ADAS306: Charge exchange spectroscopy - process effective coefficients: j-resolved

The program analyses column (line-of-sight integrated) emissivity observations of charge exchange spectroscopy lines from hydrogenic impurities, occuring through neutral beam / plasma interaction, in terms of emission measure. It predicts the column intensities of spectral components of the charge exchange lines, the Doppler broadened line shapes and effective emission coefficients for arbitrary lines in a j-resolved picture.

Background theory:

Charge exchange spectroscopy is driven by reactions of the form

$$
X^{+z_{0}}+D_{b e a m}^{0}(1) \rightarrow X^{+z_{0}}(n l j)+D_{\text {beam }}^{+}
$$

in which an electron is captured from a donor atom in its ground (or an excited) state. The principal application is usually to capture by the bare nuclei of impurity atoms in the plasma from the ground state of deuterium, helium or lithium atoms in fast neutral beams. Subsequently the hydrogen-like impurity ion radiates as

$$
X^{+z_{0}-1}\left(n^{\prime} l^{\prime} j^{\prime}\right) \rightarrow X^{+z_{0}-1}\left(n^{\prime \prime} l^{\prime \prime} j^{\prime \prime}\right)+h v
$$

Composite spectral line features of the form $n^{\prime} \rightarrow n^{\prime \prime}$ are observed made up from unresolved $n^{\prime} l^{\prime} j^{\prime} \rightarrow n^{\prime \prime} l^{\prime \prime} j^{\prime \prime}$ multiplet components. Charge exchange line features often involve high principal quantum shells and occur over wide spectral ranges including the visible range. In general the populations of receiver levels are modified by redistributive collisions with plasma ions and electrons and by fields before radiation emission occurs. The present programme includes redistributive collisions of the form

$$
X^{+z_{0}-1}(n l j)+\left\{\begin{array}{c}
e \\
Z_{\mu}
\end{array}\right\} \rightarrow X^{+z_{0}-1}\left(n l^{\prime} j^{\prime}\right)+\left\{\begin{array}{c}
e \\
Z_{\mu}
\end{array}\right\}
$$

where Z_{μ} denotes a bare nucleus of charge Z_{μ} and field induced redistribution of the form

$$
X^{+z_{0}-1}(n l j) \underset{B_{m a g}}{\rightarrow} X^{+z_{0}-1}\left(n l^{\prime} j^{\prime}\right) \quad[\text { not fully implemented }]
$$

The line-of-sight integrated photon emissivity of a charge exchange driven line may be written as

$$
\begin{align*}
I_{n \rightarrow n^{\prime}}^{\left(z_{0}-1\right)} & =\sum_{l, l^{\prime}} I_{n l \rightarrow n^{\prime} l^{\prime}}^{\left(z_{0}-1\right)}=\sum_{l, j, l^{\prime} j^{\prime}} I_{n l j \rightarrow n^{\prime} l^{\prime} j^{\prime}}^{\left(z_{0}-1\right)} \\
& =\int_{S} \sum_{l, j, l^{\prime} j^{\prime}} A_{n l j \rightarrow n^{\prime} l^{\prime} j^{\prime}} N_{n l j}^{\left(z_{0}-1\right)} d s \\
& =\int_{S}\left[\sum_{l, j, l^{\prime} j^{\prime}} A_{n l j \rightarrow n^{\prime} l j^{\prime}}\left(N_{n l j}^{\left(z_{0}-1\right)} / N_{D} N^{\left(z_{0}\right)}\right)\right] N_{D} N^{\left(z_{0}\right)} d s \\
& =\int_{S}\left[\sum_{l, j, l^{\prime} j^{\prime}} q_{n j \rightarrow n^{\prime} l^{\prime} j^{\prime}}^{(e \text { eff })}\right] N_{D} N^{\left(z_{0}\right)} d s \\
& =\int_{S} q_{n \rightarrow n^{\prime}}^{(e e f f)} N_{D} N^{\left(z_{0}\right)} d s \\
& \approx q_{n \rightarrow n^{\prime}}^{(e f f)} \int_{S} N_{D} N^{\left(z_{0}\right)} d s
\end{align*}
$$

where S is the path length through the neutral beam / plasma intersection along a spectrometer line-of-sight. $\quad N_{D}$ is the neutral donor number density and $N^{\left(z_{0}\right)}$ is the number density of fully ionised impurity atoms. $q_{n \rightarrow n^{\prime}}^{(\text {eff })}$ is the effective emission coefficient for the whole $n \rightarrow n^{\prime}$
principal quantum shell transition and $\int_{S} N_{D} N^{\left(z_{0}\right)} d s$ is the emission measure. The mean transition energy is

