
Sep25-09 ADAS Bulletin

Items:

1. ADAS release v3.0
2. An integrated heavy species modelling capability for ADAS
3. ADAS Communications and Reports
4. The ADAS Feature Generator and ADAS605
5. Code and data updates in release v3.0.

1. This new bulletin has the usual long list (more than seventy this time) of code updates, but
some of these entries are in fact large new extensions of the ADAS capabilities – especially C15/C16
and C41/C42 – and justify the fact that this release takes us to v3.00. Thus C15/16 brings in the first
part of the whole special feature handling development, ‘ADAS Feature Generation’ - AFG. It will be
another year before the second part, concerning optimised fitting, is fully in place along side this first
pedagogical part. More on AFG later. The other very large addition is the comprehensive heavy
species handling.

2. Let me turn first to the heavy species for fusion plasma modelling and spectral analysis. I can
only give a brief outline here and hopefully catch your interest. We are providing a complete
capability for creating a baseline of atomic data for arbitrary heavy species together with all the
derived data required for plasma modelling and spectral analysis. Most of the principles and ideas
behind the approach have been signalled over the last two years at the ADAS Workshop. The
complexity and potentially overwhelming size (levels, transitions etc.) of heavy atoms force us to focus
on ‘resolution’ levels in the establishment of a baseline of atomic modelling data. The ADAS
implementation deals with three resolution levels of increasing precision, but also increasing demand
on computer resources - ‘configuration average’ (ca), ‘LS coupled’ (ls) and ‘intermediate coupled’
(ic). In configuration average, it is possible to execute calculations with many configurations included
(cl) as well as smaller calculations with fewer configurations (ca) matching the number of
configurations which can be included in ic or ls. ic calculations for heavy species ions may be severely
limited by computer resources. So in the ADAS database you can expect to see data sets with names
like cl#<elsym> <z_ion>.dat, ca#<elsymb><z_ion>.dat, ls#<elsymb><ion charge>.dat and
ic#<elsymb><z_ion>.dat. We use the fact that cl results can ‘top-up’ ic calculations (for example of
power) maintaining accuracy and reliability of global properties. Already you will be familiar with
the ADAS use of year numbers. Often these represent the year a data set was prepared, but in
systematic semi-automatic method data production, the year number can correspond to the year of
introduction of a method. Here, for heavy species mass production, we have chosen rather arbitrarily
the historic year number ‘40’. This will allow us to use ‘41’, ‘42’ etc. for uplifts of the heavy species
datasets in the future without causing confusion. So look for adf04 datasets like
 /home/adas/adas/adf04/coparf#<iz0>/arf40_<resolution>#<elsymb><z_ion>.dat
and adf15 datasets like
 /home/adas/adas/adf15/pec40#<elsymb>/pec40#<elsymb>_<resolution>#<elsymb><z_ion>.dat
and so on, where iz0 is the element nuclear charge, elsymb is the element symbol and z_ion is the ion
charge. In a general sense, the ADAS objectives for heavy elements are the same as for light elements,
namely fundamental adf04 data sets containing atomic structure, transition probability and collisional
data suitable for population calculations, recombination (adf08, adf09 or parametric approximations)
and ionization (adf07, adf23 or parametric approximations) for ionization state calculations. Then
from these, the production of the derived data formats adf11, adf15 and adf40 for application must be
enabled. The difference for heavy elements is the sheer scale of the problem and the need to automate
and regulate the size according to computer resources, hopefully without too much loss of accuracy.

To automate the atomic structure calculations, we have introduced promotion rules for all ions of every
element, data format adf54 (with similar adf55 and adf56 formats for recombination and ionization
respectively). Also we have provided an optimization method for regulating these promotional rule
data sets to available computer resources. Then at the IDL command line, we have provided
procedures to execute the various production steps in a hands on manner and also integrated
procedures and scripts for complete automation (online or offline) of the process. The following

 1

schematic shows the pattern. Similar schematics describe offline and batch processing. Again,
somewhat similar schematics describe promotion rule optimization, recombination and ionization.

All of the above means quite a few new ADAS data formats, many new IDL and FORTRAN
procedures and subroutines along with various shell scripts. Describing all of these is outside the
scope of this bulletin. However there is a report “Heavy species in fusion plasma modelling and
spectral analysis” which hopefully explains all. Unfortunately, with all its appendices, it is around 250
pages long. I shall be making this report available in /docs and through the ADAS web site shortly
after the 2009 ADAS Workshop/ADAS-EU Course.

Heavy species unfortunately means very large amounts of data. I am afraid the ADAS data bases are
going to increase dramatically. It is probably a useful point of discussion at the ADAS Workshop if
the ADAS releases should continue to include everything automatically or whether some sites may
wish just a subset. To give time to adjust, this release we are putting up data for a few new elements.
For the heavy species ionization part (see D20 below), we have put in data for Mg, Si, Ar, W to assist
both fusion and astrophysics and and are holding off on others. For the heavy species excitation and
line power part (see D21 below) we have put up data for Ar and W. (I note that Kr, Ag, Sn and Xe
are already in our ADAS development space and any other element is relatively easy to generate). But,
such new data requires exposure to multiple users before we commit to too much.

