as x0 = 0 and xN+1 = 2xN − xN−1. For the
expressions of the derivatives the argument is equivalent.

4.4 Implementation

The implementation of the complex coordinate rotation method to get the states of the Stark hydrogen atom is spread
in two steps: the calculation of the integrals 4.30 and 4.31 and the diagonalisation of the Hamiltonian matrix 4.15.

In the first step we calculate the ground N × N matrices of the integrals Tkk′ , Ikk′ , Fkk′ and Skk′ for each value
of the magnetic quantum number m, and they are now usable for any value of the field intensity F and the complex
rotation angle ϑ, so this step takes a few computation time in comparison with the diagonalisation. In that sense it is
valuable to increase the quality of the calculation of the integrals even at a cost of increasing the computation time, so
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we did not use the Gauss quadrature formula, but a complete numerical integration for each element, using a variable
step Simpson formula. This is made by the routine starkinteg, it calculates the four ground matrices and stores them
in a binary file, prepared to be read by the next routine.

In a second step we build the Hamiltonian and overlap matrices and solve the secular equation to get the eigenvalues
and eigenfunctions. This is made by the routine starkccr.

Firstly the matrixes Hklk′l′ and S klk′l′ of dimension N2 × N2 are built making the tensorial products 4.15 and
4.16 respectively, for a fixed value of the field intensity F and the rotation angle ϑ. Afterwards it is solved the
diagonalisation using the computing library Linear Algebra PACKage (LAPACK), we chose the subroutine for solving
a secular equation of a general non-Hermitian double precision complex matrix zggev.

We solved the eigenvalue problem varying the electric field intensity F from zero to 0.01 a.u. = 5.142 × 109 V/m
and for each one the complex rotation angle ϑ between zero and 400.

4.5 Results

We used a basis set of Laguerre-mesh polynomials with N = 30, which corresponds to 900 basis functions, thereby
obtained acceptably accurate results for all the resonances with principal quantum number n ≤ 5 and for the values of
the magnetic quantum number m = 0 − 4. We varied the field intensity from zero to 0.01 a.u., which corresponds to
5.142 · 109 V/m. The resonances above n ≥ 6 are strongly mixed with the continuum. To isolate these ones, the basis
set should be increased.

4.5.1 Energies and state widths for the Stark Hydrogen Atom

Applying the complex coordinate method one has to change the value of the complex rotation angle ϑ in order to
distinguish the resonances of the continuum states sea. In figures 4.1 and 4.2 it is showed respectively the real and
imaginary part of the obtained roots versus the complex rotation angle, then the behaviour of the roots is appreciated.
Most states change their value with the angle, they can be recognised as continuum states, but there are some of them
which remain constant since a value of the angle, in terms of the complex coordinate rotation theorem, these states are
identified as the resonances. The constant values, when the lines become flat, are related to the energy (real part) and
width (imaginary part) of the resonance. Also for these constant values, the wave function of the resonance becomes
invariant but phase and square integrable.

Identifying the resonances as in Fig ?? for several values of F and m we get the diagram of energies and widths.
In Fig 4.3 we show the identified energies for the shells n = 2 − 5 of the hydrogen atom under a constant electric
field versus the field intensity. The behaviour for the upper shells n = 3 − 5 deviate from the linearity predicted by
perturbation theory. In Fig 4.4 the widths for the same shells are shown. The value of the widths increases quite
rapidly with the field, so the states become more unstable and the autoionization term should be taken in account in
collision radiative models.

4.5.2 Wave functions

The great advantage of complex coordinate rotation method is that we can obtain the wave functions exactly in terms
of the precision of our chosen basis set. With the variational method, the wave functions of the identified states are
obtained as a linear combination of the basis functions.

In figures 4.5 – 4.14 the wave functions for several states of the Stark Hydrogen Atom are shown for a value of
the electric field intensity of 0.0020 a.u. as a colour map versus the two parabolic coordinates ξ and η. We can obtain
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Figure 4.1: Real part of the calculated eigenvalues for the Hydrogen atom under a constant electric field versus the
complex coordinate rotation angle.
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Figure 4.2: Imaginary part of the calculated eigenvalues for the Hydrogen atom under a constant electric field versus
the complex coordinate rotation angle.
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Figure 4.3: Energies of the first resonances of the Hydrogen atom under a constant electric field versus the intensity
of such field.
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Figure 4.4: State widths of the first resonances of the Hydrogen atom under a constant electric field versus the intensity
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partially integrated wave functions through the integration of them in one of the parabolic variables

ψξ(ξ) =

∫ ∞

0
dη ψ(ξ, η)

ψη(η) =

∫ ∞

0
dξ ψ(ξ, η) , (4.35)

If we compare the result with the zero field case 2.32, then we can relation the approximated quantum numbers ñ1,
ñ2 with the minimum of the module of the partially integrated wave functions, which will tend to a node in the limit
when the field intensity tends to zero. These wave functions contain the whole information about the system.

A surprising result is that for a constant value of n, the energies increase as k increases, but the widths decrease, so
in the same shell states with a higher energy and closer to the ionization limit live longer before ionizing. That can be
explained from examination of the wave functions.

Comparing the wave functions for the states | ñ k̃ m〉 and | ñ − k̃ m〉 we observe that for negative k̃ the partially
integrated |ψη|2 function encloses a larger area beneath it than the other one |ψξ |2. In addition almost the whole
probability lies close to ξ = 0, so in the case of k̃ < 0 the wave function lies on the η axis and ξ ≈ 0, which corresponds
to the negative z semiaxis. In our case F > 0, the potential barrier is placed on the negative z axis side with a monotonic
increase in the positive z direction. So the main part of the probability lies above the potential barrier for k̃ < 0 such
that the probability to tunnel through it will be higher. Therefore the widths increase. Just the opposite holds for k̃ > 0.
In this case the highest probability concentration is in the region η ≈ 0, ξ > 0, which corresponds to the positive z
semiaxis. Thus with the potential monotonic slope, the main probability for finding the electron is where the potential
barrier is wide and the probability to tunnel is much lower. To understand the behaviour of the state widths, it is clear
that one has to look not only the energies, but also at the wave functions of the states.
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Figure 4.5: Wave function of the Stark states | 1 0 0 〉 and | 2 0 1 〉 for a field intensity of F = 0.0020 a.u..
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Figure 4.6: Wave function of the Stark states | 2 − 1 0 〉 and | 2 1 0 〉 for a field intensity of F = 0.0020 a.u..
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Figure 4.7: Wave function of the Stark states | 3 − 2 0 〉 and | 3 2 0 〉 for a field intensity of F = 0.0020 a.u..
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Figure 4.8: Wave function of the Stark states | 3 − 1 1 〉 and | 3 1 1 〉 for a field intensity of F = 0.0020 a.u..
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Figure 4.9: Wave function of the Stark states | 3 0 0 〉 and | 3 0 2 〉 for a field intensity of F = 0.0020 a.u..
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Figure 4.10: Wave function of the Stark states | 4 − 1 0 〉 and | 4 1 0 〉 for a field intensity of F = 0.0020 a.u..
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Figure 4.11: Wave function of the Stark states | 4 − 3 0 〉 and | 4 3 0 〉 for a field intensity of F = 0.0020 a.u..
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Figure 4.12: Wave function of the Stark states | 4 − 2 1 〉 and | 4 2 1 〉 for a field intensity of F = 0.0020 a.u..
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Figure 4.13: Wave function of the Stark states | 4 − 1 2 〉 and | 4 1 2 〉 for a field intensity of F = 0.0020 a.u..
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Figure 4.14: Wave function of the Stark states | 4 0 1 〉 and | 4 0 3 〉 for a field intensity of F = 0.0020 a.u..
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4.6 Derived quantities

The wave functions contain all the information about the system, we can obtain any physical observable from them
just making the bracket.

In the following sections we explain how to get these physical observables, which will be useful tools for practical
applications, as plasma diagnostic.

4.6.1 Isotopic correction

For the calculation of the shown energies, widths and wave functions we used the Hamiltonian 4.8, where in the kinetic
term appears the electron mass as the unit. If we want to calculate the exact Stark splitting of the hydrogen spectral
lines we have to consider the isotopes, so we can determine for example the difference of the Stark structure of lines
Hα, Dα or Tα.

We calculate the energy difference for the individual isotopes as

Eµ =
1
µ

E1 +

(
1 −

1
µ

) 〈
ψ

∣∣∣∣∣∣−e−iϑ

r
+ eiϑFz

∣∣∣∣∣∣ ψ
〉
, (4.36)

where Eµ are the obtained energies for reduced mass µ. Introducing in 4.36 the expression of the matrix elements we
get 〈

ψ

∣∣∣∣∣∣−e−iϑ

r
+ eiϑFz

∣∣∣∣∣∣ ψ
〉

=

∫ ∞

0
dξ

∫ ∞

0
dη ψ∗

(
−

e−iϑ

2
+

eiϑ

8
F (ξ2 − η2)

)
ψ , (4.37)

and using the expansion of ψ in its basis set〈
ψ

∣∣∣∣∣∣−e−iϑ

r
+ eiϑFz

∣∣∣∣∣∣ ψ
〉

=

N∑
i1, j1=1

N∑
i2, j2=1

c∗i1 j1m ci2 j2m

[
−

e−iϑ

2
Ii1i2 I j1 j2

+
eiϑ

8
F

(
Fi1i2 I j1 j2 − Ii1i2 F j1 j2

)]
. (4.38)

In figures 4.15, 4.16 and 4.17 we show the isotopic corrections for the energies and widths of the defferent isotopes
of hydrogen for the levels of n ≤ 3. The transitions between these levels will form the Balmer α line. The correction
is smaller as the mass of the nucleus increases.

Adding these corrections to the energy we can calculate the exact splitting of the Balmer Hα and Dα lines, which
are important for the MSE spectroscopy. These splittings are shown in figures 4.18 and 4.19. It is divided into its three
component groups: σ for ∆m = ±1, ∆k = 0; π+ for ∆m = 0, ∆k = +1 and π− for ∆m = 0, ∆k = −1. δ and φ transitions
are very weak in comparison and they will not be seen in a real spectrum with a background.
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Figure 4.15: Isotopic corrections for the energies and widths of the levels n ≤ 3 of hydrogen versus the field intensity
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Figure 4.16: Isotopic corrections for the energies and widths of the levels n ≤ 3 of deuterium versus the field intensity
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Figure 4.17: Isotopic corrections for the energies and widths of the levels n ≤ 3 of tritium versus the field intensity
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Figure 4.18: Stark splitting of the Hα line of hydrogen versus the electric field intensity.

4.6.2 Einstein transition coefficients

Once we get the wave functions we just have to bracket them with a physical observable to obtain its expected value.
In order to calculate observables we must take in account that we rotated the coordinates in the complex plane to get
the wave functions, so the physical positions and momentum must be written with the correct rotation:

x → x e−iϑ

∂

∂x
→

∂

∂x
eiϑ , (4.39)

with x = ξ, η.

The first quantity we can calculate are the Einstein emission coefficients A and B, both are proportional to the
modulus squared of the matrix element |〈ψ1|~r|ψ2〉|

2. To calculate it we evaluate the matrix elements of each Cartesian
component x, y and z as:

〈
ψ1

∣∣∣ x e−iϑ
∣∣∣ ψ2

〉
=

1
2π

e−iϑ
∫ 2π

0
dφ

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η)ψ∗1(ξ, η) e−im1φ
√
ξη cos φψ2(ξ, η) eim2φ

=
1

16π
e−iϑ

∫ 2π

0
dφ

(
ei(m2−m1+1)φ + ei(m2−m1−1)φ

) ∫ ∞

0
dξ

∫ ∞

0
dη (ξ + η)ψ∗1(ξ, η)

√
ξη ψ2(ξ, η)

=
1
8

e−iϑ (δm2m1−1 + δm2m1+1)
∫ ∞

0
dξ

∫ ∞

0
dη ψ∗1(ξ, η) (ξ + η)

√
ξη ψ2(ξ, η) (4.40)
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Figure 4.19: Stark splitting of the Dα line of deuterium versus the electric field intensity.

〈
ψ1

∣∣∣ y e−iϑ
∣∣∣ ψ2

〉
=

1
2π

e−iϑ
∫ 2π

0
dφ

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η)ψ∗1(ξ, η) e−im1φ
√
ξη sin φψ2(ξ, η) eim2φ

=
1

16πi
e−iϑ

∫ 2π

0
dφ

(
ei(m2−m1+1)φ − ei(m2−m1−1)φ

) ∫ ∞

0
dξ

∫ ∞

0
dη (ξ + η)ψ∗1(ξ, η)

√
ξη ψ2(ξ, η)

=
1
8i

e−iϑ (δm2m1−1 − δm2m1+1)
∫ ∞

0
dξ

∫ ∞

0
dη ψ∗1(ξ, η) (ξ + η)

√
ξη ψ2(ξ, η) (4.41)

〈
ψ1

∣∣∣ z e−iϑ
∣∣∣ ψ2

〉
=

1
2π

e−iϑ
∫ 2π

0
dφ

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η)ψ∗1(ξ, η) e−im1φ
1
2

(ξ − η)ψ2(ξ, η) eim2φ

=
1

16π
e−iϑ

∫ 2π

0
dφ ei(m2−m1)φ

∫ ∞

0
dξ

∫ ∞

0
dη (ξ + η)ψ∗1(ξ, η) (ξ − η)ψ2(ξ, η)

=
1
8

e−iϑ δm1m2

∫ ∞

0
dξ

∫ ∞

0
dη ψ∗1(ξ, η) (ξ2 − η2)ψ2(ξ, η) . (4.42)

After splitting the angular part we obtain the first selection rule for electric dipole transition ∆m = 0,±1, which is
exact for the Stark effect.

If we introduce in the parabolic parts of the wave function ψ(ξ, η) the zero-field expressions 2.32 of the product of
Laguerre polynomials, the operator ξ

√
ξ which appears in the integrals for x and y can couple any pair of Laguerre

polynomials, so we do not obtain any additional selection rule in the case ∆m = ±1. Nevertheless in the integral for z,
the operator ξ2 only couples Laguerre polynomials with a difference of grad lower or equal to two [16], so we obtain
a selection rule ∆n1 = 0,±1,±2, ∆n2 = 0,±1,±2, if ∆m = 0, which corresponds to the radiation linearly polarised. As
the wave functions for finite field are quite similar qualitatively to the ones for zero field, this selection rule should be
fulfilled approximately for the approximate quantum numbers and ñ1 and ñ2.
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To integrate the parabolic parts we use the wave functions expansions in the basis set 4.9:

ψ1(ξ, η) =

N∑
i1=1

N∑
j1=1

c1i1 j1m1 (ξη)
m1
2 e−

ξ+η
2 ΛNi1 (ξ) ΛN j1 (η)

ψ2(ξ, η) =

N∑
i2=1

N∑
j2=1

c2i2 j2m2 (ξη)
m2
2 e−

ξ+η
2 ΛNi2 (ξ) ΛN j2 (η) (4.43)

〈
ψ1

∣∣∣ x e−iϑ
∣∣∣ ψ2

〉
=

1
8

e−iϑ (δm2m1−1 + δm2m1+1)
N∑

i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη (ξ + η)

√
ξη (ξη)

|m1 |+|m2 |
2 e−(ξ+η) Λ∗Ni1 (ξ) Λ∗N j1 (η) ΛNi2 (ξ) ΛN j2 (η)

=
1
8

e−iϑ δm2m1−1

N∑
i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2 (Si1i2m2 I j1 j2m2 + Ii1i2m2 S j1 j2m2 )

+
1
8

e−iϑ δm2m1+1

N∑
i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2 (Si1i2m1 I j1 j2m1 + Ii1i2m1 S j1 j2m1 ) (4.44)

〈
ψ1

∣∣∣ y e−iϑ
∣∣∣ ψ2

〉
=

1
8i

e−iϑ (δm2m1−1 − δm2m1+1)
N∑

i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη (ξ + η)

√
ξη (ξη)

|m1 |+|m2 |
2 e−(ξ+η) Λ∗Ni1 (ξ) Λ∗N j1 (η) ΛNi2 (ξ) ΛN j2 (η)

=
1
8i

e−iϑ δm2m1−1

N∑
i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2 (Si1i2m2 I j1 j2m2 + Ii1i2m2 S j1 j2m2 )

−
1
8i

e−iϑ δm2m1+1

N∑
i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2 (Si1i2m1 I j1 j2m1 + Ii1i2m1 S j1 j2m1 ) (4.45)

〈
ψ1

∣∣∣ z e−iϑ
∣∣∣ ψ2

〉
=

1
8

e−iϑ δm2m1

N∑
i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη (ξ + η) (ξ − η) (ξη)

|m1 |+|m2 |
2 e−(ξ+η) Λ∗Ni1 (ξ) Λ∗N j1 (η) ΛNi2 (ξ) ΛN j2 (η)

=
1
8

e−iϑ δm2m1

N∑
i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2 (Fi1i2m1 I j1 j2m1 − Ii1i2m1 F j1 j2m1 ) . (4.46)

So the dipole moment can be calculated in terms of the ground integrals 4.31 and the expansion coefficients. Once the
modulus square of the matrix element is calculated the phase simplifies, so the Einstein coefficients remain independent
of the complex rotation angle

B21 =
4π2

3
e2

~2

g2

g1

∣∣∣∣〈ψ1
∣∣∣~r ∣∣∣ ψ2

〉∣∣∣∣2
A21 =

(E2 − E1)3

~2π2c3 B12 (4.47)

Figure 4.20 shows the Einstein spontaneous emission coefficients for the transitions involved in the Balmer α line.

