2a. The interactive system - working with adf04 datasets

• Preliminaries

- » Electron impact cross-sections and rate coefficients
- » The ADF04 file format
- » Interrogating adf04 collisional excitation data using ADAS201 and ADAS811

Electron impact cross-sections and rates

The excitation reaction $X_i^{+z}(E_i) + e(\varepsilon_i) \rightarrow X_j^{+z}(E_j) + e(\varepsilon_j)$

is described by an excitation cross-section $\sigma_{i \rightarrow j}(\varepsilon_i)$

More useful for tabulation is the collision strength Ω_{ij} with independent variable $X = \varepsilon_i / \Delta E_{ij}$ with $X \in [1, \infty]$ $\Omega_{ij} = \omega_i (E_i / I_H) (\sigma_{i \to j} (\varepsilon_i) / \pi a_0^2) = \omega_j (E_j / I_H) (\sigma_{j \to i} (\varepsilon_j) / \pi a_0^2)$

ADAS principally deals with Maxwell averaged rate coefficients $q_{i \rightarrow j}(T_e)$

$$\mathbf{Y}_{ij} \qquad \mathbf{Y}_{ij} = \int_{0}^{\infty} \Omega_{ij}(\varepsilon_{j}) \exp(-\varepsilon_{j}/kT_{e}) d(\varepsilon_{j}/kT_{e})$$

Electron impact cross-sections and rates (contd.)

More useful for tabulation is the Maxwell averaged collision strength $Y_{ij}(T_e)$ $Y_{ij} = \int_{0}^{\infty} \Omega_{ij}(\varepsilon_j) \exp(-\varepsilon_j / kT_e) d(\varepsilon_j / kT_e)$ $q_{j \to i}(T_e) = \frac{\omega_i}{\omega_j} \exp(\Delta E_{ij} / kT_e) q_{i \to j}(T_e) = 2\sqrt{\pi}\alpha ca_0^2 \frac{1}{\omega_j} [I_H / kT_e]^{\frac{1}{2}} Y_{ij}$

The ADAS adf04 format is used to archive sets of energy level lists, A-values and Maxwell averaged collision strengths for an ion sufficient to allow a population calculation.

The basic adf04 file

Configuration specification

$$\Gamma = n_1 l_1^{q_1} n_2 l_2^{q_2} \dots n_m l_m^{q_m}$$

where $q_i > 0$ for $i = 1, \dots, m$ and $\sum_{i=1}^m q_i = N$

ADAS prefers Standard and Eissner configuration representations in ADF04 files for automatic processing and matching of levels between different data sets.

Configuration	Standard form	Eissner form	
1s²2s²2p⁴	1s2 2s2 2p4	21522543	
1s ² 2s ² 2p ⁶ 6f ¹¹	1s2 2s2 2p6 6fb	2152254361J	

The basic adf04 file

ADAS201 input

ADAS201 Processing

ADAS201 Output

ADAS201 Graph

ADAS811 input

ADAS811 Processing

2b. The interactive system – working with excited population structure

- Datasets of class ADF04 contain all the information necessary to evaluate excited populations of an ion. It is called a 'specific ion file'.
- Code ADAS205 computes the populations at temperatures and densities of your choice.
- The input, data set selection, screen is very similar to that for ADAS201

Populations calculation (contd.)

Distinguish metastable levels X_{ρ}^{+z} indexed by Greek letters and ordinary levels X_{i}^{+z} indexed by Roman letters

Write the quasi-static equations for the ordinary levels populations in terms of the metastable populations as:

$$\sum_{j=1}^{O} C_{ij} N_{j} = -\sum_{\sigma=1}^{M} C_{i\sigma} N_{\sigma} + N_{e} N_{1}^{+} r_{i} + N_{e} N_{H} q_{i}^{(CX)} \quad i = 1, 2, \dots$$

$$C_{ij} = -A_{j \to i} - N_e q_{j \to i}^{(e)} - N_p q_{j \to i}^{(p)} \qquad i \neq j$$

$$C_{ii} = \sum_{j < i} A_{i \to j} + N_e \sum_{j \neq i} q_{i \to j}^{(e)} + N_p \sum_{j \neq i} q_{i \to j}^{(p)} + N_e q_i^{(I)}$$

Populations calculation (contd.)