3. This brings me conveniently to the issue of ADAS Communications and ADAS Reports. It
has been apparent for some time that studies carried out in reponse to user engagement with the ADAS
team, technical notes associated with ADAS developments and user manuals for items in ADAS or
EXTENDED-ADAS should be more visible, more plentiful and more organized. We plan that these

 2

documents will have a standard appearance, similar to the ADAS website first page and be accessible
under Notes. They will be labelled as

 “ADAS-Communication ADAS-CM(09)01”
or
 “ADAS-Report ADAS-R(09)01”

and they will include a standard disclaimer/permissions for us/copyright notice. Implementation
commences with this release v3.0

4. The ADAS Feature Generator is the brain child of Christopher Nicholas and Allan Whiteford
and is the first part of their integrated handling and fitting of special spectroscopic features. AFG
provides an applications programming interface (API) to existing ADAS feature generation routines.
The interface provides a common way to access and control the underlying routines in ADAS. AFG
imparts enough information about the special features such that the ADAS605 GUI-based program can
generate a custom control panel for each of the currently supported features and should easily
accommodate future inclusions, without the need for further GUI development.

Upon selecting ADAS605 from the series 6 menu, you are presented with a simple input screen (Fig.
1) with a dropbox allowing selection of the feature of interest. A short description of the currently
selected feature is given in the textbox below the dropbox.

Fig. 1: ADAS605 input screen: feature selection.

The processing screen (Fig. 2) is split into two main segments; the left hand side is consistently the
same regardless of the feature selected - it is a graphical display area, the right hand side is comprised
of a set of control widgets to alter the special feature parameters and will therefore adapt to the
particular feature selected from the input screen.

 Fig. 2: ADAS605 processing screen: allows interactive manipulation of chosen feature via
 custom control widgets in right hand panel, with graphical output in left panel.

The plot window will update (in most cases in real-time) in response to changes of feature parameters
and will re-scale the plot automatically. It may be desirable to keep a specific, fixed scale as parameters

 3

are altered and, in this case, the `explicit scaling' check-box should be checked (which will activate the
X-Y min/max textboxes). The `use current values' button will auto-fill these textboxes with the current
X-Y min/max values.

Fig. 3: ADAS605 output screen: option to produce three types of output - graphic, X-Y plot
 data and finally, output of IDL source code that will recreate the feature as seen in
 the interactive window.

 Fig. 4: ADAS605 `graphical output'.

 4

The ADAS605 output screen (Fig. 3) follows the usual format i.e. a set of optional output types, each
with the familiar `replace', `default file' and `file names', checkbox, button and textbox respectively for
specifying the output file. The output options available are `graphical output' - saving the plot window
as a graphic (postscript in the example Fig. 4), `X-Y output' - the plot data in a plain text file as co-
ordinate pairs (Fig. 5) and finally, `code listing output' - AFG will auto-generate the appropriate IDL
source code (including in-line comments) to generate the feature using the API directly, rather than via
the GUI (Fig. 6). It is envisaged that this template source will serve as an entry point to most users
looking to utilize AFG in their own codes. As can be seen from the output screenshot, AFG is an
object-oriented program and therefore utilises the IDL object syntax. However, the program can also
be utilised through a wrapper program that operates in a familiar, procedural, fashion.

 Fig. 5: ADAS605 `X-Y output'.

 Fig. 6: ADAS605 `code listing output'.

 5

It is very easy to obtain a plot similar to that shown in the ADAS605 interaction, from the command
line. Staying with the Zeeman feature example, an interaction with the program may be as follows
(command line compilation statements removed):

IDL> pars = afg('zeeman', /parameters)
IDL> pars.bvalue = 1.3
IDL> pars.findex = 15
IDL> result = afg('zeeman', calculate=pars)
IDL> plot, result.wv, result.intensity, /nodata
IDL> for i=0, n_elements(result.wv)-1 do $
IDL> oplot, [result.wv[i], result.wv[i]], [0.0,result.intensity[i]]

which produces the output you see in Fig. 7.

 Fig. 7: Plot as produced by command line input example.

In order to understand the above interaction with AFG more fully, it is better to consider a more
thorough interaction with the system.

First query AFG for a list the currently available features:

IDL> print, afg(/list)
stark zeeman hdlike

It is then possible to request a description of one of the listed features:

IDL> desc = afg('zeeman', /description)
IDL> help, desc, /str
** Structure <a0c409c>, 3 tags, length=1060, data length=1060, refs=1:
 NAME STRING 'Zeeman Feature'
 TEXT STRING 'ADAS implementaion of Zeeman features base'...
 PARAMETERS STRUCT -> <Anonymous> Array[1]

Now examining `parameters' specifically:

IDL> help, desc.parameters, /str
** Structure <a0c2c14>, 4 tags, length=1036, data length=1036, refs=2:
 POL STRUCT -> <Anonymous> Array[1]
 OBSANGLE STRUCT -> <Anonymous> Array[1]
 BVALUE STRUCT -> <Anonymous> Array[1]
 FINDEX STRUCT -> <Anonymous> Array[1]

 6

The user is able to examine a particular parameter; picking `bvalue' as an example:

IDL> help, desc.parameters.bvalue,/str
** Structure <a0c2fec>, 8 tags, length=60, data length=60, refs=2:
 DESC STRING 'Magnetic field strength (T)'
 TYPE STRING 'float'
 UNITS STRING 'T'
 MIN FLOAT 0.00000
 MAX FLOAT 20.0000
 DISPTYPE STRING 'continuous'
 LOG INT 0
 ALTERSLIMITS INT 0

We can see that this gives the user a more complete description of what the parameter is, the expected
data type, units, upper & lower limits for the parameter value, whether the feature has a logarithmic
dependence on it and whether changing it can potentially alter the limits of other parameters for that
feature.