Combining figures 4.19 and 4.20, we show in figure 4.21 the modelled profile of the Balmer Dα and Hα lines for
two field intensities of relevance to plasma physics. The illustrated profile corresponds to the corona regime, when
only radiative decay is included and collisional redistribution is negligible. We have also not included the Doppler
shift and broadening contributions, which will depend on plasma parameters not considered in present work, including
the energy of the injected neutrals, the arrangement of the lines-of-sight and the electron temperature.
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Figure 4.20: Einstein spontaneous emission coefficients of neutral hydrogen versus the electric field intensity.
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Figure 4.21: Emission profile of the Balmer Dα and Hα lines for two different field intensities in corona equilibrium.
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4.6.3 Runge-Lenz vector

~K =
(
mZe2 − x (p2

y + p2
z ) − px (ypy + zpz − i~)

)
x̂

+
(
mZe2 − y (p2

z + p2
x) − py (zpz + xpx − i~)

)
ŷ

+
(
mZe2 − z (p2

x + p2
y) − pz (xpx + ypy − i~)

)
ẑ (4.48)

4.6.4 Orbital angular momentum

In a real situation in the neutral beam injectors of a fusion device, the electric field is produced by the fast motion of
the neutrals in the intense magnetic field, which is known as the Loretz field

~F = ~v × ~B , (4.49)

with ~v the velocity of the neutrals and ~B the magnetic field. Then the electric and magnetic fields are present together
and poynting in different directions. The magnetic field can be treated as a perturbation, as the field in a tokamak or
stellerator is quite large, between 1 and 10 T, then the magnetic perturbation is higher than the fine structure, so we
are in the Paschen-Bach regime, and we have to treat the orbital and spin angular momenta as uncoupled.

HPB =
µB

~
~B · (~L + ge~S ) . (4.50)

Any anomalous angular momentum coming from relativistic corrections can also be included.

As the electric and magnetic fields are not paralell, we can not choose the magnetic field poynting in the z direction
as it is usually made when treating Paschen-Bach effect, and we must calculate all the spacial components of the orbital
angular momentum. The transformation equations for the momenta from cartesian to parabolic coordinates are

px = 2
√
ξη

ξ + η
cos φ (pξ + pη) −

1
√
ξη

sin φ pφ

py = 2
√
ξη

ξ + η
sin φ (pξ + pη) +

1
√
ξη

cos φ pφ

pz =
2

ξ + η
(ξpξ − ηpη) . (4.51)

When the vectorial product is done, the coordinate is multiplied by a factor e−iϑ of the complex coordinate rotation
angle, and the momentum by a eiϑ, so both cancel each other and the angular momentum matrix elements remain
independent of this complex rotation angle. Then the orbital angular momentum vector ~L can be splitted in its three
cartesian components as follows:

~L = (ypz − zpy) x̂ + (zpx − xpz) ŷ + (xpy − ypx) ẑ

= − i~
[ √

ξη sin φ
(
∂

∂ξ
−

∂

∂η

)
−

1
2
ξ − η
√
ξη

cos φ
∂

∂φ

]
x̂

+ i~
[ √

ξη cos φ
(
∂

∂ξ
−

∂

∂η

)
+

1
2
ξ − η
√
ξη

sin φ
∂

∂φ

]
ŷ

− i~
∂

∂φ
ẑ . (4.52)

In Stark effect the operator L2 is no more conserved, so it is not useful to get its mean value, anyway it can be
expressed in parabolic coordinates as

L2 = (ξ + η)
[
−η

∂2

∂ξ2 − ξ
∂2

∂η2 − 2 (ξ + η)
∂2

∂ξ∂η
− 3

(
∂

∂ξ
+

∂

∂η

)
+

1
4
ξ + η

ξη

∂2

∂φ2

]
. (4.53)
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We calculate now the cartesian components of the orbital angular momentum

〈ψ1 | Lx |ψ2〉 = −
i~
2π

∫ 2π

0
dφ

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η)ψ∗1(ξ, η) e−im1φ

×

[ √
ξη sin φ

(
∂

∂ξ
−

∂

∂η

)
−

1
2
ξ − η
√
ξη

cos φ
∂

∂φ

]
ψ2(ξ, η) eim2φ

= −
~
8

(δm1m2+1 − δm1m2−1)
∫ ∞

0
dξ

∫ ∞

0
dη ψ∗1(ξ, η) (ξ + η)

√
ξη

(
∂

∂ξ
−

∂

∂η

)
ψ2(ξ, η)

−
m2~
16

(δm1m2−1 + δm1m2+1)
∫ ∞

0
dξ

∫ ∞

0
dη ψ∗1(ξ, η)

ξ2 − η2

√
ξη

ψ2(ξ, η) (4.54)

〈
ψ1 | Ly |ψ2

〉
=

i~
2π

∫ 2π

0
dφ

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η)ψ∗1(ξ, η) e−im1φ

×

[ √
ξη sin φ

(
∂

∂ξ
−

∂

∂η

)
−

1
2
ξ − η
√
ξη

cos φ
∂

∂φ

]
ψ2(ξ, η) eim2φ

=
i~
8

(δm1m2+1 + δm1m2−1)
∫ ∞

0
dξ

∫ ∞

0
dη ψ∗1(ξ, η) (ξ + η)

√
ξη

(
∂

∂ξ
−

∂

∂η

)
ψ2(ξ, η)

+
im2~
16

(δm1m2+1 − δm1m2−1)
∫ ∞

0
dξ

∫ ∞

0
dη ψ∗1(ξ, η)

ξ2 − η2

√
ξη

ψ2(ξ, η) (4.55)

〈ψ1 | Lz |ψ2〉 = −
i~
2π

∫ 2π

0
dφ

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η)ψ∗1(ξ, η) e−im1φ
∂

∂φ
ψ2(ξ, η) eim2φ

= ~m2 δm1m2 δ12 . (4.56)

The Lz component is already a conserved quantity, and the other components just couple states with ∆m = ±1. To
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determine the integrals we write the wave functions ψ1 and ψ2 as their expansions in the basis set as usually 4.43

〈ψ1 | Lx |ψ2〉 = −
~
8

(δm1m2+1 − δm1m2−1)
N∑

i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη e−

ξ+η
2 (ξη)

|m1 |
2 Λ∗Ni1 (ξ) Λ∗N j1 (η) (ξ + η)

√
ξη

(
∂

∂ξ
−

∂

∂η

)
e−

ξ+η
2 (ξη)

|m2 |
2 ΛNi2 (ξ) ΛN j2 (η)

−
m2~
16

(δm1m2+1 + δm1m2−1)
N∑

i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη e−

ξ+η
2 (ξη)

|m1 |
2 Λ∗Ni1 (ξ) Λ∗N j1 (η)

ξ2 − η2

√
ξη

e−
ξ+η

2 (ξη)
|m2 |

2 ΛNi2 (ξ) ΛN j2 (η)

= −
~
8

(δm1m2+1 − δm1m2−1)
N∑

i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη e−(ξ+η) (ξη)

|m1 |+|m2 |
2 Λ∗Ni1 (ξ) Λ∗N j1 (η) (ξ + η)

√
ξη

×

[
m2

2

(
1
ξ
−

1
η

)
ΛNi2 (ξ) ΛN j2 (η) + Λ′Ni2 (ξ) ΛN j2 (η) − ΛNi2 (ξ) Λ′N j2 (η)

]
−

m2~
16

(δm1m2+1 + δm1m2−1)
N∑

i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη e−(ξ+η) (ξη)

|m1 |+|m2 |
2 Λ∗Ni1 (ξ) Λ∗N j1 (η)

ξ2 − η2

√
ξη

ΛNi2 (ξ) ΛN j2 (η)

= −
~
8
δm1m2+1

N∑
i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

[
−

m2

2
Bi1i2m2 I j1 j2m2 +

m2

2
Ii1i2m2 B j1 j2m2

+ Di1i2m2 A j1 j2m2 + Ci1i2m2 B j1 j2m2 − Bi1i2m2 C j1 j2m2 − Ai1i2m2 D j1 j2m2

]
+

~
8
δm1m2−1

N∑
i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

[
−

m2

2
Bi1i2m1 I j1 j2m1 +

m2

2
Ii1i2m1 B j1 j2m1

+ Di1i2m1 A j1 j2m1 + Ci1i2m1 B j1 j2m1 − Bi1i2m1 C j1 j2m1 − Ai1i2m1 D j1 j2m1

]
−

m2~
16

δm1m2+1

N∑
i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

[
Bi1i2m2 I j1 j2m2 − Ii1i2m2 B j1 j2m2

]
−

m1~
16

δm1m2−1

N∑
i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

[
Bi1i2m1 I j1 j2m1 − Ii1i2m1 B j1 j2m1

]
, (4.57)
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〈
ψ1 | Ly |ψ2

〉
=

i~
8

(δm1m2+1 + δm1m2−1)
N∑

i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη e−

ξ+η
2 (ξη)

|m1 |
2 Λ∗Ni1 (ξ) Λ∗N j1 (η) (ξ + η)

√
ξη

(
∂

∂ξ
−

∂

∂η

)
e−

ξ+η
2 (ξη)

|m2 |
2 ΛNi2 (ξ) ΛN j2 (η)

−
im2~
16

(δm1m2+1 − δm1m2−1)
N∑

i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη e−

ξ+η
2 (ξη)

|m1 |
2 Λ∗Ni1 (ξ) Λ∗N j1 (η)

ξ2 − η2

√
ξη

e−
ξ+η

2 (ξη)
|m2 |

2 ΛNi2 (ξ) ΛN j2 (η)

=
i~
8

(δm1m2+1 + δm1m2−1)
N∑

i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη e−(ξ+η) (ξη)

|m1 |+|m2 |
2 Λ∗Ni1 (ξ) Λ∗N j1 (η) (ξ + η)

√
ξη

×

[
m2

2

(
1
ξ
−

1
η

)
ΛNi2 (ξ) ΛN j2 (η) + Λ′Ni2 (ξ) ΛN j2 (η) − ΛNi2 (ξ) Λ′N j2 (η)

]
+

im2~
16

(δm1m2+1 − δm1m2−1)
N∑

i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

×

∫ ∞

0
dξ

∫ ∞

0
dη e−(ξ+η) (ξη)

|m1 |+|m2 |
2 Λ∗Ni1 (ξ) Λ∗N j1 (η)

ξ2 − η2

√
ξη

ΛNi2 (ξ) ΛN j2 (η)

=
i~
8
δm1m2+1

N∑
i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

[
−

m2

2
Bi1i2m2 C j1 j2m2 +

m2

2
Ci1i2m2 B j1 j2m2

+ Ei1i2m2 I j1 j2m2 + Di1i2m2 B j1 j2m2 − Bi1i2m2 D j1 j2m2 − Ii1i2m2 E j1 j2m2

]
+

i~
8
δm1m2−1

N∑
i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

[
−

m2

2
Bi1i2m1 I j1 j2m1 +

m2

2
Ii1i2m1 B j1 j2m1

+ Di1i2m1 A j1 j2m1 + Ci1i2m1 B j1 j2m1 − Bi1i2m1 C j1 j2m1 − Ai1i2m1 D j1 j2m1

]
im2~
16

δm1m2+1

N∑
i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

[
Bi1i2m2 I j1 j2m2 − Ii1i2m2 B j1 j2m2

]
−

im2~
16

δm1m2−1

N∑
i1 j1=1

N∑
i2 j2=1

c∗1i1 j1m1
c2i2 j2m2

[
Bi1i2m1 I j1 j2m1 − Ii1i2m1 B j1 j2m1

]
, (4.58)

where we have defined new ground matrixes

Ii jm =

∫ ∞

0
dx e−x x|m| Λ∗Ni(x) ΛN j(x)

Ai jm =

∫ ∞

0
dx e−x x|m| x Λ∗Ni(x) ΛN j(x)

Bi jm =

∫ ∞

0
dx e−x x|m| x2 Λ∗Ni(x) ΛN j(x)

Ci jm =

∫ ∞

0
dx e−x x|m| x Λ∗Ni(x) Λ′N j(x)

Di jm =

∫ ∞

0
dx e−x x|m| x2 Λ∗Ni(x) Λ′N j(x) . (4.59)

With expressions 4.56, 4.57 and 4.58 we can calculate the orbital part for the magnetic perturbation, now we have
to add the spin part. To calculate the components x and y of the spin operator we write them in terms of the raising
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and lowering operators of the angular momentum j+ and j− as:

j+ = jx + i jy
j− = jx − i jy , (4.60)

which fulfil

jz | j m〉 = ~ j | j m〉

j+ | j m〉 = ~
√

j( j + 1) − m(m + 1) | j m + 1〉

j− | j m〉 = ~
√

j( j + 1) − m(m − 1) | j m − 1〉 . (4.61)

That leads to a expresion for the spin opperator ( j = 1
2 ) as

〈s ms1 | S z | s ms2〉 = ~ δms1ms2

〈s ms1 | S x | s ms2〉 =
~
2

( √
3/4 − ms2(ms2 + 1) δms1ms2+1 +

√
3/4 − ms2(ms2 − 1) δms1ms2−1

)
〈
s ms1

∣∣∣ S y

∣∣∣ s ms2

〉
=

~
2i

( √
3/4 − ms2(ms2 + 1) δms1ms2+1 −

√
3/4 − ms2(ms2 − 1) δms1ms2−1

)
, (4.62)

so we can now get the total magnetic perturbation matrix as

H(1)
B =

µB

~

〈
ψ1 ms1

∣∣∣∣ ~B · (~L + ge~S )
∣∣∣∣ ψ2 ms2

〉
(4.63)

4.6.5 Fine structure

The fine structure of the hydrogen atom is a contribution which could be of the same order than the magnetic pertur-
bation in a tokamak. Including the fine structure correction in the first order perturbative hamiltonian will lead to more
precise results to determine the exact splitting of the hydrogen lines.

The fine structure Hamiltonian is diagonal in the basis set | n l j m j〉, so one option should be to write our calculated
states | ñ k̃ m ms〉 as an expansion of them, and then get the matrix elements in terms of these expansion coefficients.
Nevertheless this method is not practical because in Stark effect we have lost the quantum number l and the relation
between k̃ and j is not a simple Clebsch Gordan factor. In addition write a Stark state with field non zero as this type of
expansion, we have to include a complete basis set of states | n l j m j〉, counting the continuum too, so this expansion
will not be exact anyway.

