The ionisation state of ions in a plasma Callable ADAS Exercises

July 7, 2010

1 Aim

The aim is to familiarise you with callable ADAS for working with the ionisation state of ions in a plasma, mainly in an IDL environment. Please feel free to expand any of the tasks or change them slightly to deal with your favourite ion! The tasks marked with \(\int \) s should be considered optional and are often more difficult so don't spend too much time on them unless they are of particular interest.

2 Tasks

- 1. Use read_adf11 to read ionisation and recombination coefficients for carbon.
 - Plot the temperature where the ionisation and recombination rates are equal as a function of ion charge //.
- 2. Use run_adas405 to generate an equilibrium ionisation balance for carbon.
 - Compare the temperature of peak abundance (as a function of ion charge) with the points where the rates are equal (see above) ///.
- 3. Use run_adas405 to generate radiated power coefficients and plot them as a function of temperature.
 - Find an interesting density regieme //.
- 4. Use read_adf15 to read the PEC for the 977Åline of C3+
 - Compare the power radiated in this line with the total line power for C3+ in coronal equilibrium conditions ///.
- 5. Use run_adas416 to produce partitioned data using the file /home/omullane/ADAS-US_course/partition_example.dat.
 - Modify the partition and explore how the various ions move in and out of being bundled.