To get the parameters themselves,

IDL> pars = afg('zeeman', /parameters)
IDL> help, pars, /str
** Structure <a0c5944>, 4 tags, length=16, data length=12, refs=1:
 POL INT 1
 OBSANGLE FLOAT 90.0000
 BVALUE FLOAT 2.50000
 FINDEX INT 15

So, we can see that `pars' in the original plotting example was just a structure of the parameter values.
The values in this structure were altered and then simply passed in via the keyword `calculate' to have
AFG evaluate the feature and the result plotted.

5. The list of code and data updates in v3.00 follows:

Corrections and updates to code (ADAS v2.13 to ADAS v3.00)

C.1 An IDL routine to write adf42 datasets, with input data in
form of adf42 fulldata structure, has been added: write_adf42.pro.

C.2 Fixed bug in ADAS405 where a lack of the implicit SAVE feature

in g77 caused problems with running resolved datasets.

C.3 Fixed bug in ADAS405 where LRSPEC wasn't being set to FALSE

by default by g77.

C.4 Increased NDMET to 5 in ADAS412 xcoef.for

- Do not print warning messages in the middle of
 the ADF20 file in ADAS412
- Write a final '1' back to IDL just before exiting ADAS412 to
 allow files etc. to be flushed before IDL frees up the pipe.

C.5 Added dcnhne to return solar NH/NE abundancies.

 7

C.6 Removed warning from xxpars.for which complained about parent
being missing and 1S being forced. Also added extra check
that ndmet was high enough for file being read.

C.7 Added run_adas412

C.8 Allowed for more than 32,768 transitions in ADAS812

C.9 Made pers_f.c slightly more robust (catch for failed entry

lookups and blank names)

C.10 Modified ADAS405 to write ADF16 files with parameters ordered

as specified in the documentation and as read by ADAS507.
ADAS406 had the same fault and is also updated.

C.11 Initialise LRSPEC variable in ADAS405 and also pass further

communication between IDL and Fortran to allow for buffers
to be flushed etc.

C.12 Initialise LRSPEC variable in ADAS409.

C.13 Corrected documentation of fortran/adaslib/maths/xxbasa.for

C.14 Corrected faulty logic in run_adas208 which meant that

projection was always turned on. (Note: has minimal implications
to anything processed using run_adas208).

C.15 Added AFG (ADAS Feature Generation) library to access ADAS

special features in a uniform way. Initial features included
are from ADAS603 (Zeeman) and ADAS305 (Stark).

C.16 Added ADAS605 - a graphical front-end for AFG allowing

pedagogical exploration of AFG features.

C.17 Add adas_writefile.pro, a companion routine to adas_readfile.pro

to write, or append, a string array to an output ascii file.

C.18 Corrected fortran/adas8xx/adas801/ifg/orbital.for
 fortran/adas8xx/adas801/ifg/a04filter.for
 offline_adas/adas8#1/adas801/ifg/orbital.for
 offline_adas/adas8#1/adas801/ifgpp/a04filter.for

updating length of string to 296 to allow 36 orbitals.

C.19 Updated fortran/adas8xx/adas801/ifg/ifgpp.for to allow for 36 orbitals.

Also updated to match offline version, with adjustable string formatting.
 fortran/adas8xx/adas801/ifg/termread.for
 fortran/adas8xx/adas801/ifg/levelread.for
Brought into line with offline version: carry Sval of level in unused
part of label.

C.20 Updated fortran/adas8xx/adas801/include/ifg.h

 fortran/adas8xx/adas801/include/ifgpp.h
 fortran/adas8xx/adas801/include/rcg.h
 offline_adas/adas8#1/adas801/include/ifg.h
 offline_adas/adas8#1/adas801/include/rcg.h
 offline_adas/adas8#1/adas801/include/ifgpp.h
 offline_adas/adas8#1/adas801/include/rcn.h

 with new dimensions for heavy species runs. Introduced ksjk, dimension

 8

 of nsjk, to rcn.h
 Updated:
 fortran/adas8xx/adas801/rcg/cafcdolp.for
 fortran/adas8xx/adas801/rcg/calcfc.for
 fortran/adas8xx/adas801/rcg/calcv.for
 fortran/adas8xx/adas801/rcg/cpl37.for
 fortran/adas8xx/adas801/rcg/elecden.for
 fortran/adas8xx/adas801/rcg/energy.for
 fortran/adas8xx/adas801/rcg/mlew.for
 fortran/adas8xx/adas801/rcg/mupole.for
 fortran/adas8xx/adas801/rcg/rceinp.for
 fortran/adas8xx/adas801/rcg/sprin.for
 fortran/adas8xx/adas801/rcg/sprn37.for
 fortran/adas8xx/adas801/rcg/sprnadd.for
 offline_adas/adas8#1/adas801/rcg/cafcdolp.for
 offline_adas/adas8#1/adas801/rcg/calcfc.for
 offline_adas/adas8#1/adas801/rcg/calcv.for
 offline_adas/adas8#1/adas801/rcg/cpl37.for
 offline_adas/adas8#1/adas801/rcg/elecden.for
 offline_adas/adas8#1/adas801/rcg/energy.for
 offline_adas/adas8#1/adas801/rcg/mlew.for
 offline_adas/adas8#1/adas801/rcg/mupole.for
 offline_adas/adas8#1/adas801/rcg/rceinp.for
 offline_adas/adas8#1/adas801/rcg/sprin.for
 offline_adas/adas8#1/adas801/rcg/sprn37.for
 fortran/adas8xx/adas801/rcg/sprnadd.for
 re-specifying dimension of nsjk as ksjk.