As an alternative we calculate all the terms of the fine structure Hamiltonian individually

H f e = −
p4

8µ3c2 +
1
2

Ze2

4πε0

1
r3
~L · ~S +

~2

8µ2c2

Ze2

4πε0
4πδ(3)(~r) . (4.64)

Relativistic term

Hrel = −
p4

8µ3c2 (4.65)

Let’s write the Stark Hamiltonian as

H =
p2

2
+ V , (4.66)

where

V = −
e−iϑ

r
+ eiϑFz . (4.67)

Then we get the expresion for p2 as
p2 = 2 H − 2 V , (4.68)
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and
p4 = 4 H2 − 4 H V − 4 V H + 4 V2 . (4.69)

Then we can calculate the matrix element

α2

8

〈
ψ1 | p4 |ψ2

〉
=

α2

2

[
E2 δ12 − (E1 + E2) 〈ψ1 |V |ψ2〉 +

〈
ψ1 |V2 |ψ2

〉]
. (4.70)

The element in V has been calculated in 4.38, its result is〈
ψ1

∣∣∣∣∣∣−e−iϑ

r
+ eiϑFz

∣∣∣∣∣∣ ψ2

〉
= δm1m2

N∑
i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2

[
−

e−iϑ

2
Ii1i2m2 I j1 j2m2

+
eiϑ

8
F

(
Fi1i2m2 I j1 j2m2 − Ii1i2m2 F j1 j2m2

)]
. (4.71)

And the term in V2 is〈
ψ1

∣∣∣∣∣ e−2iϑ 4
(ξ + η)2 − 2 F

ξ − η

ξ + η
+ e2iϑ 1

4
F2 (ξ − η)2

∣∣∣∣∣ ψ2

〉
= δm1m2

∫ ∞

0
dξ

∫ ∞

0
dη

1
4

(ξ + η)ψ∗1(ξ, η)
[
e−2iϑ 4

(ξ + η)2 − 2 F
ξ − η

ξ + η
+ e2iϑ 1

4
F2 (ξ − η)2

]
ψ2(ξ, η)

= δm1m2

∫ ∞

0
dξ

∫ ∞

0
dη ψ∗1(ξ, η)

[
e−2iϑ 1

ξ + η
−

1
2

F (ξ − η) + e2iϑ 1
16

F2 (ξ + η) (ξ − η)2
]
ψ2(ξ, η) (4.72)

Spin orbit coupling

Hso =
1
2

Ze2

4πε0

1
r3
~L · ~S . (4.73)

We have to calculate the three spatial components of the vector 1
r
~L:

1
r3 Lx = −

8i~
(ξ + η)3

[ √
ξη sin φ

(
∂

∂ξ
−

∂

∂η

)
−

1
2
ξ − η
√
ξη

cos φ
∂

∂φ

]
1
r3 Ly =

8i~
(ξ + η)3

[ √
ξη cos φ

(
∂

∂ξ
−

∂

∂η

)
+

1
2
ξ − η
√
ξη

sin φ
∂

∂φ

]
1
r3 Lz = −

8i~
(ξ + η)3

∂

∂φ
. (4.74)

And the components of ~S where calculated in 4.62.

Darwin term

HD =
~2

8µ2c2

Ze2

4πε0
4πδ(3)(~r) . (4.75)

In this case due to the δ we have just to evaluate the integrand of the matrix element in the origin ξ = 0, η = 0:

πα2

2

〈
ψ1 | δ

(3)(~r) |ψ2

〉
=

πα2

2
δm1m2

N∑
i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2 (ξη)m2 e−(ξ+η) Λ∗Ni1 (ξ) Λ∗N j1 (η) ΛNi2 (ξ) ΛN j2 (η)

=
πα2

2
δm1m2 δm20

N∑
i1, j1=1

N∑
i2, j2=1

c∗1i1 j1m1
c2i2 j2m2 Λ∗Ni1 (0) Λ∗N j1 (0) ΛNi2 (0) ΛN j2 (0) . (4.76)

This term is only non zero if m1 = m2 = 0.
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Chapter 5

Population Modelling

The chapter 3 detailed how the field ionisation rates were calculated, and 4 with an ab initio method. However, no real
concern was given to what effect these ionisation rates had on the overall emission multiplet calculated by ADAS305.
It is expected that the ionisation rates will produce an asymmetry within the Hα multiplet due to the fact that the blue
Stark shifted lines are harder to ionise than the red Stark shifted lines. To study this, the ionisation rates which come
from the state widths must be added into the collisional radiative model built in ADAS305 and then compared against
the other processes that are occurring at the same time. This chapter will build up the theory behind what is expected
to happen with the population structure, due to the fact there is not an easy way of describing the ionisation rates past
the classical ionisation limit, the report is not yet at the stage of providing a full analysis of results, however detail
can be provided as to how to integrate the rates into ADAS305 and what the effects are when the two methods of
calculating the ionisation results are put into action.

The population model is calculated through the use of the collisional-radiative matrix. This is described in full in
Henderson (2009) [1]. To provide a summary, the time-dependent population equation can be written compactly as

Ci j N j = Ne N+ ri −
dNi

dt
, (5.1)

where Ci j is the Collisional-Radiative Matrix (CRM), ri the recombination rates and i and j run over all levels of the
atom. The CRM includes all the different processes that can excite, deexcite or ionise the atom, on the upper triangle,
there are the processes which move the electron from a higher to lower excited state and the lower triangle includes
the processes moving the electron from a lower to higher excited state. The diagonal is built up of the processes which
remove the electron entirely from the atom, as it will be discussed, here is where the field ionisation rates must be
added.

There are a number of points which must be looked at in order to study the field ionisation effect on the CRM,
the ionisation rates must be compared to other processes effecting the beam atoms, this will provide information as to
where the rates begin to become comparable. After this, it is possible to deduce whether any asymmetry will be due
to direct ionisation of that specific level or whether it is due to the indirect ionisation of a higher energy level filtering
through to the lower energy levels. When dealing with the latter case, the cascade matrix must be considered to see by
what path the electrons decay.

5.1 Radiative Decay Rates

When a field is present, the radiative transitions are no longer from n→ n′, they are split into their respective substates
and decay according to the appropriate selection rules either for electric or magnetic field perturbations. For each
substate there will be a respective line strength, S iσ jρ, where i > j corresponds to the respective principal n-shells and
the Greek symbols correspond to the substates of i and j respectively.
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One can relate the line strength to lifetime, or Einstein A coefficient, through the equation

Aiσ→ jρ =
1
6
α4c
ao

(
E
IH

)3 S iσ jρ

e2a2
0

, (5.2)

where the constant α4c
2a0

values 8.032x109s−1, a0 is the Bohr radius and e is the elemental charge. The line strengths are
calculated in ADAS305 and then related to the Einstein A coefficients through equation 5.2. The graph in figure 5.1
shows the typical radiative decay rates in JET conditions.

Figure 5.1: Einstein A coefficients for Stark states at various fields decaying to the ground state. Substates are labelled
using the | n k m〉 convention.

The graph shows the radiative decay rates vary little with respect to the field that is applied to the atom. In addition,
it reveals that as the electron moves further from the atom, the decay rates drop. Therefore, with respect to the field
ionisation, as the electron moves into shells with n higher than four, the field ionisation begins to become dominant
compared to the decay rates.

When viewing the Stark multiplet, it is clear that direct ionisation of the third principal n-shell will not produce any
significant effects on the emission lines. In other words, before the electron has a chance to ionise, it will have decayed
down to a lower state, however this assumes that the n = 3 electron shell is symmetric around the atom to begin with,
if the higher states are included in the CRM, then this may not be the case, if there are asymmetries forming in the
higher states, this could be conserved through the radiative decays of the electrons down into the lower states.

5.2 Cascade Effects

When an electron is in an excited state, it can decay down to a lower state through a number of ways, either directly or
indirectly, the state in which it decays to is generally determined through the stated selection rules, however in terms
of parabolic states, there are no real selection rules available, therefore it is advantageous to try and study where the
electron is most probably going to end up through a decay. If it produces a random walk down through parabolic
states, then any asymmetry formed through field ionisation effects will be lost from the higher states as the electrons
will all mix together as they decay, However on the other hand, if some form of selection rule is present which favours
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the electron decaying down the same ‘side’ of the atom, then any asymmetry will be conserved from the higher to
lower excited electron states.

There is a way of modelling this behaviour in the form of what’s commonly known as a cascade matrix. Due to
the fact that the parabolic states are in question, this matrix will be dubbed the k-cascade matrix, with the k referring
to the quantum number. States decaying down the negative k side corresponds to the −z-axis of the atom, Likewise
the positive k side corresponds to the +z-axis of the atom. Equations to model this are formed by first letting Piσ→ jρ

equal the probability of a direct transition from iσ to jρ, given by

Piσ→ jρ =
Aiσ→ jρ

Aiσ
, (5.3)

where Aiσ is the total spontaneous emission rate coefficient to all the different states from level iσ. Now, set Ciσ→ jρ

as the probability that the population of iσ is followed by a transition to jρ via all possible cascade paths, the general
solution is

Ciσ→iρ =

j∑
p=i−1

2p2∑
η=1

Piσ→pη Cpη→ jρ . (5.4)

To model these cascades, the line strengths must therefore be computed for each n-shell. The ADAS305 code
can be used to generate the line-strengths, it produces a matrix where the upper triangle corresponds to radiative
decays, the diagonal gives out the ionisation probability for each state and the lower diagonal corresponds to collisional
excitations. Therefore, the upper triangle is of interest here, it produces these values already in terms of the resolved
Stark shifted line strengths, these can therefore be converted into Einstein-A coefficients using equation 5.2, these new
upper triangle coefficients can then be used to form the general solution given in equation 5.4. However, the initial
version of ADAS305 only resolves levels up to n = 4, Therefore this must be expanded to deal with n-shells up to
level 8.

5.3 N-Shell Expansion

To show the indirect field effects of higher n-shells and produce cascade matrices for radiative decays down from
n = 8, the initial version of ADAS305 was expanded to deal with resolved Stark states up to n = 8, beyond this
energy level, the electrons can be considered to be ionised by collisions. For this expansion, the main problem is that
of variable dimension size, as the resolution of the code is increased, so therefore must all the dimensions, the code
does not provide documentation of how each variable dimension is built therefore work was carried out to produce
equations which describe each dimension, these equations can be seen in appendix A.1. Once the dimensions were
altered, the code was then altered to include resolved levels up to n = 8 with levels 9 and 10 being left unresolved, the
code ran efficiently with this increase in resolution on a relatively low performance computer.

The expansion was firstly checked for accuracy by cross checking the summed line strengths calculated by the
code with the accepted line strength values for each principal n-shell (S i =

∑
σ S iσ). A further check was carried out

which viewed the Stark multiplet for the n = 8 → 7 transition within hydrogen, the multiplet can be seen in figure
5.2, this multiplet is interesting as it shows the same features as the Hα transition, with the main σ radiation middle
transition lines, followed by the two outer π radiation transition lines.

The method of producing the cascade matrix was then designed in subroutine casmat. f or, an output file is gener-
ated which details the transition probabilities from the cascade matrix. For the higher n-shells, the states are defined
by a temporary number system. The number beside each transition corresponds to the vector position which in turn
can be converted into the parabolic quantum numbers through the theory described in chapter 3.5.

5.4 Results

With the subroutine casmat now included in the main code ADAS305, the cascade matrix can be computed. The
results of this can be seen for the | n k m〉 transition from | 8 − 7 0〉 → | 3 ∗ ∗〉 in figure 5.3, this graph reveals the most
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Figure 5.2: Graph showing the Stark multiplet for the n = 8 → 7 transition at a beam energy of 100 keV/amu and
magnetic field of 2 T.

probabilistic path of an electron as it decays, it appears that if the electron begins on the negative k side of the atom,
or the red side, then as it decays it will tend to stay on this side of the atom, in addition it is very unlikely for a spin
change to occur. The graph in figure 5.4 shows that the electron in energy state | 8 7 0〉 is most likely to stay on the
positive k side of the electron.

In order to check that the cascade matrix is giving meaningful results, it should show that the total probabilities of
the various transitions from one state is equal to unity, in other words, in a system which is independent of time and
isolated from any other system, an electron sitting in an excited state must decay down to its ground state, it cannot
stay in the same excited one. It may be apparent then that the total probabilities in figures 5.3 and 5.4 do not add up to
unity, this is due to the fact that it is missing the probabilities from the n = 8→ 1 transitions, therefore these summed
probabilities shown would require the addition of the probability of a direct transition down to the ground state in
order for the check of unity to be valid.

Therefore, from the two graphs in figures 5.3 and 5.4, it is clear that the electrons do tend to stick their respective
k states as they decay from higher to lower states, this means that one can expect any asymmetry formed in the higher
states to be conserved as the electron falls to the lower states, however these ionisation rates must also be compared
to the collisional cross sections, these cross sections will be discussed in more detail in chapter 6. If the cross sections
for now are dampened, then it can be concluded that an asymmetry should be viewed for the Hα beam emission lines.

5.5 Implementing Code

Attention is now turned to the implementation of the field ionisation rates into the CRM. To do this, one must study
the subroutine hydemi. f or, located in the ADAS305 subroutine library, within this code, the collisionally induced
transitions into other states are calculated. The non-ionising collisions are added to the off-diagonals and the ionising
collisions are added to the diagonals, these rates are calculated in the subroutine sigma. The field ionisation rates can
be added to these diagonal rates.
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Figure 5.3: Cascade probabilities for the transition from | n km〉 state | 8 − 7 0〉 → | 3 ∗ ∗〉 for a beam energy of
1 × 105 eV/amu entering a field of 2 T. The dashed line represents transitions which undergo a spin change.

It is important to ensure the same units are being used in each rate, cross sections, as will be discussed in the next
chapter, are measured in cm2, the cross sections are then converted into the total reaction rate per unit volume,

R = n1 n2 〈vQ〉 (5.5)

where ni is the density of the species i, v the speed of the particles and Q the cross section. Therefore, the value of
〈vQ〉 gives the average over speeds, this is measured in m3/s, the factor is then multiplied by the density in m−3, and
added to the off-diagonal of the collisional-radiative matrix. Now we get the collisional rate in s−1, at this point the
field ionisation rates can be added.

There are three competing processes in the off-diagonal section of the CR matrix: collisional ionisation, field
ionisation and the total radiative decay probability, a comparison of these processes can be seen in table 5.1, this
table shows how important it is to find a solution to the high field regime. It is evident that as the field increases, the
ionisation rates are decreasing, the peak can thought of around n = 6, where the field ionisation rates are becoming
comparable to the collisional processes, above and below this point the collisional rates are dominating. Therefore,
at this state, one may not expect to see the hypothesised asymmetry, although an overall reduction to the intensity
of the peaks should be evident, one can see this result in figure 5.5, it is clear that the intensity of the multiplet
has decreased by an order of magnitude, further investigation of the high field regime is required to investigate the
predicted asymmetry within the multiplet.
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Figure 5.4: Cascade probabilities for the transition from | n k m〉 state | 8 7 0〉 → | 2 ∗ ∗〉 for a beam energy of 1 ×
105 eV/amu entering a field of 2 T. The dashed line represents transitions which undergo a spin change.

| n k m〉 Field ionisation Collisional Ionisation Total Radiative Decay
| 5 − 4 0〉 1.373 × 1010 1.682 × 1014 2.207 × 107

| 6 − 4 1〉 1.371 × 1012 4.912 × 1014 8.104 × 106

| 6 − 3 2〉 1.221 × 1014 6.047 × 1014 4.071 × 107

| 6 − 3 0〉 1.174 × 1014 6.597 × 1014 5.591 × 106

| 7 − 4 0〉 5.878 × 1009 1.056 × 1015 3.459 × 106

| 7 − 3 1〉 9.683 × 1010 1.257 × 1015 4.331 × 106

| 8 − 7 0〉 2.934 × 1007 7.153 × 1014 4.426 × 106

| 8 − 5 2〉 2.244 × 1008 1.469 × 1015 1.196 × 106

Table 5.1: Comparing transition rates in s−1 within the beam emission at field of 7.1 × 104 V cm−1.