Solution for the ordinary populations is

$$\begin{split} N_{j} &= -\sum_{i=1}^{O} C_{ji}^{-1} \sum_{\sigma=1}^{M} C_{i\sigma} N_{\sigma} + \sum_{i=1}^{O} C_{ji}^{-1} r_{i} N_{e} N_{1}^{+} \\ &+ \sum_{i=1}^{O} C_{ji}^{-1} q_{i}^{(CX)} N_{H} N_{1}^{+} \\ &\equiv \sum_{\sigma=1}^{M} \mathsf{F}_{j\sigma}^{(exc)} N_{e} N_{\sigma} + \mathsf{F}_{j1}^{(rec)} N_{e} N_{1}^{+} + \mathsf{F}_{j1}^{(CX)} N_{H} N_{1}^{+} \end{split}$$

Populations calculation (contd.)

Spectrum line emissivities are

$$\mathcal{E}_{j \to k} = A_{j \to k} \left(\sum_{\sigma=1}^{M} \mathsf{F}_{j\sigma}^{(exc)} N_{e} N_{\sigma} + \sum_{\nu'=1}^{M_{z+1}} \mathsf{F}_{j\nu'}^{(rec)} N_{e} N_{\nu'}^{+} + \sum_{\nu'=1}^{M_{z+1}} \mathsf{F}_{j\nu'}^{(cx)} N_{e} N_{\nu'}^{+} + \sum_{\mu'=1}^{M_{z-1}} \mathsf{F}_{j\mu'}^{(ion)} N_{e} N_{\mu'}^{-} \right)$$

Identify excitation and recombination photon emissivity coefficients as

$$\mathsf{PEC}_{\sigma,j\to k}^{(exc)} = A_{j\to k} \mathsf{F}_{j\sigma}^{(exc)}$$

$$\mathsf{PEC}_{\nu',j\to k}^{(rec)} = A_{j\to k} \mathsf{F}_{j\nu'}^{(rec)}$$

ADAS205 processing

Populations and line ratio studies (contd.)

- Output options
 - » Graphical display of the $F_{j\sigma}^{(exc)}$ as a function of density is allowed.
 - » An output file of the $F_{j\sigma}^{(exc)}$, called the 'contour' pass file, can be generated. This file must be created to allow the next step of looking a line ratios.

ADAS205 output - text

ADAS205 output - graphics

ADAS205 OUTPUT OPTIONS	· 🗆	_
Data File Name: /afs/@cell/u/adas/adas/adf04/adas#2/mom97_ls#h	me0.dat	
Browse Comments Select output option settings for display: Graphies Text Graph Title Explicit Scaling X-min : I X-max : I Y-min : I Y-max : I	Graph Temperature 7.000E+00 eV 2.000E+00 eV 3.000E+00 eV 5.000E+00 eV 7.000E+00 eV Select Device Post-Script	show graphic output choices graphs may be shown at one Te only
<pre>▼ Enable Hard Copy _ Replace File Name : graph.ps]</pre>	Post-Script HP-PCL HP-GL	-

ADAS205 graph

Print

Setting up lines

- Code ADAS207 is the diagnostic analysis program which allows study of line ratios.
- It needs the 'contour' pass file of populations. It also fetches the specific ion file, of type ADF04, which was used in the population calculation.

Setting up lines (contd.)

The program in deals with two line assemblies which from the numerator and denominator of the line ratio.

The composite emissivity for a line assembly is written as

$$\begin{split} \mathcal{E}_{G} &= \sum_{j \in J_{G}, i \in I_{G}} \mathcal{E}_{j \to i} = \sum_{j \in J_{G}, i \in I_{G}} A_{j \to i} N_{j} \\ &= \sum_{j \in J_{G}, i \in I_{G}} A_{j \to i} (\sum_{\sigma=1}^{M} \mathsf{F}_{j\sigma}^{(exc)} N_{e} N_{\sigma} + \mathsf{F}_{j1}^{(rec)} N_{e} N_{1}^{+} + \mathsf{F}_{j1}^{(CX)} N_{H} N_{1}^{+}) \\ &= N_{e} N_{1} \sum_{j \in J_{G}, i \in I_{G}} A_{j \to i} (\sum_{\sigma=1}^{M} \mathsf{F}_{j\sigma}^{(exc)} \frac{N_{\sigma}}{N_{1}} + \mathsf{F}_{j1}^{(rec)} \frac{N_{1}^{+}}{N_{1}} + \mathsf{F}_{j1}^{(CX)} \frac{N_{H}}{N_{e}} \frac{N_{1}^{+}}{N_{1}}) \end{split}$$