C.21 Updated fortran/adas8xx/adas810/hapecf.for

Changed ndpec 1500 -> 380000 (required for heavy species calculations)
Changed ndtrn 20000 -> 380000
Removed reference to unused subroutine hawinf in comments

C.22 Updated fortran/adas4xx/adas408/d8eval.for

No longer using wrong shell energy in case B Dielectronic
Recombination Power (POWDRC)

C.23 Corrected fortran/adaslib/atomic/xxcftr.for

 offline_adas/adas8#1/adaslib/xxcftr.for
Fixed standard form check to include small 'h'
Allowed output strings longer than 19 characters to be handled -
output is put in first 19 spaces (previously blank string was
returned if output string not 18 or 19 characters long)

C.24 In offline series - not in the interactive or ADAS libraries:

Updated fortran/adas2xx/adaslib/b8getp.for
 offline_adas/adas8#1/adas2xx/adaslib/b8getp.for
Increase number of levels to 3500
Updated fortran/adas2xx/adaslib/bxcoef.for
 offline_adas/adas8#1/adas2xx/adaslib/bxcoef.for
Increase number of levels to 3500
Increase number of transitions to 380000
Incorporate changes from offline version 1.5:
 - Change first dimension of ipla and zpla to 2*ndmet
 to accommodate changes in xxdata_04.for permitting
 Jpj parents.

C.25 Updated fortran/adaslib/xxdata/xxdata_04.for and

 offline_adas/adas8#1/read_adf/xxdata_04.for

 9

Increased length of cline to allow for 36 orbitals
Fixed bug in detecting highest level present.

C.26 Updated fortran/adaslib/utility/xxpars.for

Removed large amounts of commented out code.

C.27 Updated fortran/adaslib/maths/xxminv.for

 offline_adas/adas8#1/adaslib/xxminv.for
Increased nlmax to 3501

C.28 Updated offline_adas/adas8#1/adas810/adas810_offline.for

Increased ndlev from 2800 to 3500, increased ndqdn from 6 to 8
Updated offline_adas/adas8#1/adas810/Makefile_810 to remove reference
to unused subroutine hawinf.o

C.29 Updated offline_adas/adas8#1/adas810/hapecf.for

Change ndpec 1500 -> 380000 (required for heavy species calculations)
Removed reference to unused subroutine hawinf in comments
Extended length of producer string 20->30 to match online version

C.30 Updated offline_adas/adas8#1/adas2xx/b8scom.for to match online version:

 - Te values for S-line splining may not be the same so set lsetx
 to TRUE before call to xxsple.
 - Set unused values in redscef and redlscom to 0.0.
Updated offline_adas/adas8#1/adas2xx/b8splt.for to match online version:
 - The check to avoid integrating over zeros in the input can result in no
 valid points. This causes xxsple an out of bounds error in xxsple. Add a
 check to avoid the call in this case.
Updated offline_adas/adas8#1/adas2xx/r8necip.for to match online version:
 - Removed mainframe listing information beyond column 72
Updated offline_adas/adas8#1/adaslib/bxttyp.for to match online version:
 - Made the routine accept that transition codes of '1', '2' and '3' as
 well as ' ' correspond to electron impact excitation.
Updated offline_adas/adas8#1/adaslib/xxfrmt_trm.for to match online version
 - Removed unused integer i4 to keep in line with online version
Updated offline_adas/adas8#1/adaslib/xxname.for to match online version:
 - Allow for USERIDs > 8 characters (now set to 20).
 - Changed test on REALNAME to reflect changes in underlying C code.
 - Also moved removal of last character to after 'Who produced this
 file' is possibly set.
 - Add on CHAR(0) to username as C style string terminator rather than '\0'
Updated offline_adas/adas8#1/adaslib/xxwcmt_15.for to match online version:
 - Removed large numbers of unused variables.
Updated offline_adas/adas8#1/adaslib/xxwcmt_40.for to match online version:
 - Increased producer string to 30 characters.
Updated offline_adas/adas8#1/adaslib/xxpars.for to match online version:
 - Copied online version to offline, implementing:
 - Removed warning to i4unit aboutlack of parent and 1S being forced
 - Added check that ndmet is high enough.
 - Added capital letters to comments.
 - Removed write to unit 0 inadvertently added with last update.
 - Removed large amounts of commented out code.

C.31 Added the option to return an error message if calculation fails in

 adas603_get_hdlike.

C.32 Added top level perl directory.

 10

C.33 Added atomic.pm giving perl-implementations of:
 xxesym, xxelem and xxeiz0

C.34 Corrected check of whether wavelength is in range in hawvrg.for

(online and offline)

C.35 Corrected Te, Ne ordering in call to d8wzcd.for in d8out1.for

C.36 Fixed bug where the routines:

 fortran/adas3xx/adas314/cether.for
 fortran/adas3xx/adas314/cewr11.for
 fortran/adas3xx/adas314/cewr12.for
 fortran/adas3xx/adaslib/cxbms.for
 fortran/adas3xx/adaslib/cxchrg.for
 fortran/adas3xx/adaslib/cxcrdg.for
 fortran/adas3xx/adaslib/cxcrip.for
 fortran/adas3xx/adaslib/cxcrps.for
 fortran/adas3xx/adaslib/cxdata.for
 fortran/adas3xx/adaslib/cxeiqp.for
 fortran/adas3xx/adaslib/cxextr.for
 fortran/adas3xx/adaslib/cxfrac.for
 fortran/adas3xx/adaslib/cxgfil.for
 fortran/adas3xx/adaslib/cxghnl.for
 fortran/adas3xx/adaslib/cxhyde.for
 fortran/adas3xx/adaslib/cxlthe.for
 fortran/adas3xx/adaslib/cxmrdg.for

 were supposed to be included in the adas3xx static library but weren't.