(a) (b)

Figure 5.5: The beam emission of the Hα line at a field of 7.1 × 104 V cm−1 where a) the field ionisation rates are
neglected and b) the field ionisation rates are added to the CR matrix.
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Chapter 6

Asymmetric Cross Sections

In a plasma electrons ions and radiation are coexisting and time scale of collisions of neutral hydrogen atoms with
electrons, protons and impurity ions are competitive with the radiative decays, so the transition or ionisation probability
due to collisions should be included in the collision radiative model to have a good description of populations in each
atomic state and emission. Current methods in ADAS305 and of Seaton (1962) [55] and Burgess and Summers (1976)
[56] assume that the electrons are lying in their isolated atom states, in these states the electron cloud can be thought
of as being symmetrical, this would therefore imply that the direction in which the beam atom hits the plasma species
does not matter.

A hydrogen atom under constant simultaneous electric and magnetic fields is no longer spherically symmetrical
and the orientation of the atom respect the colliding particle should be taken in account, so the problem gets closer
to an ion–molecule collision than an ion–atom one, and the target should be described in terms of the approximated
Stark quantum numbers | ñ k̃ m̃〉.

At the impact energies of interests for our problem, the semiclassical straight-line impact parameter approximation
is valid. This approximation considers the impacting particle which describes a classical straight line trajectory. This
impact parameter method was used by Seaton (1962) [55].

6.1 Cross sections

For an incoming flux of particles Φ colliding against dispersion center in an initial state i and which will change it to
a final state f , the differential cross section is defined as the particles deflected through an angle (θ, φ) for unit of time
and solid angle:

dσi f

dΩ
=

Particlesdispersedindirection (θ, φ)
Incomingflux

. (6.1)

The cross section has units of surface.

Integrating the differential cross section, one obtains the total cross section:

σi f =

∫
4π

dΩ
dσi f

dΩ
. (6.2)

6.2 System of reference

In the following section we detail the criteria to establish the coordinate system to treat the collision of an ion or
electron against a neutral hydrogen atom under constant electric and magnetic field so on. We denote with zxy the
called laboratory system, where the collision takes place, in this system the origin is placed on the center of mass of
the target, the z axis is chosen parallel to the initial momentum of the projectile, and the collision plane the zx plane,
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which is the one containing the vectors of the initial and final momenta corresponding to the incoming and deflected
projectile. In the impact parameter approximation the deflection is zero and the final velocity is equal to the initial one
of the projectile, so the z axis is parallel to the classical velocity and the relative position vector between projectile and
target is contained in the zx plane, in other words, the ~b vector representing the impact parameter is parallel to the x
axis. The y axis remains in any case perpendicular to the collision plane.

We denote then with primes z′x′y′ the proper coordinate system internal for the target atom, this system is in-
dependent to any collision. In this sense following the criteria until now, we place the total electric field vector ~F
(Lorentz and external) pointing to the z′ direction, and the magnetic field vector ~B contained in the z′x′ axis. If there
is no external field, or it is very low, like in an usual tokamak, then ~F and ~B are perpendicular and ~B will point in the
x′ direction.

Both reference systems have the same origin, so they are related through a 3D rotation, which is defined through
the three Euler angles (Θ,Φ,Ψ). There are several ways to define the Euler angles [57], in this work we do it as
follows:

1. Rotation angle Θ about the y axis. This angle will remain between the axis z and z′.

2. Rotation angle Φ about the z axis. This is the azimuthal angle, the one which makes the projection of the z′ axis
on the xy plane with the x axis.

3. Rotation angle Ψ about the new z′ axis.

After multiplying the matrixes of the three rotations we get the the relation between the two reference systems as

 z′

x′

y′

 =



cos Θ sin Θ 0

− sin Θ cos Φ cos Ψ

+ sin Θ sin Φ sin Ψ

cos Θ cos Φ cos Ψ

− cos Θ sin Φ sin Ψ

sin Φ cos Ψ

+ cos Φ sin Ψ

sin Θ sin Φ cos Ψ

+ sin Θ sin Φ sin Ψ

− cos Θ sin Φ cos Ψ

− cos Θ cos Φ sin Ψ

cos Φ cos Ψ

− sin Φ sin Ψ


 z

x
y

 . (6.3)

If the target is cylindrically symmetrical, like in our case would be for magnetic field zero, then the rotation is inde-
pendent of the third angle Ψ, which can be set to zero.

In the figure 6.1 it is displayed both coordinate systems in use, laboratory and molecular.

z

y

x

x’

z’

R

b

v

y’

Θ

Φ

Figure 6.1: Coordinate system used for collision problems, laboratory and molecular.

6.3 Impact parameter method

This is a very common approximation used in atomic and molecular collision theory at energies between 10 eV and
10 keV for atomic mass unit when at least one of the systems in collision is electrically neutral. It supposes the
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projectile moving in a straight-line classical trajectory, with a speed v and a closest approach distance, or impact
parameter b, as it is graphically shown in figure 6.1. So the vector ~R, which points from the center of mass of the target
to the center of mass of the projectile, describes a classical trajectory

~R = ~b + ~v t . (6.4)

With the chosen coordinate system, we suppose v pointing on the positive z axis and b on the x axis, t is the parameter
of the trajectory and no the physical time, in the sense that the Schrödinger equation which describes the collision is a
stationary one and not a time dependent one.

The Hamiltonian to describe the collision of an electron or a fully stripped ion against a neutral target (B) is

H(~R,~r) = −
1

2µ
~∇~R +

Z
R

+ HB(~r) , (6.5)

where ~R is the relative position vector between the target center of mass and the projectile, ~r the internal variables in
the target system, µ is the reduced mass

µ =
M MB

M + MB
, (6.6)

M is the mass of the projectile, and MB the mass of the target, and Z is the charge of the projectile in atomic units,
which can value −1 in the case of an electron. The target B must fulfil the stationary Schrödinger equation when it is
isolated

HB(~r) φβ(~r) = εβ φβ(~r) , (6.7)

being β the states of the target isolated, in the case of a neutral hydrogen atom under constant electric and magnetic
field, it will be the Stark states β = |ñk̃m̃〉.

A detailed work about the semiclassical impact parameter method for describing ion-atom and ion-molecule col-
lisions can be found in Seaton (1962) [55], Burgess and Summers (1976) [56] or Fernández-Menchero (2005) [58].

6.4 Transition probability

Firstly, a review of the method used previously by Seaton (1962) [55] is introduced. As the colliding particle moves
towards the target, the motion is described by a classical orbit, ~R(t), the transition amplitude Ti f from an initial state i
to a final one f is treated using a perturbation theory which gives at first order

Ti f (~v,~b) =
1
wi

∫ +∞

−∞

dt ei
∆εi f
~ t Vi f (t) (6.8)

made the integral over a determined trajectory (~v,~b), where wi is the statistical weight of level i, so the degeneration,
∆εi f = ε f − εi the energy difference between the final and initial state of the target and Vi j is the matrix element of
interaction potential between states i and j, which for a one-electron atom is given by

Vi f =

∫
d3~r φ∗i (~r)

Ze2

|~R(t) − ~r|
φi(~r) , (6.9)

where ~r represents the position vector of the electron respect the nucleus. For a multi-electron target, the expression is
equivalent being ~r all the internal variables of the target.

The transition probability is then just the modulus square of the amplitude

Pi f (~v,~b) = |Ti f (~v,~b)|2 . (6.10)

And we get the total cross section for an impact energy E, related with the velocity as E = 1
2µv

2 as the integral of the
transition probability over all the classical impact parameters [55]:

σi f (E) =

∫
d2~b P(E, ~b) . (6.11)
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If the target is isotropic, then the problem becomes cylindrically symmetrical and the transition probability just depends
on the module of ~b:

σi f (E) = 2π
∫ ∞

0
db b P(E, b) . (6.12)

To simplify the integral
∫ +∞

−∞
eiptVi jdt for a one-electron atom, the following steps are carried out:

Vi f = Ze2
〈
Ψi

∣∣∣∣∣ 1
|~r′ − ~r|

∣∣∣∣∣ Ψ j

〉
. (6.13)

Assuming that the wave function has short range and the impact parameters relevant for the cross section are larger
than it, R � r, then we can simplify the Coulomb potential 1

|~R−~r|
as follows:

1

|~R − ~r|
=

1√
R2 − 2~r · ~R + r2

=
1

R
√

1 − 2~r·~R + r2

R2

=
1
R

1 − 1
2

2~r · ~R + r2

R2

 + O

2~r · ~R + r2

R2

2
 (6.14)

=
1
R

+
~r · ~R
R3 + O

(( r
R

)2
)
,

(6.15)

so 〈
Ψi

∣∣∣∣∣∣ 1

|~R − ~r|

∣∣∣∣∣∣ Ψ j

〉
≈

1
R

+
1

R3
~R · 〈Ψi |~r |Ψ j〉 , (6.16)

the term on 1
R does not depend on the target electron variables ~r and does not affect the value of the matrix elements,

so it can be neglected for the calculation of the transition probability. With this new expression for Vi f , one obtains
the new expression for the transition probability

Pi j =
e2

~2wi

∣∣∣∣∣∣
∫ +∞

−∞

dt ei
∆εi f
~ t 1

R3(t)
~R · 〈Ψi |~r |Ψ j〉

∣∣∣∣∣∣2 =
e4

~23wi
Ui f ·

∣∣∣∣∣∣
∫ +∞

−∞

dt
eipt ~R(t)

R3(t)

∣∣∣∣∣∣
2

, (6.17)

where 1
3wi

Ui f = IH
∆εi j

fi→ j, and fi→ j is the oscillator strength.

Now there are two scenarios: neutral target, so linear orbits, and charged target, then the orbits are hyperbolic, if
the target is also spherically symmetrical, which is not the case of a Stark atom, then additional simplifications can be
used.

6.5 Neutral and spherically symmetrical atoms

In this case we suppose no Coulomb global interaction between target and projectile, so the trajectory remains linear
in the zx plane as

Z = vt

X = b , (6.18)

as it is shown in figure 6.1.

If equation 6.17 is again considered, only components z and x of the vector ~IH have to be considered due to we
are in a symmetrical case and we can focus just in a two-dimension problem. It can be solved by use of the modified
Bessel functions, k0(x) and k1(x). For completeness, the steps involved in manipulating the integral are detailed, it is

78



ADAS-EU R(12)PU04

first convenient to split the integral into its z and x parts, as the y part is equal to zero because the collision takes place
in the zx plane, This gives

Iz =

∫ +∞

−∞

dt
eiKt Z(t)

R3(t)

Ix =

∫ +∞

−∞

dt
eiKt X
R3(t)

. (6.19)

Operating:

Iz =

∫ +∞

−∞

dt
eiKtvt

(b2 + (vt)2)3/2

=
1
bv

∫ +∞

−∞

du
ueisu

(1 + u2)3/2

=
1
bv

[
is

∫ +∞

−∞

du
eisu

√
1 + u2

]
=

1
bv

[isK0(s)] , (6.20)

and similarly for x,

Ix =

∫ +∞

−∞

dt
eiKtb

(b2 + (vt)2)3/2

=
1
bv

∫ +∞

−∞

du
eisu

(1 + u2)3/2

=
1
bv

[
−is

∫ +∞

−∞

du
ueisu

√
1 + u2

]
=

1
bv

[isK1(s)] , (6.21)

where u = vt
b , s = bK

v
and K0(x) and K1(x) are the modified Bessel functions. This is a good place to stop following

the method carried out by Seaton, this is because the analysis for the Stark case requires different mathematical steps
to compensate for the asymmetric Stark states.

The modified Bessel functions, K0(x) and K1(x), can be solved by means of a polynomial approximation [16]
for 0 < x ≤ 2:

K0(x) = − log
( x
2

)
I0(x) − 0.57721566

+ 0.42278420
( x
2

)2
+ 0.23069756

( x
2

)4

+ 0.03488590
( x
2

)6
+ 0.00262698

( x
2

)8
(6.22)

+ 0.00010750
( x
2

)10
+ 0.00000740

( x
2

)12
+ ε

where the error |ε| < 10−8x14 and

I0(x) = 1 + 3.5156229 t2 + 3.0899424 t4 + 1.2067492 t6

+ 0.2659732 t8 + 0.0360768 t10 + 0.0045813 t12 + γ (6.23)

with t = x
3.75 and the error |γ| < 1.6 × 10−7t14. Similarly,

x K1(x) = x log
( x
2

)
I1(x) + 1 + 0.15443144

( x
2

)2
− 0.67278579

( x
2

)4

− 0.18156897
( x
2

)6
− 0.01919402

( x
2

)8
(6.24)

− 0.00110404
( x
2

)10
− 0.00004686

( x
2

)12
+ ν
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where

I1(x)
x

= 0.5 + 0.87890594 t2 + 0.51498869 t4 + 0.15084934 t6

+ 0.02658733 t8 + 0.00301532 t10 + 0.00032411 t12 + ν (6.25)

with |ν| < 7 × 10−9t14. For the purpose of this report, the limit of 0 < x ≤ 2 is valid. Abramowitz and Stegun [16] do
provide equations for x within different limits using periodicity properties of K. A good way of testing these results
is to compare the values produced using equations 6.22 and 6.24 with values given in tables from Seaton (1962) [55].
Although there are no specific values for K0(x) and K1(x), it is possible to produce an equation to match values given
in tables from Seaton (1962) [55]. Therefore, if

ζ(x) = x2 [K2
0 (x) + K2

1 (x)] (6.26)

then it can be seen in figure 6.2 that equations 6.22 and 6.24 give good agreement to tabulated values given by Seaton.

Figure 6.2: A comparison of results using equation 6.26 and from the table of values produced for the same equation
in Seaton (1962) [55].

6.6 Charged Atoms

For the case of charged particle interaction, the orbit of the colliding particle is not a simple linear line, it follows
hyperbolic pathways either towards or away from the target depending on whether the Coulomb force is attractive or
repulsive. To follow the next steps, one should use the notation shown in figure 6.3.

Firstly, if electron–ion collisions are considered, µ is the reduced mass of the system, v is the colliding particles
velocity and assuming the trajectory is in the zx plane, which we can describe in polar coordinates (R, θ) then the orbit
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Figure 6.3: A figure showing the branching orbits for a positive and negative particle approaching a positive target.

is given by

R−1
e =

(1 − ε cos θ)
a(ε2 − 1)

, (6.27)

where a = ZT ZPe2

µv2 is the hyperbole axis, ε =

√
1 +

µ2v4R2
i

(ZT ZP)2e4 the eccentricity. The closest approach is when θ = π, which
yields R−1

e = 1+ε
a(ε−1) .

Now for ion–ion collisions, if µ is the reduced mass of the system, v is the colliding particles velocity and assuming
the trajectory is in the zx plane the orbit is given by

R−1
p =

(1 + ε cos θ)
a(ε2 − 1)

. (6.28)

The closest approach is when θ = 0 which yields R−1
p = 1+ε

a(ε−1) as in the ion–electron collision case. This value is not
complete, it must be subtracted from the distance of the target to the focal point, f1, which is equal to 2c, therefore the
closest approach is in fact c + a.

Burgess and Summers [56] provide a full detailed analysis on the steps involved in manipulating the integral into
the form of the modified Bessel functions, Ki(ξε) and K′i (ξε) where ξ = pa/v. It can be seen in figures 6.4 and 6.5 that
these equations are also valid for the scenario detailed in the previous section, the figures show the orbits tending to
their linear paths as the total charge is reduced, it should be noted that the procedure of solving the cross sections with
this method will differ from that of Burgess and Summers due to the fact the Stark system is not isotropic. For the case
of an isotropic atom, the interaction matrix may be factored out of the integration step, this step disregards any form
of directionality, which must be kept in the Stark case.