Diagnostic line ratio modelling deals with $\mathcal{E}_{G_1} / \mathcal{E}_{G_2}$

ADAS207 processing

ADAS207 line assembly

Lines for First Composite Assembly							
1 2 152 251 2P1 (3)P(4.0) 1	M 152 252 (1)5(0.0)	☐ 66 5 1S2 2P2 (1)D(2.0)	3 1S2 2S1 2P1 (1)P(1.0)	175 37 1S2 2S1 5P1 (1)P			
▼ 2 3 1S2 2S1 2P1 (1)P(1.0) 1M	M 1S2 2S2 (1)S(0.0)	_ 67 6 1S2 2P2 (1)S(0.0)	3 1S2 2S1 2P1 (1)P(1.0)	183 9 152 251 3P1 (1)P			
↑ 5 9 1s2 2s1 3p1 (1)p(1.0) 1r	M 1S2 2S2 (1)S(0.0)	_ 69 8 1S2 2S1 3S1 (1)S(0.0)	3 1S2 2S1 2P1 (1)P(1.0)	188 14 152 2P1 3S1 (1)P			
6 10 152 251 3P1 (3)P(4.0) 1P	M 1S2 2S2 (1)S(0.0)	_ 73 12 1S2 2S1 3D1 (1)D(2.0)	3 1S2 2S1 2P1 (1)P(1.0)	194 26 152 2P1 3D1 (1)P			
□ 10 14 152 2P1 3S1 (1)P(1.0) 1	ж 1s2 2s2 (1)s(0.0)	_ 76 15 1S2 2P1 3P1 (1)P(1.0)	3 1S2 2S1 2P1 (1)P(1.0)	196 30 1S2 2S1 4P1 (1)P			
L 16 26 152 2P1 3D1 (1)P(1.0) 1	ж 1s2 2s2 (1)s(0.0)	_ 78 17 1S2 2P1 3P1 (3)S(1.0)	3 1S2 2S1 2P1 (1)P(1.0)	204 10 1S2 2S1 3P1 (3)P			
□ 18 30 152 251 4P1 (1)P(1.0) 1	ж 1s2 2s2 (1)s(0.0)	_ 82 21 1S2 2P1 3P1 (1)D(2.0)	3 1S2 2S1 2P1 (1)P(1.0)	220 29 1S2 2S1 4P1 (3)P			
□ 21 37 152 251 5P1 (1)P(1.0) 1	ж 1s2 2s2 (1)s(0.0)	_ 89 28 1S2 2S1 4S1 (1)S(0.0)	3 1S2 2S1 2P1 (1)P(1.0)	226 38 1S2 2S1 5P1 (3)P			
□ _ 26 4 152 2P2 (3)P(4.0) 2	2 1S2 2S1 2P1 (3)P(4.0)	_ 97 36 1S2 2S1 5S1 (1)S(0.0)	3 1S2 2S1 2P1 (1)P(1.0)	235 14 1S2 2P1 3S1 (1)P			
□ 27 5 152 2P2 (1)D(2.0) 2	2 1S2 2S1 2P1 (3)P(4.0)	_ 109 10 1S2 2S1 3P1 (3)P(4.0)	4 1S2 2P2 (3)P(4.0)	243 30 1S2 2S1 4P1 (1)P			
_ 29 7 1s2 2s1 3s1 (3)s(1.0) 2	2 1S2 2S1 2P1 (3)P(4.0)	_ 121 22 1s2 2p1 3D1 (3)D(7.0)	4 1S2 2P2 (3)P(4.0)	246 37 1S2 2S1 5P1 (1)P			
 30 8 152 251 351 (1)5(0.0) 2	2 1S2 2S1 2P1 (3)P(4.0)	_ 123 24 1S2 2P1 3D1 (3)P(4.0)	4 1S2 2P2 (3)P(4.0)	261 21 1S2 2P1 3P1 (1)D			
33 11 1s2 2s1 3D1 (3)D(7.0) 2	152 251 2P1 (3)P(4.0)	⊥ 128 29 1S2 2S1 4P1 (3)P(4.0)	4 1S2 2P2 (3)P(4.0)	268 28 1S2 2S1 4S1 (1)S			
38 16 1S2 2₽1 3₽1 (3)D(7.0) 2	152 251 2P1 (3)P(4.0)	_ 146 8 1S2 2S1 3S1 (1)S(0.0)	5 1S2 2P2 (1)D(2.0)	276 36 1S2 2S1 5S1 (1)S			
□ 39 17 1S2 2P1 3P1 (3)S(1.0) 2	152 251 2P1 (3)P(4.0)	_ 147 9 1S2 2S1 3P1 (1)P(1.0)	5 1S2 2P2 (1)D(2.0)	289 17 1S2 2P1 3P1 (3)S			
40 18 1S2 2P1 3P1 (3)P(4.0) 2	152 251 2P1 (3)P(4.0)	⊥ 152 14 1S2 2P1 3S1 (1)P(1.0)	5 1S2 2P2 (1)D(2.0)	299 27 1S2 2S1 4S1 (3)S			
49 27 152 251 451 (3)5(1.0) 2	152 251 2P1 (3)P(4.0)	⊥ 158 20 1S2 2P1 3D1 (1)D(2.0)	5 1S2 2P2 (1)D(2.0)	303 31 152 251 4D1 (3)D			
□ 53 31 152 251 4D1 (3)D(7.0) 2	1S2 2S1 2P1 (3)P(4.0)	_ 163 25 1S2 2P1 3D1 (1)F(3.0)	5 1S2 2P2 (1)D(2.0)	307 35 1S2 2S1 5S1 (3)S			
□ 57 35 1s2 2s1 5s1 (3)s(1.0) 2	1S2 2S1 2P1 (3)P(4.0)	⊥ 164 26 1S2 2P1 3D1 (1)P(1.0)	5 1S2 2P2 (1)D(2.0)	333 29 1S2 2S1 4P1 (3)P			
☐ _ 65 4 1S2 2P2 (3)P(4.0) 3	5 1S2 2S1 2P1 (1)P(1.0)	_ 172 34 152 251 4F1 (1)F(3.0)	5 1S2 2P2 (1)D(2.0)	337 33 152 251 4F1 (3)F			
activate for lines to be							
included Make a maximum of 20 selections							
Cancel Done							