C.37 Updated idl/adas4xx/adas416/adas416.pro:

 - calculation and display of child partition fractional abundances
 has been turned off to stop code hanging. The fortran code was
 subsequently debugged and this change is reversed.

C.38 Updated idl/adaslib/read_adf/read_adf00.pro to allow for neutral

ions to be handled with new z_ion, z_nuc keywords.

C.39 Added write_adf54.pro and read_adf54.pro

C.40 Updated idl/adas8xx/adaslib/adas8xx_check_cowan_charge_state.pro:

 - Updated comments and removed tabs.
 - Added idl/adas8xx/adaslib/adas8xx_cowan_string_check.pro

C.41 Updated idl/adas8xx/adaslib/adas8xx_check_cowan_charge_state.pro:

 Updated idl/adas8xx/adaslib/adas8xx_cowan_string_check.pro:
 - Added lun_verb keyword for diagnostic output to file.
 Updated idl/adas8xx/adaslib/adas8xx_create_adf15_adf40.pro:
 - first commented version
 - added donotrun keyword
 - changed inputs to z0_nuc and z_ion from z0,z1
 - moved list of files into files structure
 - added ca_only keyword
 Updated idl/adas8xx/adaslib/adas8xx_create_ca_adf04.pro:
 - Added call to adas8xx_cowan_string_check
 - Modified temporary filenames to make unique
 - Modified to return 'exit_status'. Also quits rather than crashes
 if Cowan run has failed
 - Put ,/sh on spawning final copying to archive
 - Changed z0, z1 inputs to z0_nuc, z_ion
 - Moved plasma conditions into plasma structure

 11

 - Added exitstatus output
 - Added lun_verb for diagnostic output to file
 - Added cowan_scale_factors to allow custom adjustments to Slater parameters
 Updated idl/adas8xx/adaslib/adas8xx_create_drivers.pro:
 - First commented version.
 - File names are now provided as imputs, not generated within this routine
 - Moved plasma conditions into plasma structure
 - Added support for z0_nuc and z_ion inputs instead of z0, z1.
 Updated idl/adas8xx/adaslib/adas8xx_create_drivers.pro:
 - First commented version.
 - File names are now provided as inputs, not generated within this routine
 - Moved plasma conditions into plasma structure
 - Added support for z0_nuc and z_ion inputs instead of z0, z1.
 Updated idl/adas8xx/adaslib/adas8xx_create_ls_ic_adf04.pro:
 - First commented version
 - added donotrun keyword
 - files are now provided in files structure
 Updated idl/adas8xx/adaslib/adas8xx_promotion_rules.pro:
 - Major rewrite: now calls read_adf54.pro to obtain promotion rules
 instead of using hardcoded versions. Also return data in prom_rules structure.
 - Now uses z0_nuc and z_ion instead of z0, z1 inputs.
 Updated idl/adas8xx/adaslib/adas8xx_promotions.pro:
 - Added lonarr for config, term and level count vector
 - Improved input/output descriptors.
 - Correction to logic for rare gas omitted closed-shell detection
 - Further correction to logic for Cowan effective z for adf34 driver. Now use
 zc=z1 for z0<19.
 - Correction to preamble text for fill_par
 - Replaced variable name z0 by z0_nuc, z1 by z_ion and zc by zc_cow to avoid
 confusion.
 - Introduced rules structure as a keyword parameter
 - Changed rules structure to cope with both single element fields and vectors
 - Data now returned in promotion_results structure.

C.42 Promotion rules optimisation codes added:

 idl/adas8xx/adaslib/adas8xx_opt_check_configuration_match.pro
 idl/adas8xx/adaslib/adas8xx_opt_check_parity.pro
 idl/adas8xx/adaslib/adas8xx_opt_check_valid_promotion_set.pro
 idl/adas8xx/adaslib/adas8xx_opt_control_expand_promotions.pro
 idl/adas8xx/adaslib/adas8xx_opt_expand_levels.pro
 idl/adas8xx/adaslib/adas8xx_opt_get_total_line_power.pro
 idl/adas8xx/adaslib/adas8xx_opt_initialise_rules.pro
 idl/adas8xx/adaslib/adas8xx_opt_make_adf11.pro
 idl/adas8xx/adaslib/adas8xx_opt_prep_make_adf11.pro
 idl/adas8xx/adaslib/adas8xx_opt_promotions_control.pro
 idl/adas8xx/adaslib/adas8xx_opt_promotions_run_ca.pro
 idl/adas8xx/adaslib/adas8xx_opt_wrapper.pro
 idl/adas8xx/adaslib/adas8xx_plasma_defaults.pro

C.43 Added offline_adas/adas8#4:

 - Scripts for generating inputs for, and then running adas808,
 adas801 and adas810 offline using the promotions rules structure
 (ADF54 files).
 - Added offline_adas.adas8#4/run_optimise_promotion_rules.sh,
 for calculating the optimal set of configurations to use.
 - Added offline_adas.adas8#4/run_adas808.sh for using these
 configurations to run adas8#1

 12

C.44 Updated idl/adas8xx/adas808/run_adas808.pro. Substantial rewrite
 to accommodate heavy species:
 - Inclusion of ca_only keyword
 - Changed to use adf54 file for promotion rules
 - Use long integers for term and level counts
 - Added Cowan scale factors keyword
 - Added year, verbose, donotrun keywords
 - Use theta structure to supply custom plasma conditions

C.45 Updated offline_adas/adas8#1/adaslib/xxwcmt_15.for

 offline_adas/adas8#1/adas8xx/hapecf.for
 fortran/adas8xx/adas810/hapecf.for
 fortran/adaslib/xxdata/xxwcmt_15.for
 Increased length of ctrans string from 29 to 35.