To calculate the modified Bessel functions, Ki(ξε) and K′i (ξε), the formulae given by Poquérusse and Alexiou

81



ADAS-EU R(12)PU04

Figure 6.4: A trajectory model showing the paths of a negative colliding electron around a positive nucleus at position
x0 = 0, y0 = 0 of various charge. ZT represents ZeZi where Ze = 1.

(1998) [59] are used, to summarise their results:

Ki(ξε) = e−τ−
πξ
2

19h4 + log(1.06 + 1.07h−2)
0.747 + 15.17h5

×

0.1275 +
0.7 − 0.5 η

ε

ε2 p2 + 1.18 p3 + 0.47
p4

ε2

+ (1.97 + 1.6 ε−2) p6 + p9
]− 1

18 (6.29)

and

K′i (ξε) = − e−τ−
πξ
2

(0.282 − 0.1477ε−2)h−3 + 0.335ε−2 + 1.253h3

0.2905 − 0.1519ε−2 − (0.1613 + 0.029ε−2)ξε−1 + h5

×

[
1.733 − 4

η

ε
p2 +

(
8.68 − 3.3

η

ε

)
p3 +

(
7
η

ε
+

5
ε2 − 7.43

)
p4

+

(
5.76 − 4

η

ε

)
p6 + p9

]1/18
(6.30)

where

h = (ξ ε)1/3

η =
√
ε2 − 1 (6.31)

τ = ξ (η − arctan(η))

and
p =

ηh
ε
. (6.32)

82



ADAS-EU R(12)PU04

Figure 6.5: A trajectory model showing the paths of a colliding H+ ion around a positive nucleus at position x0 = 0,
y0 = 0 of various charge, ZT . ZT represents ZiPZiT where ZiP = 1.

These formulae provide an accuracy of 0.1% or better over the entire (ξ, ε) half-plane. To provide a test for these
equations, they may be compared against values given in tables from Burgess and Summers [56]. More specifically,
the comparison will be against

X(ξ, δ) = eπξ (ξε)2
[
K′2i (ξε) +

ε2 − 1
ε2 K2

i (ξε)
]

(6.33)

where δ = ξε − ξ. It is seen in figure 6.6 that the equations produce values which match the values given from Burgess
and Summers.

6.7 Asymmetric Atoms

When the target is not spherically symmetrical the first difference with the symmetrical case is that the transition
probability depends on the relative orientation of the target respect the colliding particle flux, so of the Euler an-
gles in equation 6.3, so we get a directional transition amplitude T (E, ~b; Θ,Φ,Ψ) and a directional cross section

d3σ
dΘdΦdΨ

(E; Θ,Φ,Ψ). If we suppose a target randomly distributed we should measure an averaged cross section

σi f (E) =

∫ π

0
sin Θ dΘ

∫ 2π

0
dΦ

∫ 2π

0
dΨ

d3σ

dΘ dΦ dΨ
(E; Θ,Φ,Ψ) . (6.34)

And if we expand expression 6.34 in terms of the transition probability we get

σi f (E) =

∫ 2π

0
dφ

∫ ∞

0
b db

∫ π

0
sin Θ dΘ

∫ 2π

0
dΦ

∫ 2π

0
dΨ Pi f (E, b, φ; Θ,Φ,Ψ) . (6.35)

83



ADAS-EU R(12)PU04

Figure 6.6: A comparison of results using equation 6.33 and from the table of values produced for the same equation
in Burgess and Summers [56].

In terms of equation 6.35 we have to make the average in the angle of the impact parameter vector φ and the
azimuthal orientation of the atom Φ. Both averages are equivalent, so making the one in the orientation of the target
leads us again to a cylindrically symmetrical problem and taking advantage of it we can just calculate the transition
probability versus just the module of b assuming symmetry for its orientation.

σi f (E) = 2π
∫ ∞

0
b db

∫ π

0
sin Θ dΘ

∫ 2π

0
dΦ

∫ 2π

0
dΨ Pi f (E, b; Θ,Φ,Ψ) . (6.36)

Unfortunately this is not the case that assists our problem, because in a neutral beam injector of a tokamak the
electric and the magnetic field are fixed in space, so we have a not randomly distributed target. In the other hand,
neutrals penetrate in the plasma with a determined velocity and collision with electrons and ions which have an
approximate Maxwellian velocity distribution, so the relative velocity between projectile and target is not isotropic
and we can not use this approximation when we make the integral of the cross sections to obtain the rate coefficients.
So we can not treat the problem from an “averaging” point of view and we need to keep all the information about the
directional transition probability Pi f (E, ~b; Θ,Φ,Ψ).

A second difference lays in equation 6.17, this time we can not assume a spherically symmetrical wave function,
so we have to calculate all the components of the dipole moment 〈Ψi|~r Ψ f 〉 and we can not assume the collision taking
place in the zx plane without loosing generality, so we have to calculate the three components 〈z〉, 〈x〉 and 〈y〉 of the
vector.
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6.7.1 Transition Probability

Before, in the isotropic case, one was able to calculate the cross sections integrated over a sphere. For the Stark case,
it is necessary to integrate over all rectangular planes perpendicular to the z-axis, to begin the analysis, equation 6.17
should be considered, there will now be an additional z term added to provide a full description,

Pi f =
e4

~2

∣∣∣∣∣∣
∫ +∞

−∞

dt eipt
(

Z(t)
R3(t)

〈Ψiσ | z |Ψ jη〉 +
X(t)
R3(t)

〈Ψiσ | x |Ψ jη〉 +
Y(t)
R3(t)

〈Ψiσ | y |Ψ jη〉

)∣∣∣∣∣∣2 , (6.37)

Now, splitting the integral into its Iz, Ix and Iy parts and setting the impact parameter vector as ~b = (X,Y), components
which will remain constant as we assume straight-line trajectory, one obtains

Iz =

∫ +∞

−∞

dt
vt eipt

(X2 + Y2 + v2t2)3/2 〈Ψi | z |Ψ f 〉

=
1
bv

∫ +∞

−∞

du
u eiβu

(1 + u2)3/2 〈Ψi | z |Ψ f 〉

=
iβ
bv

K0(β) 〈Ψi | z |Ψ f 〉 , (6.38)

Ix =

∫ +∞

−∞

dt
X eipt

(X2 + Y2 + v2t2)3/2 〈Ψiσ | x |Ψ jη〉

=
1
bv

∫ +∞

−∞

du
eiβu

(1 + u2)3/2 〈Ψiσ | x |Ψ jη〉

=
iXβ
bv

K1(β) 〈Ψiσ | x |Ψ jη〉 , (6.39)

and

Iy =

∫ +∞

−∞

dt
Y eipt

(X2 + Y2 + v2t2)3/2 〈Ψiσ | y |Ψ jη〉

=
Y
bv

∫ +∞

−∞

du
eiβu

(1 + u2)3/2 〈Ψiσ | y |Ψ jη〉

=
iβY
bv

K1(β) 〈Ψiσ | y |Ψ jη〉 , (6.40)

where

u =
vt
b

β =
pb
v

(6.41)

b2 = X2 + Y2 .

Therefore, the transition probability is put back together in the form,

Pi f =
e4

~2

∣∣∣ Ix + Iy + Iz

∣∣∣2 . (6.42)

The modified Bessel functions may be solved in the same manner as before for the neutral collision case.

6.8 Implementation

There are a lot of details that need to be discussed in the implementation of the asymmetric cross sections theory
into code. Again, like with the field ionisation code, it is necessary to construct an isolated code which can be used
to calculate the cross sections before they are implemented into ADAS305. This Fortran code was named dircol.
However, there are many subroutines which make up the core of this code. The next subsections will describe each
step.
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6.8.1 Transition Probability

The analysis of the code will start with a ‘bottom-up’ approach. Therefore, the first part which should be considered
is the evaluation of the modified Bessel functions, Kiξ(|ξ|ε) and K′iξ(|ξ|ε). There are two situations which should be
addressed: when ξ = 0 and ξ , 0. More specifically, when ξ is equal to zero, the scenario is that of the neutral atom,
linear orbit case. When ξ is not zero, the analysis then turns to the parabolic orbit case. Both methods can be treated
by a universal formula. However, when computing the functions, the case of ξ = 0 must be treated as a special case as
ξ → 0, ε → ∞.

Two subroutines were created, named vk and vk1. These can be viewed in appendix A.7 and A.7. They calculate
the modified Bessel functions Kiξ(|ξ|ε) and K′iξ(|ξ|ε) respectively. Equations 6.22 and 6.24 are used when ξ , 0.
For the case of ξ = 0, equations 6.22 and 6.24 are used if the bracket term, x is less than or equal to two. It also
incorporates formulae of periodicity from Abramowitz and Stegun [16] which deal with the case of x > 2. To operate,
the parameters ξ and x must be passed into the function as real numbers.

With a method for calculating the modified Bessel functions in place, the next subroutine to be built calculates the
transition probability. This subroutine was named xs. The code has the variables of speed, transition energy, impact
parameter, Y value, rotation angles and the mean distribution of electrons, 〈ψi|z|ψ j〉, 〈ψi|x|ψ j〉 and 〈ψi|y|ψ j〉 (denoted
〈z〉, 〈x〉 and 〈y〉 from here on) passed into the subroutine. The complex parts of the wave function and Iz,x,y parts are
split into their real and imaginary parts. The modified Bessel functions are then evaluated through a call to vk and vk1
and then stored in their respective imaginary variables. The full equation is then put back together in the following
way,

Pi j = (a2 + b2), (6.43)

where a and b signify the summation of the imaginary and real parts respectively.

The wave functions and transition energy in this code had to be given reasonable estimates as actual results from
ADAS305 were not yet available. Therefore, for testing, the mean value of 〈z〉, 〈x〉 and 〈y〉 from equations 6.38,
6.39 and 6.40 were initially made up to produce a dipole along the y-axis. This was done by setting the mean values
〈z〉 = 〈x〉 = 0 and 〈y〉 = 2a0 where a0 is the Bohr radius. The case 〈z〉 = 〈x〉 = 〈y〉 represents the isotropic atom
case. The energy transition was taken to be the energy between the n = 3 → 2 transition (≈ 1.9 eV). In addition,
the beam speed was arbitrarily set in the initial stages of the code. It is important to make sure all of these constants
are set as variables at the beginning of the code as once the code is put together and integrated with ADAS305, these
will be variables passed into the code. Now the transition probability can be deduced as a function of speed, impact
parameter, y-axis and the transition energy. These results are seen in figure 6.7.

Firstly, in graph 6.7(a), the probability is plotted against beam speed. As the speed tends to infinity, the transition
probability tends to zero. This is as expected, the turning point somewhat completes the picture, this follows that as the
beam starts from rest the probability is zero. As it speeds up the probability begins to increase until it hits a saturation
point, after this the probability then exponentially decreases. In graph 6.7(b), the transition probability is plotted
against the impact parameter. Here it is seen that as the impact parameter approaches zero, the probability tends above
unity, the region therefore above P = 1

2 corresponds to the strong coupling region. The next graph in 6.7(c) shows
the relation between the transition probability and the change in y-axis, here the graph is similar to that of the 6.7(a).
To understand this turning point one has to study the set up of the atom, the electrons are lying in lobe stretching out
to twice the Bohr radius and the impact parameter has been set to the Bohr radius, therefore as the trajectory heads
towards Y = 0, the probability will enter in the lobe of high electron distribution, as it continues to follow the trajectory
it will then pass out the other end of the lobe into a region of low electron distribution, this corresponds to the turning
point of the graph. However, when considering this problem, one must take account the dimensions of the atom, this
graph will not take into account a ‘direct hit’ of the atom, this must be interpreted separately. Lastly, the graph shown
in 6.7(d) shows how the transition probability varies with the transition energy, one can see that as you increase the
energy between the transition the probability decreases, this is due to the fact that to produce a higher transition there
must be stronger coupling of the collider atom with the target, through this hypothetical test, the code was thought to
be running efficiently and giving out sensible results.
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(a) (b)

(c) (d)

Figure 6.7: A graph of transition probabilities plotted against a) speed with ∆E = Hα, Y = X = 3a0 and θ = ϕ = 0,
b) impact parameter for ∆E = Hα, Y = a0, v = 3 × 106 m/s and θ = ϕ = 0, c) change in z-axis for ∆E = Hα, X = a0,
v = 3 × 106 m/s and θ = ϕ = 0 and finally d) the change in transition energy for Y = X = 2a0, v = 3 × 106 m/s and
θ = ϕ = 0. The crosses marked in d) indicate the energies of the Balmer series starting at Hα. Each graph has an
electron distribution of 2a0 along the y-axis.

6.8.2 Differential Cross Sections

The next section of the coding is to look at setting up the differential cross sections. This involves two integration
processes over the X and Y parameters, when considering this, one must first look to define the regions of weak
and strong coupling. The integration should only cover the weak-coupling region. As was shown in figure 6.7, the
probability has the ability to form a turning point, this has the ability to cause confusion as to where to take the lower
limit from in the integration as the probability may hit the specified cut off point twice, therefore, to carry out the
integration over the impact parameter, one should look carefully at how this region is defined.

The integration over the X component of the impact parameter was carried out in the subroutine intr. The parame-
ters θ, ϕ and Y along with the constants defined in the previous section are all passed into the code. The X component
of the impact parameter is brought in from ∞ → 0, in coding terms, 50 a0 was used to place the infinity. When the
transition probability is equal to 0.001, the upper limit is stored, next, when the transition probability reaches higher
than 0.5, the lower limit is stored. There are four scenarios which must considered to ensure the robustness of this
code. Firstly, if the position of the projectile falls within the area of the atom then the impact parameter is increased
until it is out with the boundaries of the atom, the lower limit is then set to this new value of X. Next, the impact
parameter has a stationary point at some point along the curve and then decrease as X tends to zero, therefore, if the
stationary point lies underneath the cut off of 0.5, then the code must store the value of X at this maximum for the lower
limit, this can be done by checking the sign of the gradient. Thirdly, if there has been no turning point in gradient, the
transition probability has stayed below 0.5 and the projectile lies out with the boundary of the atom then the impact
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parameter can reach zero, however this scenario would cause an infinite loop, therefore a cut off is introduced whereby
if the impact parameter reaches 0.1 a0, then the lower limit is set to X = 0. Lastly, if the transition probability begins at
a higher value than the upper limit, the upper limit is set to the first value of X, ensuring these scenarios are embedded
within the code, there should be an inherent robustness for all projectile speeds.

With the upper and lower limits discussed, the focus is now turned to the method of integration, Simpson’s rule is
used to carry out this integration. The iteration process of the rule is set to twenty to save time whilst in the testing
stage. On inspection, a higher iteration may be needed to gain a more accurate result, with each iteration the code calls
the subroutine xs and passes in the respective values of X.

With this integration complete, the focus can be switched to the second integration over Y . The subroutine designed
to carry out this step was called intz. There are two parameters passed into this code: θ, ϕ and the constants. Again,
care must be taken on the procedure of finding the upper and lower limits, now the integration is from zero to infinity,
the upper limit is set when the integral of X is equal to 0.01 and the lower limit is set equal to zero. To add robustness,
there are now only two scenarios which must be considered. Firstly, if the initial conditions do not allow the integral
to fall below 0.01, then a new upper limit is taken equal to the lowest value allowed. Lastly, if the initial conditions
do not allow the integral to go above 0.01 then the code will produce an infinite loop, therefore a condition is added
whereby if the gradient of the curve falls below 10−6 and the integral has not reached > 0.01, the upper limit is set to
the outer most Y value calculated. The first scenario will only be evident at low collision speeds, whereas the second
scenario would become evident at high collision speeds. Therefore it is important to allow the code to deal with any
collision speed to avoid any unforeseen errors, the integration over X is again carried out by the use of Simpson’s rule,
the iteration process is set to twenty, again for a more accurate picture this could be increased.