Displaying line ratios

- Output options
 - » The type of display of the ratio of line assemblies may be chosen.
 - » The contour form on the Te/Ne plane seems to be the favourite.
 - » Crosses on the graph mark the tabular points at which the populations were explicitly evaluated.
 - » The extensive range of controls on the plot scales and contour lines should be used to refine the diagnostic plot.

ADAS207 output

	ADAS207 OUTPUT OPTIONS	
	Contour Passing File Name:/afs/ipp/home/u/ugs/adas/pass/contour.pass	
	Data File Name: /afs/@cell/u/adas/adas/adf04/adas#2/mom97_ls#he0.dat	
	Browse Comments	
	Spectrum Line Intensity Ratio range: 1.4321D+00 - 2.5429D+01	
	Graphical Output: Diagnostic Contour Plot of spectrum line ratios on Temp/Density Plane	
	Diagnostic Contour Plot Title	
	🗑 Default Contour Scaling	
controls	Contour Spacing Contour Interpolation	aalaat
on contour	Logarithmic	Select
plotting	Linear 2 Linear	type of
plotting	Logarithmic Logarithmic	plot
	Edit Table	
	Frable Hard Conv. Benlace Select Device	
	Post-Script	
	File Name : jadas207_graph.ps Post-Script	
	HP-PCL HP-GL	
	👿 Text Output 🔄 Append 🔄 Replace Default File Name	usual
	File Name : jamer txt	graph and text
		output choices
	Cancel Done	
		4

ADAS207 graph