C.46 Updated offline_adas/adas8#4/run_adas808.sh

 offline_adas/adas8#4/run_optimise_promotion_rules.sh
 Added -idl switch, updated comments.

C.47 A new offline code, adas8#2, has been added to calculate ionisation data

 with the configuration average distorted wave (CADW) method. This work
is in association with Stuart Loch and the Auburn University group.

C.48 Added idl/adaslib/atomic/tev_alf_s.pro

C.49 Added idl/adaslib/write_adf/write_adf11.pro

C.50 Fixed bug in indexing of last element of xa() array in adas809/h9ntqd.for. Only affects

running on g77 and other compilers which don't auto-initialise numbers to zero.

C.51 Removed reference to UTC_IS_FLOAT from cw_adas809_proc, replaced by call to

 num_chk routine.

C.52 Add write_adf21.pro routine which operates on fulldata structure.

C.53 Initialise LRSPEC variable in ADAS406.

C.54 The element in the fulldata structure listing the number of datapoints in adf02 datasets

 (IEA) did not have the correct type (or information).

C.55 Addition of xxlvals.pro and xxorbs.pro to canonically specify l values (s, p, d...) and

 orbital specifications (1s, 2s, 2p...).

C.56 Updated cfg2occ.pro and config_orbital_energies.pro to use xxlvals (also xxorbs for

cfg2occ).

C.57 Add r8waveh.pro, a companion routine to r8ah.pro, to return the wavelength of an

 n-n' transition.

C.58 write_adf07.pro correctly writes the ionisation potential for each block rather than

assuming it is the same for all of them.

C.59 Add an IDL routine for bundle-n population calculations. The core low level routine,

cgbnhs.pro, has been added. A higher level routine, adas3xx_bn.pro, which performs the 4
coupled runs to separate and assemble the populations and effective rates is the most likely
way cgbnhs.pro will be used.

 13

C.60 run_adas406.pro crashed if relying on the default behaviour when no initial fractional
abundance was set.

C.61 Add an optional multiplet (n-n') A-value output to the hydrogenic routine r8ah.pro.

C.62 Clarify meaning of the input variable fraction in read_adf21.pro. It is the fraction

composition of the target plasma, not the full, half and third energy make-up of the beam.
 - Extend the use of /nocheck to turn off most on-screen warning messages. For
 embedding in other codes the '% READ_ADF21: Assume fraction is constant for
 all requested parameters' warning will no longer be seen.

C.63 Add utility routine, xxslna.for, to return the length of the largest non-blank string in a

string array.

C.64 The length of the configuration string in adf04 datasets is no longer fixed at 18 characters;

however full advantage has not been taken of this improvement. Some enhancements to
xxdata_04.for (in libadaslib) are made without changing the interface.
 - The fulldata structure from read_adf04.pro (and xxdata_04.pro) now returns the
 full length of the (non-blank part) configuration string.
 - write_adf04.pro writes the full user supplied length rather than 18 characters as
 before. For aesthetic reasons a minimum space of 18 characters will be used in the
 output for shorter configurations.
 - The filter04.x command will also not truncate the length of the configuration
 string.
 - Note there is still a limit - a valid adf04 configuration must be larger than 5 and
 less than 90 characters in length. Hopefully these limits will be sufficient for all
 purposes.

C.65 Increase the number of levels and transition that ADAS208 can use - up from 150 to 1000

for levels and from 5500 to 1000000.
 - adas208 should work with most central adf04 data. However increasing the
 number of levels will make the code run slower. This compromise balances speed
 and utility. It may fail on some of the larger heavy species data but adas810 is the
 preferred way of processing these data.

C.66 Fixed logic in adas_setup.ksh for bash users who hadn't manually set an ADASUSER

environment variable.

C.67 The eigenvalue/eigenvector routine xxeign.for (based on EISPACK routines from netlib)

did not normalise the returned eigenvectors. Subsequent use of the eigenvectors in adas406
resulted in numerical instability which is reduced/eliminated if normalized ones are used.

C.68 A new version of xxdata_09.for, and an accompanying xxdata_09.pro, now returns a more

extensive set of data and is compatible with the data added during the DR Project.

C.69 xxprs3.for mistakenly used the user, rather than central, ADAS to find its adf00 file. The

algorithm for filling the left-out shells in the configuration has been made more robust. An
 IDL version, xxprs3.pro, is now provided.

C.70 A new utility IDL routine, occ2cfg.pro, converts an occupation vector to a standard (or

Eissner) configuration. Note that the cfg2cow.pro routine should be used to give
configurations valid for Cowan/ADAS801 input files.

C.71 adas807 has been re-factored to remove obsolete IDL calls, to use better named

supplementary routines (now prefixed with adas807_) and to use central ADAS routines for
reading adf04 and adf09 data. This will allow the larger and more complex datasets resulting
from the GCR and DR projects to be used. Metastables up to Ar-like are now permitted (Ne-
like was the previous limit).
 - A command line, run_adas807.pro, method is also added.

 14

C.72 The workflow of adas212 has been changed to mirror that of adas211. The output is now a

set of augmented R-lines for inclusion in the adf04 file. The option not to supplement any
 existing R-lines has been removed. The program is still driven by an adf18/a09_a04 driver

file but a complete adf04 file is not written. The latest routines to read adf04 and adf09
 files are used. This change requires that any existing adas212 defaults file (in the user's

adas/defaults/ directory) be removed.
 - A command line, run_adas212.pro, method is also added.