Figure 6.8: The differential cross section is plotted against the rotation angle θ. The ϕ angle is set to zero. The
configuration of the atom can be seen for three points along the curve. A dipole along the z-axis is used as a starting
point.

Now these two integrations are complete, the code can now be tested against the two rotation angles. The result of
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Figure 6.9: The differential cross section is plotted against the rotation angle ϕ. The θ angle is set to zero. A dipole is
set along the y-axis.

the θ rotation for dipole along the z-axis is seen in figure 6.8, the differential cross section is calculated each time in the
top left quadrant of the atom, therefore it is clear that when the distribution of the atoms is fully within this quadrant,
the differential cross section goes to a maximum. Likewise, when it is totally out of this quadrant, there is a minimum.
A rotation around the ϕ angle is seen in figure 6.9, here the differential cross section is a constant over the angle, that
is due to the initial dipole being set along the y-axis. Had this been set along the x-axis, one would see a similar plot
to that of figure 6.8.

6.8.3 Strong Coupling

So far, attention has been given to all configurations whereby the probability of a transition is less than 0.5 or within
the atomic boundaries, the vector ~R is expected to form a continuous line around the atom depicting the region of
strong-coupling, the method of calculating the area of this region requires an integration technique.

To integrate this region, the shape is first segmented into triangles originating from the origin of the atom, this
can be seen more easily in figure 6.10a). However, before the area can be considered, detail must be given on how to
obtain the vector points in an order which allows the vector array to go smoothly from start to finish. The method will
not work if the vector points do not go in the order of the integration. In order to achieve this directionality, three loops
are constructed over the quadrants, the impact parameter and the change in y-axis. The outer loop runs from 1 → 4
signifying each quadrant of the atom. When the top right quadrant is considered, the change in y-axis runs from∞ to
0 and likewise for the impact parameter in the x-axis. In the second quadrant the change in y-axis runs from −∞ to 0
and from ∞ to 0 for the impact x-axis. For the third quadrant, the change in y and x-axis runs from −∞ to 0. Lastly,
in the fourth quadrant the change in y-axis runs from ∞ to 0 and from −∞ to 0 for the x-axis. This procedure allows
the vector to be built in the order of integration.

The point which is stored in the vector array is theoretically defined as being the point at which the transition
probability reaches 0.5, however there are few points where the probability is exactly 0.5 therefore a window of
(0.49, 0.51) is created, this means that for each theoretical single point there are a range of points, therefore the code
must take an average of these points to output one singular point in the array. However, when doing this one must
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consider the fact that depending on the orientation of the electron distribution, there may be two theoretical points
in which the probability is 0.5, for example, if the electrons are distributed along the z-axis (R axis), then due to the
shape of the lobe, the probability may go in and out of regions of high probability. Therefore, to avoid this second
point being merely averaged out as a single point, the vector array is split into two sub-arrays, one can imagine the
first array to run down the side of the lobe which has the second point and the second array to run down the other side
of the lobe, these two arrays would therefore join at the point where the lobe has a stationary point with respect to a
horizontal line being brought down from Y = ∞ → 0. Therefore, if the electron distribution is along the y-axis, only
one sub-array will be populated as there would only be one theoretical point, in addition, if the vector goes within the
boundary of the atom, no vector points are stored, this method of creating the array of vector points was created in the
subroutine qstrg1.

Now, with the vector array complete, the routine used to work out the area, irreg, is discussed. For each quadrant
of the atom, there are two shapes which can be both be split into two right-angled triangles, this is shown in figure
6.10b). To calculate the area of these triangles, the following method is used, the geometry will follow that used in the
diagram, the numbers indicate vector points. For point 1→ 2,

c =

√
Y2

1 + X2
1

e =
√

(Y1 − Y2)2 + (X2 − X1)2

a = c [cosα]

b =

√
Y2

2 + X2
2 − a (6.44)

d =
√

c2 − a2 ,

where α is the angle between ~R1 and ~R2 and the area x1 is worked out as

x1 =
1
2

ad +
1
2

db . (6.45)

For points 3→ 4,

c =

√
Y2

4 + X2
4

e =
√

(Y3 − Y4)2 + (X3 − X4)2

a = c [cosα]

b =

√
Y2

3 + X2
3 − a (6.46)

d =
√

c2 − a2

where α is the angle between ~R3 and ~R4 and the area, x2, is worked out as

x2 =
1
2

ad +
1
2

db . (6.47)

Therefore, the total area, y1, for the first quadrant is

y1(~R) =
∑

i

xi (6.48)

where i runs over all the triangles in the quadrant. The method is repeated now over all the quadrants so that the final
area is built through

A(~R) =

4∑
j=1

y j (6.49)

where j runs through each quadrant.

To test this method, vectors of known areas and shapes were passed into the code and tested against their theoretical
area, the results of this can be seen in table 6.1. It is clear that this code is producing results within a suitable range,
it is important when testing this code to remember that the code calculates the area by presuming the segments are
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Shape Actual Area Calculated Area
Square 16.00 16.00

64.00 64.00
Right Angled Triangle 15.75 15.75

Scalene Triangle 0.752 0.75
12.566 12.461

Circle 113.097 112.149
452.389 448.596

Table 6.1: The subroutine irreg is used to calculate areas of shapes with known theoretical area. The calculated area
is through use of irreg.

starting from the origin, (0, 0), therefore the vectors of the shapes must be built around the origin. This does put a
restriction on the code, however, for the case of calculating the strong-coupling region this restriction does not hinder
the process as the vector is built with respect to the origin.

Therefore now the code can include the strong-coupling region, it is important to further test the code by producing
graphs of what areas are actually being calculated. The strong-coupling region can be seen in figure 6.11 as a function
of rotation angle, it is difficult to produce the area with an associated error as there is no actual area already calculated,
therefore the accuracy or reliability of these results are based upon the codes ability to reproduce areas given in table
6.1 and by viewing the calculated area.

6.8.4 Total Cross Sections

The code is now at a stage where the full cross sections can be calculated, therefore the integration over the solid angle
must now be implemented. Due to the method of calculating the strong-coupling regime, the code performs more
efficiently re-writing equation 6.35 as

σi f =
1

2πΨ

∫ Ψ

0
sin Θ dΘ

[
A(~R,Θ) +

∫ 2π

0
dΦ

∫ ∞

0
dX

∫ ∞

R1

dY Pi f (Θ,Φ, X,Y)
]
, (6.50)

where we suppose the target cylindrically symmetrical. The integral over the azimuthal angle Φ is carried out in the
subroutine intt, this sets the upper and lower limits as 2π and 0 respectively, then Simpson’s rule is initiated, after this
integration step is complete, the last integral over the polar angle Θ is started. The subroutine used to calculate this is
called intp, the upper limit is set through vp given in equation ?? and the equation for Θ given in equation ?? and the
lower limit is set as 0. In the special case of the upper limit equalling zero, the integration over Θ is skipped and the
factor of 1

Θ
in equation 6.50 is disregarded. On each call to intt, the three integral result passed back is added to the

strong-coupling region.

The final cross sections as a function of field can be seen in figure 6.12, the jagged part near the turning point can
be attributed to the strong-coupling region effects. The method of calculating the vector ~R when calculating the area
is often slightly volatile at different conditions, the cross sections are given in terms atomic units (a2

0), this provides
good confidence that the code is passing out sensible results. It is also still evident that the cross sections increase with
speed up to a certain point, an then begin exponentially decrease.

This code has not yet been integrated in ADAS305 due to time limitations, however the calling routine xsec is set
up to accept the variables from ADAS305 which are needed to calculate these cross sections. The parameters needed
from ADAS305 are the electron wave-functions, the transition energy of the perturbed Stark states, the speed of the
beam atoms and the temperature of the plasma species. With these in place, the cross sections can be calculated for
the Stark states.
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Figure 6.12: The final cross section as a function of field with a magnetic field of 2 T, the plasma temperature is set
to 1 × 105 K, the transition energy was set to the Hα line.
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Chapter 7

Summary

There are two main sections which should be discussed in this chapter. Firstly, the ways in which the implementation
of the theory can be improved will be discussed, this will include any areas which aren’t working as expected and
detail how to improve areas which are working but could still be improved. Next, the future work of the project will
be discussed, any areas which weren’t reviewed due to time restrictions will be detailed. Lastly, a final conclusion of
where the project got to will be given in the last section of this chapter.

7.1 Improvements

Firstly, the implementation of the field ionisation code will be discussed. When implementing the two regimes of low
and medium field regimes, no real cut-off point was given, a graph of the two methods was given in figure 3.2, this
gave a rough idea of where the cut-off point lay. A more accurate way of finding the point could be found by studying
the theory of Damburg and Kolosov (1978) [44] and Kolosov (1983) [49] in more detail, they provide theory based on
certain assumptions, these assumptions should be highlighted and studied more closely.

In addition to this cut-off point, there were unpredicted results calculated when dealing with negative values of
the magnetic quantum number, m. In these states, the ionisation rates gave much higher results than expected, the
theory states that the electrons should be degenerate with respect to the sign of m, therefore it is important to check
that throughout the code, the absolute value of m has been used. If this is not the case, the theory may break down at
negative values of m and give these unusually high ionisation rates.

Now, switching focus to the cross section implementation, the first section which needs to be revised is the way
in which the vector of the strong-coupling region is stored. It is evident from the graph in figure 6.12 that the strong-
coupling area is not a smooth function of beam speed, after further investigation this was found to be caused by
deviations in the vector away from the smooth area that should be calculated, in addition when the strong-coupling
area becomes comparable with the size of the atom, an area is neglected which at high areas of strong-coupling is
negligible but becomes valid at small areas. This is due to the fact that the lobe which is calculated does not take into
account the area of the atom, therefore when the lobe hits the sphere of the atom, the vector should then follow the
perimeter of the atom round to the beginning of the next lobe. This feature has not yet been included in the code, the
vector stops at this point, therefore the pseudo-triangular segment of the atom between the two lobes is not added to
the final area. For increased accuracy in results, this method of calculating the vector should therefore be revised.

Lastly, still on the topic of the strong-coupling region, the method for finding the vector also takes a lot of compu-
tational time, this is due to the fact that the method involves scanning the entire atom at every integration step of the Θ

integral, this could be altered by combining the strong-coupling region into the integral of Φ. This integral basically
produces a scan of the whole atom for the weak coupling region by use of rotation, if the strong-coupling region was
calculated for each quadrant of the atom simultaneously with the calculation of the weak coupling regime, this may
increase the speed at which the code calculates the final cross section.
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7.2 Future Work

The first, most immediate area of further research should be given to finding a method of calculating the field ionisation
rates for the strong-field regime. There are no papers available to the knowledge of this report that provide simple,
analytical formulae for this regime, therefore either a new set of equations may need to be revised or an implementation
of one of the current, more drawn out methods should be implemented (Kolosov, 1987 [48]; Tian, 2002 [43]). This
should provide an insight into the hypothesised theoretical asymmetry occurring in the beam emission of the atom.

The cross section isolated analysis is by all means complete, therefore detail must now be given to how this code
is implemented into the final code ADAS305. In doing this, one must look at how to pull out the wave functions of
the electrons in a way which can then be passed into the cross section code giving the distribution of the electrons.
In addition, the transition energy must be passed in as a variable, although this step is already somewhat complete
through previous work done on ADAS305. Once this has been done, the cross sections should be compared with
previous results calculated by ADAS305, furthermore the current calculations largely focused on linear orbits for the
impact parameter, this is valid for the case of neutral beams, however a more complete picture would include an
analysis of the elliptic orbits for two charged particles colliding.

Lastly, the labelling of states should be revised in more detail, this is will provide a way of telling whether the
magnetic or electric field is the dominant perturbation. With this knowledge, experimentalists may accurately tell
which polarisations to expect at the respective orientations of the polarisers. A way of finding these labelling was
discussed in section 2.7, however there was not enough time to actually implement this theory, therefore, a further
topic of investigation could be to implement the transformation of the angular and other matrices and form a grading
system to label the quantum numbers.

7.3 Conclusions

The full picture has now been discussed. In chapter 2, a full description of the general theory behind the way in which
an atom is effected when passing through a field is discussed, in addition a method was put forward for a way of
labelling the states when dealing with two perturbative fields. This produced a normalised ‘grade’ that indicates the
purity of either the nkm or nlmlms basis states. The report then focused on one aspect of the field theory in chapter
3, the ability of the field to remove an electron entirely from the atom. It was seen that the ionisation theory could
be split into three regimes: low, medium and strong field, a description of the first two was described with the third
regime remaining a topic for further investigation. This theory was then implemented into the population structure of
the atom in chapter 5, different aspects of the atom were discussed in this chapter including the way in which the atom
cascades down to its relaxed state when lying in an excited state, the electron tended to stick to its relative k quantum
number as it relaxed down to lower levels, this meant that indirect effects of the high shells on the Hα multiplet must
be taken into consideration, it was seen that the field ionisation did reduce the intensity of the total Stark multiplet
for the Hα emission line, the results were then implemented in ADAS305 and the three main processes of radiative
decay, collisions and field ionisation were compared. The hypothesised theoretical asymmetry was not evident due to
the high field regime producing unrealistic results.

The report then moved on to discuss the collisional cross sections in chapter 6. A review of previous methods
detailing the isolated atom case where the electrons are lying in their isotropic states was first provided, this was then
extended to deal with electrons lying in their perturbed Stark states, a full description of the theory behind the new
calculations was provided and then the implementation of the theory was described. The final results showed the code
giving out sensible results, in terms of the area of the atom, however these were not implemented into the final code,
ADAS305, due to time restrictions.

It is evident therefore, that these effects should be revised in further detail to provide a better understanding of the
processes involved when the beam atoms travel at a certain speed across a magnetic field. Now, there is a starting
point which further investigations can be based on. There is good evidence to suggest that these two areas could have
a significant effect on the generated emission line from ADAS305. This is important for the future diagnosis of ITER
and for the overall understanding of the beam emission.
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Appendix A

Coding

A.1 Adas305 Expansion

C DATE : 07-08-2009

C MODIFIED : Stuart Henderson

C - Increased Stark resolved matrix up to n=8

C Dimension Analysis:

C Variable Dimension()/Value

C ---------------------------------------------------------

C ndmx (Sum_{n=1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax-2)

C mwave Unknown(ndcomp must be equal to mwave)

C ipar() (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)

C na() (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)

C cmatr(,) (2*nˆ2,2*nˆ2)

C cmati(,) (2*nˆ2,2*nˆ2)

C vr(,) (2*nˆ2,2*nˆ2)

C vi(,) (2*nˆ2,2*nˆ2)

C vupr(,) (2*nˆ2,2*nˆ2)

C vupi(,) (2*nˆ2,2*nˆ2)

C vlowr(,) (2*nˆ2,2*nˆ2)

C vlowi(,) (2*nˆ2,2*nˆ2)

C rup() 2*nˆ2

C vstkr() (2*nˆ2(2*nˆ2-1)+2*nˆ2)+sum_{n=1}ˆ{n-1}(

C 2*nˆ2(2*nˆ2-1)+(2*nˆ2-1))

C vstki() (2*nˆ2(2*nˆ2-1)+2*nˆ2)+sum_{n=1}ˆ{n-1}(

C 2*nˆ2(2*nˆ2-1)+(2*nˆ2-1))

C estk() (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)

C bk() (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)

C rlow() (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)

C ak(,) ((Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax),

C (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax))

C xborn(,) ((Sum_{1}ˆ{nmax}2*nˆ2),(Sum_{1}ˆ{nmax}2*nˆ2))

C

C Further Notes: Variable dimensions not mentioned above remain the same.