C.73 For symmetry and completeness a run_adas211.pro has also been added.

C.74 Including projection in adas208 population calculations in rare cases leads to situations

where minor differences in temperature could result in numerical instability leading to
NANs in the recombination photon emissivity coefficients. The problem occurred in
mapping the projection data at an early point in the code. The input data to the interpolation
routine was not as conditioned as well as it should have been. This has now been fixed. A
welcome benefit of this fix is that it has allowed the removal of a long standing ad-hoc
filtering routine on the output data. There will be minor numerical differences between the
old and fixed versions but the shape of the recombination PECs, for low Te, is now much
more believable.

C.75 Do not write warning of 'missing class name in file' to screen when reading adf11 data.

The volume of warning quickly overwhelms the user.

C.76 Trim the size of the data in the adf17 dataset produce by adas204 which could occasionally

turn the files to binary from plain text.

C.77 Add preview_natural_partition.pro to the series 4 IDL library. This routine plots the

natural partition for any element and returns the partition in a form suitable for inclusion in
the adas416 script files.

C.78 Increased version number to 3.00.

 Corrections and updates to data (ADAS v2.13 to ADAS v3.00)

D.1 Add adf15, in the low level metastable unresolved picture, for Li-like Cr+21 and Na-like

Cu+18 :
 adf15/transport/transport_llu#cr21ic.dat
 adf15/transport/transport_llu#cu18ic.dat

 The source adf04 for Cu+18 is extracted from Sampson data and is
 adf04/copsm#na/copsm#na_sm#cu18.dat

D.2 Remove n=4 data from adf01/qcx#he0/qcx#he0_old#ne10.dat because is was zero at all

energies.
 - Produce an adf12 daaset based on this adf01 as
 adf12/qef93#he/qef93#he_old#ne10.dat

D.3 Minor modifications to existing adf04 datasets:

 - Made energy level list more standard in
 adf04/adas#18/helike_adwl01#ar16.dat
 adf04/helike/helike_kvih93he.dat
 - Remove excessive white space in
 adf04/belike/belike_nrb05#fe22.dat
 - Fix comments to conform to adf04 specification
 adf04/coppm#li/coppm#li_pm#si11j.dat

 15

D.4 Replace adf11/prc89/prc89_cr.dat because data from stages 19 to 24 was missing. This may
have occurred when transferring the dataset in the distant past.

D.5 Added adf54 directory and files for tungsten and carbon

 adf54/promotion_rules_c_adf54.dat
 adf54/promotion_rules_w_adf54.dat

D.6 Effective emissivity coefficients for CX emission driven B, C, N and O. For unknown

reasons the adf12 data was not produced when the adf01 cross sections were made.

D.7 Update ionisation potentials of magnesium, silicon and iron in adf00/ using NIST data. Add

term resolved dataset for iron (fe_ls.dat).

D.8 Minor editing changes to adf04/copmm#5/ files to make them valid adf04 datasets. The

numerical data has not changed but it was not possible to read them with xxdata_04.

D.9 Add specific ion data for Mg and Fe from CHIANTI v6. These data are converted to adf04

format, run through the filter04.x program to remove levels above the ionisation potential
and are e-ordered in increasing energy. The configuration labeling and numerical data is that
of the original CHIANTI data. A naming convention is adopted: the data are stored as
 adf04/copch#12/chv6_ic#mg<z1>.dat
 adf04/copch#26/chv6_ic#fe<z1>.dat

 where ch represents CHIANTI,v6 the version used and <z1> is the ion charge of interest.

D.10 The neutral stage was missing for Ni in adf04/copmm#28/. ls#ni0.dat has been added.

D.11 Add in location of adf07 data and switch on ionization supplementation from this external

file in the adf25 driver for neutral H. Note that this does not affect any derived H data in the
central database: the hydrogen GCR data was not generated in the same way as the
impurities.

D.12 Remove adf09 dataset: nrbmb00#he/mb00#he_cu27ls12.dat since it contained no data.

D.13 The metastable resolved adf00 dataset for Ar (ar_ls.dat) had incorrect configurations (one

too many electrons) for Ar+6 and one of the Ar+4 metastables. Note that the energies in the
dataset were correct.

D.14 Add a third block to H ionisation rates in szd93#h_h.dat. The same Bell et al data is used

but the temperature range is larger (5-20keV).

D.15 Some partial cross sections at high nl (10,9 and 9,8) were set to zero in the adf01 file

 qcx#h0/qcx#h0_en2_kvi#c6.dat.
These have been corrected to the difference between the shell total and the sum of the other
partial cross sections.

D.16 Added B-like Si file blike_lgy08#si9.dat, produced by Guiyun Liang.

D.17 Ion impact ionisation from n=2,3,4,5 levels of Hydrogen was in error. The convoluted

history and new recommended data are given in an ADAS communication note, available
from the website:
 http://www.adas.ac.uk/notes/adas_cm09-01.pdf

There are consequences for beam stopping, emission and excited population datasets.