C nmax is changed to 8

C These variables should be changed to remain consistent in:

C hydemi.for

C lumsis.for

C sigma.for

C sigmel
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C sigmin.for

C Within these subroutines, there are four new variables:

C Variable Dimension()/Value

C ---------------------------------------------------------

C a(,) ((Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)-1,

C (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)-1)

C b() (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)-1

C wr() (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)

C sig() (Sum_{1}ˆ{nmax}2*nˆ2)+(nmaxb-nmax)

C

C The IDL routine ADAS305_GET_STARK should be altered to

C allow the code to produce higher transitions than n=4->1

A.2 fldizn

C----------------------------------------------------------------------

C ******************* FORTRAN 77 PROGRAM: FLDIZN *********************

C

C PURPOSE: Code for modelling the effects of field ionization on

C neutral beam atoms within a stark field

C

C STEPS: 1.Assign parabolic quantum numbers n1, n2 and m and electric

C field

C

C 2.Calculate the Stark energies using 3rd order perturbation

C formula

C

C 3.Calculate ionization rates using semi-empirical formula

C

C NOTES: The code has presumed spin to be degenerate. Therefore, the

C number of resolved states that are assigned are nˆ2 - not

C 2*nˆ2.

C

C

C PARAMETERS:

C NAME BRIEF DESCRIPTION

C ------------------------------------------------------------

C VXB *** Lorentz field set in V/M

C SADDLE *** Classical ionization limit

C N *** Principal n-shell

C NDIM *** Number of resolved states

C M_1() *** Parabolic quantum number m

C N_1() *** Parabolic quantum number n1

C N_2() *** Parabolic quantum number n2

C E0 *** Zero order term of Stark energy level

C E1 *** First order term of Stark energy level

C E2 *** Second order term of Stark energy level

C E3 *** Third order term of Stark energy level

C E_0 *** Stark energy level

C N2F *** N2 factorial

C N2MF *** N2+M factorial

C G() *** Ionization probability

C

C

C ROUTINES:
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C ROUTINE BRIEF DESCRIPTION

C ------------------------------------------------------------

C GAMAF1 *** Scales factorial

C GAMAF2 *** Scales baseˆexponent

C

C AUTHOR: S.S.HENDERSON, JET

C 24 JULY 2009

C

C

C----------------------------------------------------------------------

A.3 getpn

C*********************************** f77 getpn.for ********************

C

C Purpose: Assigns quantum parabolic numbers to

C to the energy vector created in

C stark.for up to n=8. To achieve higher

C n-shells set n1(2*n**2), n2(2*n**2)

C and m(2*n**2)

C Notes: Energy is calculated from -k --> +k

C

C Variables: n *** principal quantum n-shell

C n1(ndim) *** parabolic quantum number, n1

C n2(ndim) *** parabolic quantum number, n2

C m(ndim) *** magnetic quantum number, m

C

C Author: S S Henderson, University of Strathclyde

C stuart.s.henderson@strath.ac.uk

C Date: 28/10/2009

C

C----------------------------------------------------------------------

A.4 gamaf1

C----------------------------------------------------------------------

C ******************** GAMAF1.FOR *************************************

C

C PURPOSE : CONVERT FACTORIAL, NMAX, TO BASE X1*64ˆJ1

C BASED ON GAMAF.FOR FROM ADAS LIBRARY

C

C PARAMETERS : NMAX *** N!

C G1 *** X1

C JG1 *** J1

C

C AUTHOR : S.S.HENDERSON, JET

C 10 JULY 2009
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C

C----------------------------------------------------------------------

A.5 gamaf2

C----------------------------------------------------------------------

C ******************** GAMAF2.FOR *************************************

C

C PURPOSE : CONVERT FROM BASE K TO BASE 64 AND PASS OUT J1 AND X1

C FROM EQUATION X1*64ˆJ1. BASED ON GAMAF.FOR FROM ADAS LIBRARY

C

C PARAMETERS : NMAX *** INTEGER PART OF EXPONENT

C EF *** FRACTIONAL PART OF EXPONENT

C K *** BASE

C E *** EXPONENT

C FAC *** B**EF

C G1 *** X1

C JG1 *** J1

C

C AUTHOR : S.S.HENDERSON, JET

C 10 JULY 2009

C

C----------------------------------------------------------------------

A.6 casmat

C-------------------------f77 casmat.for----------------------------------

C Purpose: Calculates the cascade matrix for Stark substates

C

C Parameters: ISMAX ---- TOTAL NUMBER OF STATES

C BMENER---- BEAM ENERGY

C N1,N2,M,S- PARABOLIC, SPIN AND MAGNETIC QUANTUM NUMBERS

C AK ---- RADIATIVE MATRIX

C AKSUM ---- SUMMED SUBSTATES

C E0 ---- ENERGY LEVELS

C

C

C

C CONTACT: Stuart S Henderson, University of Strathclyde

C EMAIL: stuart.s.henderson@strath.ac.uk

C----------------------------------------------------------------------

A.7 Vk

C------------------------------------------------------------

C ****************** Fortran77 Function VK ******************

C

C Purpose: Calculates the modified Bessel function of

C imaginery order and real argument - Kia(x)

C
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C

C Input : (r*8) a = real order

C Input : (r*8) x = real argument

C Output : (r*8) kv = Kia(x)

C

C Author: S. S. Henderson, University of Strathclyde

C

C Email: stuart.s.henderson@strath.ac.uk

C

C Date: 25/08/09

C------------------------------------------------------------

A.8 Vk1

C------------------------------------------------------------

C **************** Fortran77 Function VK1 *******************

C

C Purpose: Calculates the modified Bessel function of

C imaginery order and real argument - Kia’(x)

C

C

C Input : (r*8) a = real order

C Input : (r*8) x = real argument

C Output : (r*8) kv1 = Kia’(x)

C

C Author: S. S. Henderson, University of Strathclyde

C

C Email: stuart.s.henderson@strath.ac.uk

C

C Date: 25/08/09

C------------------------------------------------------------

A.9 irreg

C------------------------irreg.for----------------------------------

C PURPOSE: Calculates the area of an irregular shape.

C

C METHOD: Splits the shape into triangular sections originating

C from the origin and sums the area of each triangle

C together.

C

C AUTHOR: Stuart S Henderson, Dec ’09

C CONTACT: stuart.s.henderson@strath.ac.uk

C

C PARAMETERS: (A-F)DIM *** Correspond to a-f dimensions in geometry

C M(A-C) *** Gradients of lines A-C

C ANG(1-4) *** Angles 1-4

C A1,A2 *** Intermediate areas

C A *** Total area
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C XARR() *** X coordinates of shape

C YARR() *** Y coordinates of shape

C DIM *** Number of array points in shape

C------------------------------------------------------------
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Appendix B

Calculated roots of Laguerre polynomials

We show the calculated roots of the Laguerre polynomials LN(x) for N ≤ 40. The roots were obtained through a
bisection method with an accuracy of 10−12, taking in advantage that all the roots of the Laguerre polynomials are real,
greater than zero and of multiplicity one. The Laguerre polynomials were calculated using the recurrence relation

L0(x) = 1
L1(x) = 1 − x

N LN(x) = (2N − 1 − x) LN−1(x) − (N − 1) LN−2(x) . (B.1)

N
1 1.000000000 · 100

2 5.857864376 · 10−1 3.414213562 · 100

3 4.157745568 · 10−1 2.294280360 · 100 6.289945083 · 100

4 3.225476896 · 10−1 1.745761101 · 100 4.536620297 · 100 9.395070912 · 100

5 2.635603197 · 10−1 1.413403059 · 100 3.596425771 · 100 7.085810006 · 100

1.264080084 · 101

6 2.228466042 · 10−1 1.188932102 · 100 2.992736326 · 100 5.775143569 · 100

9.837467418 · 100 1.598287398 · 101

7 1.930436766 · 10−1 1.026664895 · 100 2.567876745 · 100 4.900353085 · 100

8.182153445 · 100 1.273418029 · 101 1.939572786 · 101

8 1.702796323 · 10−1 9.037017768 · 10−1 2.251086630 · 100 4.266700170 · 100

7.045905402 · 100 1.075851601 · 101 1.574067864 · 101 2.286313174 · 101

9 1.523222277 · 10−1 8.072200227 · 10−1 2.005135156 · 100 3.783473973 · 100

6.204956778 · 100 9.372985252 · 100 1.346623691 · 101 1.883359779 · 101

2.637407189 · 101

10 1.377934705 · 10−1 7.294545495 · 10−1 1.808342902 · 100 3.401433698 · 100

5.552496140 · 100 8.330152747 · 100 1.184378584 · 101 1.627925783 · 101

2.199658581 · 101 2.992069701 · 101

11 1.257964422 · 10−1 6.654182558 · 10−1 1.647150546 · 100 3.091138143 · 100

5.029284402 · 100 7.509887864 · 100 1.060595100 · 101 1.443161376 · 101

1.917885740 · 101 2.521770934 · 101 3.349719285 · 101

12 1.157221174 · 10−1 6.117574845 · 10−1 1.512610270 · 100 2.833751338 · 100

4.599227639 · 100 6.844525453 · 100 9.621316842 · 100 1.300605499 · 101

1.711685519 · 101 2.215109038 · 101 2.848796725 · 101 3.709912104 · 101

13 1.071423885 · 10−1 5.661318990 · 10−1 1.398564336 · 100 2.616597108 · 100

4.238845929 · 100 6.292256271 · 100 8.815001941 · 100 1.186140359 · 101

1.551076204 · 101 1.988463566 · 101 2.518526386 · 101 3.180038630 · 101
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N
4.072300867 · 101

14 9.974750703 · 10−2 5.268576489 · 10−1 1.300629121 · 100 2.430801079 · 100

3.932102822 · 100 5.825536218 · 100 8.140240142 · 100 1.091649951 · 101

1.421080501 · 101 1.810489222 · 101 2.272338163 · 101 2.827298172 · 101

3.514944366 · 101 4.436608171 · 101

15 9.330781202 · 10−2 4.926917403 · 10−1 1.215595412 · 100 2.269949526 · 100

3.667622722 · 100 5.425336627 · 100 7.565916227 · 100 1.012022857 · 101

1.313028248 · 101 1.665440771 · 101 2.077647890 · 101 2.562389423 · 101

3.140751917 · 101 3.853068331 · 101 4.802608557 · 101

16 8.764941048 · 10−2 4.626963289 · 10−1 1.141057775 · 100 2.129283645 · 100

3.437086634 · 100 5.078018615 · 100 7.070338535 · 100 9.438314336 · 100

1.221422337 · 101 1.544152737 · 101 1.918015686 · 101 2.351590569 · 101

2.857872974 · 101 3.458339870 · 101 4.194045265 · 101 5.170116034 · 101

17 8.263821471 · 10−2 4.361503236 · 10−1 1.075176578 · 100 2.005193532 · 100

3.234256124 · 100 4.773513514 · 100 6.637829205 · 100 8.846685511 · 100

1.142552932 · 101 1.440782304 · 101 1.783828473 · 101 2.177826826 · 101

2.631531781 · 101 3.158177168 · 101 3.779609384 · 101 4.537571653 · 101

5.538975179 · 101

18 7.816916667 · 10−2 4.124900853 · 10−1 1.016520180 · 100 1.894888510 · 100

3.054353113 · 100 4.504205539 · 100 6.256725074 · 100 8.327825157 · 100

1.073799005 · 101 1.351365621 · 101 1.668930628 · 101 2.031076763 · 101

2.444068136 · 101 2.916820866 · 101 3.462792707 · 101 4.104181677 · 101

4.883392272 · 101 5.909054644 · 101

19 7.415878376 · 10−2 3.912686133 · 10−1 9.639573440 · 10−1 1.796175582 · 100

2.893651382 · 100 4.264215540 · 100 5.918141562 · 100 7.868618915 · 100

1.013242372 · 101 1.273088146 · 101 1.569127834 · 101 1.904899321 · 101

2.285084976 · 101 2.716066933 · 101 3.206912225 · 101 3.771290580 · 101

4.431736280 · 101 5.231290246 · 101 6.280242315 · 101

20 7.053988969 · 10−2 3.721268180 · 10−1 9.165821025 · 10−1 1.707306531 · 100

2.749199255 · 100 4.048925314 · 100 5.615174971 · 100 7.459017454 · 100

9.594392870 · 100 1.203880255 · 101 1.481429344 · 101 1.794889552 · 101

2.147878824 · 101 2.545170279 · 101 2.993255463 · 101 3.501343424 · 101

4.083305706 · 101 4.761999405 · 101 5.581079575 · 101 6.652441653 · 101

21 6.725781792 · 10−2 3.547728953 · 10−1 8.736601668 · 10−1 1.626869942 · 100

2.618626411 · 100 3.854652138 · 100 5.342369281 · 100 7.091168813 · 100

9.112778854 · 100 1.142177176 · 101 1.403627070 · 101 1.697895269 · 101

2.027850941 · 101 2.397184559 · 101 2.810752860 · 101 3.275149741 · 101

3.799718782 · 101 4.398524576 · 101 5.094735119 · 101 5.932599412 · 101

7.025568863 · 101

22 6.426762874 · 10−2 3.389672548 · 10−1 8.345899854 · 10−1 1.553713387 · 100

2.500006237 · 100 3.678420344 · 100 5.095349069 · 100 6.758835516 · 100

8.678853314 · 100 1.086768689 · 101 1.334045105 · 101 1.611581134 · 101

1.921700368 · 101 2.267331660 · 101 2.652231959 · 101 3.081335794 · 101

3.561333520 · 101 4.101696860 · 101 4.716675785 · 101 5.429738526 · 101

6.285709625 · 101 7.399550701 · 101

23 6.153203776 · 10−2 3.245113292 · 10−1 7.988739687 · 10−1 1.486886334 · 100

2.391755830 · 100 3.517797443 · 100 4.870560369 · 100 6.456991307 · 100

8.285651893 · 100 1.036700904 · 101 1.271382503 · 101 1.534168757 · 101

1.826974239 · 101 2.152172785 · 101 2.512747713 · 101 2.912517511 · 101

3.356489656 · 101 3.851445968 · 101 4.406980781 · 101 5.037522660 · 101

5.766830435 · 101 6.640287307 · 101 7.774322728 · 101
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N
24 5.901985218 · 10−2 3.112391462 · 10−1 7.660969055 · 10−1 1.425597591 · 100

2.292562059 · 100 3.370774264 · 100 4.665083703 · 100 6.181535119 · 100

7.927539247 · 100 9.912098015 · 100 1.214610271 · 101 1.464273229 · 101

1.741799265 · 101 2.049146008 · 101 2.388732985 · 101 2.763593717 · 101

3.177604135 · 101 3.635840580 · 101 4.145172048 · 101 4.715310645 · 101

5.360857454 · 101 6.105853145 · 101 6.996224004 · 101 8.149827923 · 101

25 5.670477545 · 10−2 2.990108986 · 10−1 7.359095554 · 10−1 1.369183116 · 100

2.201326054 · 100 3.235675804 · 100 4.476496615 · 100 5.929083763 · 100

7.599899310 · 100 9.496749221 · 100 1.162901491 · 101 1.400795798 · 101

1.664712560 · 101 1.956289801 · 101 2.277524199 · 101 2.630877239 · 101

3.019429116 · 101 3.447109757 · 101 3.919060880 · 101 4.442234934 · 101

5.026457499 · 101 5.686496717 · 101 6.446667062 · 101 7.353423479 · 101

8.526015556 · 101

26 5.456448272 · 10−2 2.877079791 · 10−1 7.080160195 · 10−1 1.317081366 · 100

2.117120945 · 100 3.111093879 · 100 4.302770876 · 100 5.696818826 · 100

7.298909963 · 100 9.115862897 · 100 1.115582495 · 101 1.342850903 · 101

1.594550395 · 101 1.872068615 · 101 2.177077461 · 101 2.511609366 · 101

2.878164687 · 101 3.279867322 · 101 3.720698263 · 101 4.205861592 · 101

4.742389936 · 101 5.340218520 · 101 6.014277569 · 101 6.789147971 · 101

7.711799907 · 101 8.902840275 · 101

27 5.257989821 · 10−2 2.772291060 · 10−1 6.821639114 · 10−1 1.268814181 · 100

2.039159278 · 100 2.995835582 · 100 4.142194483 · 100 5.482371716 · 100

7.021376025 · 100 8.765202717 · 100 1.072097905 · 101 1.289715090 · 101

1.530372420 · 101 1.795258016 · 101 2.085789274 · 101 2.403669039 · 101

2.750962763 · 101 3.130207079 · 101 3.544567067 · 101 3.998072262 · 101

4.495986479 · 101 5.045419615 · 101 5.656413090 · 101 6.344054668 · 101

7.133184806 · 101 8.071276385 · 101 9.280261353 · 101

28 5.073462485 · 10−2 2.674872686 · 10−1 6.581366284 · 10−1 1.223971808 · 100

1.966767612 · 100 2.888883326 · 100 3.993311659 · 100 5.283736063 · 100

6.764603404 · 100 8.441216328 · 100 1.031985046 · 101 1.240790341 · 101

1.471408516 · 101 1.724866342 · 101 2.002378333 · 101 2.305389014 · 101

2.635629737 · 101 2.995196683 · 101 3.386660552 · 101 3.813225441 · 101

4.278967237 · 101 4.789207163 · 101 5.351129796 · 101 5.974879608 · 101

6.675697728 · 101 7.478677815 · 101 8.431783711 · 101 9.658242063 · 101

29 4.901448999 · 10−2 2.584072979 · 10−1 6.357472158 · 10−1 1.182201056 · 100

1.899366498 · 100 2.789363538 · 100 3.854876158 · 100 5.099200089 · 100

6.526302885 · 100 8.140899733 · 100 9.948548894 · 100 1.195577194 · 101

1.417020584 · 101 1.660079655 · 101 1.925804791 · 101 2.215434543 · 101

2.530438376 · 101 2.872574103 · 101 3.243966674 · 101 3.647218971 · 101

4.085572234 · 101 4.563146770 · 101 5.085319152 · 101 5.659346290 · 101

6.295472850 · 101 7.009089460 · 101 7.825537042 · 101 8.793259364 · 101

1.003674916 · 102

30 4.740718054 · 10−2 2.499239168 · 10−1 6.148334544 · 10−1 1.143195826 · 100

1.836454555 · 100 2.696521875 · 100 3.725814508 · 100 4.927293766 · 100

6.304515591 · 100 7.861693293 · 100 9.603775985 · 100 1.153654660 · 101

1.366674469 · 101 1.600222119 · 101 1.855213484 · 101 2.132720432 · 101

2.434003576 · 101 2.760555480 · 101 3.114158670 · 101 3.496965201 · 101

3.911608495 · 101 4.361365291 · 101 4.850398616 · 101 5.384138541 · 101

5.969912186 · 101 6.618061779 · 101 7.344123860 · 101 8.173681051 · 101

9.155646652 · 101 1.041575244 · 102

31 4.590194762 · 10−2 2.419801638 · 10−1 5.952538942 · 10−1 1.106689500 · 100
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N
1.777595693 · 100 2.609703415 · 100 3.605196802 · 100 4.766747084 · 100

6.097554567 · 100 7.601400949 · 100 9.282714313 · 100 1.114664976 · 101

1.319918958 · 101 1.544726832 · 101 1.789892983 · 101 2.056352634 · 101

2.345197348 · 101 2.657708135 · 101 2.995399087 · 101 3.360075953 · 101

3.753916441 · 101 4.179583087 · 101 4.640386681 · 101 5.140531448 · 101

5.685499287 · 101 6.282685591 · 101 6.942527719 · 101 7.680704776 · 101

8.523035861 · 101 9.518893989 · 101 1.079522438 · 102

32 4.448936583 · 10−2 2.345261095 · 10−1 5.768846293 · 10−1 1.072448754 · 100

1.722408776 · 100 2.528336706 · 100 3.492213273 · 100 4.616456770 · 100

5.903958504 · 100 7.358126733 · 100 8.982940924 · 100 1.078301863 · 101

1.276369799 · 101 1.493113976 · 101 1.729245434 · 101 1.985586094 · 101

2.263088901 · 101 2.562863602 · 101 2.886210182 · 101 3.234662915 · 101

3.610049481 · 101 4.014571977 · 101 4.450920800 · 101 4.922439499 · 101

5.433372133 · 101 5.989250916 · 101 6.597537729 · 101 7.268762809 · 101

8.018744698 · 101 8.873534042 · 101 9.882954287 · 101 1.117513981 · 102

33 4.316113562 · 10−2 2.275178028 · 10−1 5.596166559 · 10−1 1.040268508 · 100

1.670559196 · 100 2.451920796 · 100 3.386155338 · 100 4.475459498 · 100

5.722454720 · 100 7.130224344 · 100 8.702359231 · 100 1.044301365 · 101

1.235697376 · 101 1.444974168 · 101 1.672763922 · 101 1.919793659 · 101

2.186901352 · 101 2.475056291 · 101 2.785385111 · 101 3.119205555 · 101

3.478070915 · 101 3.863829672 · 101 4.278707208 · 101 4.725420660 · 101

5.207345190 · 101 5.728763454 · 101 6.295256595 · 101 6.914351338 · 101

7.596668701 · 101 8.358163722 · 101 9.225113944 · 101 1.024778443 · 102

1.155547564 · 102

34 4.190992002 · 10−2 2.209164020 · 10−1 5.433536946 · 10−1 1.009967765 · 100

1.621751953 · 100 2.380014626 · 100 3.286400154 · 100 4.342910167 · 100

5.551929289 · 100 6.916256712 · 100 8.439144796 · 100 1.012434611 · 101

1.197617070 · 101 1.399955595 · 101 1.620015203 · 101 1.858442711 · 101

2.115979765 · 101 2.393479131 · 101 2.691925258 · 101 3.012460565 · 101

3.356419492 · 101 3.725373335 · 101 4.121190386 · 101 4.546118331 · 101

5.002900054 · 101 5.494941289 · 101 6.026562168 · 101 6.603391492 · 101

7.233019308 · 101 7.926155449 · 101 8.698888681 · 101 9.577719042 · 101

1.061334485 · 102 1.193621067 · 102

35 4.072920906 · 10−2 2.146874527 · 10−1 5.280103843 · 10−1 9.813861735 · 10−1

1.575725948 · 100 2.312228297 · 100 3.192397939 · 100 4.218064125 · 100

5.391402735 · 100 6.714963280 · 100 8.191701759 · 100 9.825020497 · 100

1.161881639 · 101 1.357753936 · 101 1.570626340 · 101 1.801077329 · 101

2.049767111 · 101 2.317450800 · 101 2.604994871 · 101 2.913397921 · 101

3.243817184 · 101 3.597602877 · 101 3.976343410 · 101 4.381926012 · 101

4.816619797 · 101 5.283192506 · 101 5.785079502 · 101 6.326637368 · 101

6.913541388 · 101 7.553443513 · 101 8.257140552 · 101 9.040852386 · 101

9.931297366 · 101 1.097959909 · 102 1.231732532 · 102

36 3.961320641 · 10−2 2.088002857 · 10−1 5.135107755 · 10−1 9.543811531 · 10−1

1.532249225 · 100 2.248215818 · 100 3.103661490 · 100 4.100262546 · 100

5.240010109 · 100 6.525233330 · 100 7.958627509 · 100 9.543288035 · 100

1.128275129 · 101 1.318104390 · 101 1.524274227 · 101 1.747304463 · 101

1.987785893 · 101 2.246391051 · 101 2.523887526 · 101 2.821154568 · 101

3.139204037 · 101 3.479207145 · 101 3.842529076 · 101 4.230774567 · 101

4.645849004 · 101 5.090042150 · 101 5.566145791 · 101 6.077624068 · 101

6.628869068 · 101 7.225601475 · 101 7.875533816 · 101 8.589548143 · 101

9.383992978 · 101 1.028580101 · 102 1.134651355 · 102 1.269880152 · 102
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37 3.855673419 · 10−2 2.032275099 · 10−1 4.997870664 · 10−1 9.288254993 · 10−1

1.491115012 · 100 2.187669072 · 100 3.019757468 · 100 3.988920303 · 100

5.096984545 · 100 6.346084061 · 100 7.738683814 · 100 9.277608942 · 100

1.096607963 · 101 1.280775291 · 101 1.480677283 · 101 1.696783086 · 101

1.929623895 · 101 2.179801837 · 101 2.448000859 · 101 2.735000162 · 101

3.041690963 · 101 3.369097614 · 101 3.718404564 · 101 4.090991253 · 101

4.488478042 · 101 4.912787781 · 101 5.366230174 · 101 5.851620322 · 101

6.372450358 · 101 6.933147003 · 101 7.539475330 · 101 8.199207200 · 101

8.923308273 · 101 9.728253367 · 101 1.064118573 · 102 1.171405711 · 102

1.308062254 · 102

38 3.755515263 · 10−2 1.979445866 · 10−1 4.867785379 · 10−1 9.046053593 · 10−1

1.452138374 · 100 2.130312744 · 100 2.940299106 · 100 3.883515862 · 100

4.961643595 · 100 6.176642449 · 100 7.530773049 · 100 9.026621537 · 100

1.066712948 · 101 1.245562951 · 101 1.439588797 · 101 1.649215579 · 101

1.874922978 · 101 2.117252653 · 101 2.376817221 · 101 2.654311242 · 101

2.950524786 · 101 3.266360325 · 101 3.602854026 · 101 3.961202923 · 101

4.342800076 · 101 4.749280846 · 101 5.182584921 · 101 5.645041308 · 101

6.139487752 · 101 6.669443658 · 101 7.239369576 · 101 7.855074022 · 101

8.524387023 · 101 9.258356301 · 101 1.007358074 · 102 1.099741054 · 102

1.208220095 · 102 1.346277283 · 102

39 3.660429196 · 10−2 1.929294668 · 10−1 4.744306515 · 10−1 8.816185218 · 10−1

1.415153403 · 100 2.075900054 · 100 2.864940087 · 100 3.783582804 · 100

4.833377810 · 100 6.016130156 · 100 7.333918496 · 100 8.789116762 · 100

1.038441992 · 101 1.212287459 · 101 1.400791538 · 101 1.604340819 · 101

1.823370185 · 101 2.058369013 · 101 2.309888640 · 101 2.578551437 · 101

2.865061891 · 101 3.170220279 · 101 3.494939706 · 101 3.840267556 · 101

4.207412867 · 101 4.597781756 · 101 5.013024019 · 101 5.455095618 · 101

5.926344277 · 101 6.429629778 · 101 6.968498128 · 101 7.547442957 · 101

8.172315339 · 101 8.851002367 · 101 9.594632357 · 101 1.041992613 · 102

1.135443740 · 102 1.245091829 · 102 1.384523795 · 102

40 3.570039431 · 10−2 1.881622832 · 10−1 4.626942813 · 10−1 8.597729640 · 10−1

1.380010821 · 100 2.024209136 · 100 2.793369354 · 100 3.688702678 · 100

4.711641147 · 100 5.863850878 · 100 7.147247908 · 100 8.564017018 · 100

1.011663405 · 101 1.180789229 · 101 1.364093371 · 101 1.561928589 · 101

1.774690595 · 101 2.002823283 · 101 2.246824998 · 101 2.507256077 · 101

2.784748001 · 101 3.080014574 · 101 3.393865708 · 101 3.727224588 · 101

4.081149282 · 101 4.456860318 · 101 4.855776353 · 101 5.279561119 · 101

5.730186332 · 101 6.210017907 · 101 6.721937093 · 101 7.269515885 · 101

7.857280291 · 101 8.491123114 · 101 9.178987467 · 101 9.932080872 · 101

1.076724406 · 102 1.171223095 · 102 1.282018420 · 102 1.422800445 · 102

Calculated roots for Laguerre polynomials of grad N. The accuracy is the last cipher.
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dircol, 70
intp, 77
intr, 73
intt, 77
intz, 73
irreg, 76
qstrg1, 76
starkccr, 43
starkinteg, 43
vk, 71
vk1, 71
xs, 73
xsec, 77
3J symbols, 24

ADAS, 3
ADAS305, 3, 11, 12, 28, 32, 33, 60, 70

Alpha particle, 5
Asymmetric atoms, 68

Bremsstrahlung, 12

Cascade, 3, 55
Matrix, 56

casmat, 56
Charge Exchange, 9, 10, 12

Recombination, 7, 9, 12
Thermal, 10, 12

Chequerboard system, 7
Classical ionisation limit, 29
Clebsch Gordan coefficients, 18
Collision radiative, 10, 54
Complex coordinate integration, 20, 29, 38, 39
Coulomb-Stark potential, 29
Cross sections, 60

Asymmetric, 3, 12, 60, 68
Differential, 72
Total, 77

Diagnostics, 12
Beam Emission Spectroscopy, 8–10, 12
Beam Stopping, 9, 12

Dipole moment, 16
Dissociative Attachment, 7
Doppler

Broadening, 10–12
Shift, 10, 12

Einstein coefficient, 51

A, 55
Euler angles, 61

Field ionisation, 3, 12, 29, 54
Fine structure, 16, 17
Fine structure constant, 16
fldizn, 32, 33
Fusion, 5

ITER, 5, 6, 8
JET, 5, 7, 14
Magnetic Confinement, 5
Stellarator, 5
Tokamak, 5, 14

Gauss quadrature formula, 41
Generalised charge, 22
getpn, 35
Gyromagnetic constant, 16

Hamiltonian, 14
Dirac, 16
Electric, 16
Fine structure, 17
Magnetic, 16
Perturbed, 16
Stark, 21, 39

Heating systems, 5
ECRH, 5
ICRH, 5
NBI, 5, 6

NINI, 8
PINI, 7

Ohmic, 5
hydemi, 57
Hydrogen, 5
Hydrogen atom, 15

Energies, 15, 39, 45
Wave functions, 15, 39
Widths, 29, 31, 32, 35, 39, 45, 54

Hydrogen isotopes
Deuterium, 5
Tritium, 5

Hydrogen lines, 3, 18, 19
Dα, 3
Dα, 10, 11
Hα, 12, 26, 27
Polarisation, 25
π, 11, 25
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σ, 11, 12, 25
Stark multiplet, 3, 10, 11, 54

Ignition, 5
Interaction potential, 62
ITER-like wall, 8

Laguerre polynomials, 15
Laguerre-mesh polynomials, 40
LAPACK, 35
Line strength, 54
Lorentz field, 10, 11, 14

Operator
Lowering, 17
Raising, 17

Oscillator strength, 63

Parabolic coordinates, 20, 39
Paschen Back Effect, 11, 16
Perturbations, 38

Field, 14
Isotopic correction, 51

Population model, 54
Potential barrier penetration, 30
Poynting vector, 26

Quantum numbers, 15, 27, 32
j, 16
k, 3, 11, 22
l, 11, 15
m, 3, 11
m j, 16
ml, 15
ms, 15
n, 11, 15
n1, 22
n2, 22
s, 15

Radiative decay, 54
Reduced mass, 15, 62
Resonances, 29
Runge-Lenz vector, 11, 22, 53

Schrödinger equation, 21
Scrape off layer, 9
Selection rules, 52
Semiclassical approximation, 61
Separatrix, 9
sigma, 57
Spherical harmonics, 15
Stark effect, 19, 25, 38

Linear, 19
Motion Stark effect, 3, 11, 27

Stopping coefficient, 10
Stripping, 7
Strong coupling, 74

Supercusp system, 7
System of reference

Lab, 60
Molecular, 60

Transition amplitude, 62
Transition probability, 62, 63, 70, 71
Tunnel effect, 30

Wigner-Eckart theorem, 25
WKB approximation, 31

Z effective, 12
Zeeman effect, 11, 19
Zeeman generalised gyromagnetic constant, 19
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