 - the new recommended data are stored at the end of the existing adf02 dataset:
 adf02/sia#h/sia#h_j99#h.dat.
 - new beam stopping coefficients in
 adf21/bms98#h/bms98#h_h1.dat
 adf21/bms98#h_fast/bms98#h_fast_h1.dat

 16

 - new beam emission coefficients
 adf22/bme98#h/bme98#h_h1.dat
 - new excited level populations
 adf22/bmp98#h/bmp98#h_2_h1.dat
 adf22/bmp98#h/bmp98#h_3_h1.dat
 adf22/bmp98#h/bmp98#h_4_h1.dat

Although the data were in error this is not a case in which the existing central ADAS data
(same file name but with 97) should be replaced. The published cross sections, on which
the adf02 data was based, was corrected in an unsatisfactory way in the literature.

D.18 Add adf04 data for ArI and ArII.

The ArII is an update from Don Griffin (J. Phys. B, 48, (2007), p4537) and is added
alongside the existing dataset as:
 adf04/cllike/cllike_dcg07#ar1.dat

The neutral system is based on Cowan (adas801) supplemented by cross-section data from
Dasgupta (Phys Rev A61, 012703 and Phys Rev A65, 039905(E)).

 Photon emissivity coefficients for diagnostically useful lines:
 adf15/transport/transport_llu#ar0.dat
 adf15/transport/transport_llu#ar1.dat

More details are in the ADAS communication note
 http://www.adas.ac.uk/notes/adas_cm08-01.pdf

D.19 Ionisation rates for Si by K Dere (Astron. Astrophys., 466 (2007), p771) are added as adf07

data
 ionelec_dere07#si.dat.
Archiving data by producer is well established in election excitation (adf04) but this is the
first single producer dataset in adf07. More can be added if they are found to be useful.

D.20 Heavy Species Project : Part I - Ionisation.

 Ionisation data is generated with the configuration average distorted wave (CADW) code

from Auburn University.

 To avoid overwhelming ADAS we have generated data for four elements of interest: Ar and

W for fusion, Mg and Si for astrophysics.

 The driver files are stored in isonuclear directories with 09 as the tag year.
 adf32/cadw#12/ca09_mg0.data
 ca09_mg1.dat
 .
 .
 adf32/cadw#74/ca09_w73.data

 The drivers are automatically produced guided by a set of promotion rules -

 adf56/large_arf09.dat.
 'arf' stands for Adam Foster who produced these rules.

Individual ionisation rate (adf23) dataset are analogously named:

 adf23/cadw#12/ca09_mg0.data
 ca09_mg1.dat
 .
 .
 adf23/cadw#74/ca09_w73.data

 17

From the individual adf23 data an adf07 dataset is produced for each element and is stored in
adf07:

 adf07/cadw/ca09_mg.dat
 ca09_si.dat
 ca09_ar.dat
 ca09_w.dat

D.21 Heavy Species Project : Part II - Excitation and line power.

The offline_adas/adas8#1 set of codes have been developed to generate baseline data for
heavy species. This ADAS release has the first data from this effort. We have restricted it to
two elements - argon and tungsten to pilot the process.

There is a significant quantity of data; 2.1Gb mostly made up of specific ion data (adf04).
These are stored in
 adf04/coparf#18/
 adf04/coparf#74/
 where ‘arf’ denotes Adam Foster (http://www.adas.ac.uk/theses/foster_thesis.pdf).

 The nominal year 40 tag is used to identify the baseline data.

 Four different resolutions are stored for each ion, eg Ar+11

 arf40_ca#ar11.dat
 arf40_cl#ar11.dat
 arf40_ic#ar11.dat
 arf40_ls#ar11.dat
 which represent,
 ca : configuration average
 ic : intermediate coupling for configurations in ca
 ls : Russell-Saunders coupling for configurations in ca
 cl : large set of configuration average

 Driver datasets for Cowan/adas801 are archived in
 adf34/heavy_species/argon
 adf34/heavy_species/tungsten
 which use the configurations in the ca/ls/ic collection.

 Photon emissivities for each resolution are archived as, again for the Ar+11 example,
 adf15/pec40#ar/pec40#ar_ca#ar11.dat
 pec40#ar_cl#ar11.dat
 pec40#ar_ls#ar11.dat
 pec40#ar_ic#ar11.dat

 Feature emissivities for three spectral regions
 1.0A - 10.0A for 128 pixels
 10.0A - 100.0A 128
 1.0A - 10000.0A 512
 are archived in adf40 collection
 adf40/fpec40#ar/fpec40#ar_ca#ar11.dat
 fpec40#ar_cl#ar11.dat
 fpec40#ar_ls#ar11.dat
 fpec40#ar_ic#ar11.dat

These have been selected to give the widest applicability but the data tailored to particular
instruments would be preferred for serious application. See the adas810 code.

Total radiated power is calculated from the specific ion (adf04) data with the adas810
(online or offline) population code. The difference between P(cl)-P(ca) give the power from
the missing configurations and is added to P(ic) to form the total. Note that the ls set are not
used but are included for completeness.

 18

Each ionisation stage give rise to a partial adf11/plt dataset and these are archived.
 adf11/plt_partial/plt40_partial_ar/
 adf11/plt_partial/plt40_partial_w/
Note the parent directory does not have a year number. Future uplift in data quality will be
stored under a different year tag.

Again, using the Ar11+ example, we store
 plt40_ca#ar11.dat
 plt40_cl#ar11.dat
 plt40_ls#ar11.dat
 plt40_ic#ar11.dat

These are assembled in the final iso-nuclear, and familiar adf11/plt, dataset for
 adf11/plt40/plt40_ar.dat
 adf11/plt40/plt40_w.dat

HPS
1 Oct. 2009

 19

	Corrections and updates to code (ADAS v2.13 to ADAS v3.00)
	 Corrections and updates to data (ADAS v2.13 to ADAS v3.00)