$$
\Delta E_{n, n^{\prime}}=\left(\sum_{l, j, l^{\prime}, j^{\prime}} \Delta E_{n l j, n^{\prime} l^{\prime}} q_{n l j \rightarrow n^{\prime} l^{\prime} j^{\prime}}^{(e f f)}\right) / q_{n \rightarrow n^{\prime}}^{(e f f)}
$$

where $\Delta E_{n l j, n^{\prime} l^{\prime} j^{\prime}}$ is the line component transition energy and $q_{n l j \rightarrow n^{\prime} l j^{\prime}}^{(e \text { eff })}$ is the component effective emission coefficient. The effective emission coefficient $q_{n \rightarrow n^{\prime}}^{(\text {eff })}$ may be calculated theoretically. If it is approximately constant over the emitting volume, then measurement of a charge exchange line intensity $I_{n \rightarrow n^{\prime}}^{\left(z_{0}-1\right)}$ allows deduction of the emission measure $\int_{S} N_{D} N^{\left(z_{0}\right)} d s$. If neutral beam attenuation to the observed volume is known or calculable then local impurity density may be inferred.

Relationship to direct coefficients:

With the effective emission coefficients calculated theoretically, comparison with one observed charge exchange line intensity allows deduction of the emission measure. Then all other line intensities are predictable. If more than one line intensity is observed, then a mean emission measure may be deduced and some comment may be made on the ratios of exeperimental to theoretical effective emission coefficients. The organisation of the collisional-radiative modelling in ADAS306 is specifically designed to allow such comparison. The following points and assumptions are made:
(i) From the theoretical point-of-view the direct capture cross-sections to levels are more fundamental quantities for comparison with experiment that the effective emission coefficients.
(ii) The dominant fundamental processes modifying the initial distribution of capture are redistribution within an n-shell and radiative cascade in low and moderate density plasmas. Limiting the collisional-radiative theory to these dominant processes allows a compact invertable relationship to be established between column emissivities of charge exchange spectrum lines and direct capture cross-sections.
(ii) It is of most practical value to target experiment / theory comparisons on the n-shell distribution of capture (including the n-shell decrement) in fusion studies. This may be achieved by imposing theoretical information on the $l j$ sub-shell distribution of capture.

Consider the monoenergetic direct capture rate coefficients to $n l j$ sub-levels $q_{n l j}^{(C X)}$ from the initial neutral donor state $D^{O_{(1)}}$ by the fully stripped impurity ion with number density $N^{\left(z_{0}\right)}$, denoted more compactly by N^{+}.

$$
q_{n l j}^{(C X)}\left(E_{u}\right)=v \sigma_{n l j}^{(C X)}(v)
$$

where E_{u} is the relative collision energy per atomic mass unit so that $v=\sqrt{2 E_{u} / m_{p}}$ is the relative collision speed, with m_{p} the proton mass and σ the capture cross-section.

It is supposed that

$$
q_{n l j}^{(C X)}\left(E_{u}\right)=f_{(n) l j}^{(\text {theor })} q_{n}^{(C X)}\left(E_{u}\right)
$$

Since no collisional excitation from lower to higher n-shells is allowed, the populations of the $l j$ sublevels of the principal quantum shell $n^{\prime} \geq n+1$ may be written as

$$
N_{n^{\prime} l j^{\prime}}=N_{D} N^{+} \sum_{n^{i v} \geq n+1} W_{n^{\prime} l j^{\prime}, n^{\prime}} q_{n^{i v}}^{(C X)}
$$

Then the equations determining the populations of the sub-shells of the principal quantum shell n are

$$
\sum_{l^{\prime \prime} j^{\prime \prime}} M_{(n) l j, l^{\prime} j^{\prime \prime}} N_{n l^{\prime} j^{\prime \prime}}=N_{D} N^{+} f_{(n) l j}^{(t h e o r)} q_{n}^{(C X)}+\sum_{n^{\prime} \geq n+1} A_{n l j, n^{\prime} l^{\prime} j^{\prime}} N_{n^{\prime} l^{\prime} j^{\prime}}
$$

so that

$$
N_{n l j}=N_{D} N^{+} W_{n l j, n} q_{n}^{(C X)}+N_{D} N^{+} \sum_{n^{i v} \geq n+1} W_{n l j, n^{i v}} q_{n^{i v}}^{(C X)}
$$

with

$$
W_{n l j, n}=\left[\sum_{l^{\prime} j^{\prime \prime}} M_{(n) l j, l^{\prime \prime} j^{\prime \prime}}^{-1} f_{(n) l^{\prime \prime} j^{\prime \prime}}^{(\text {theor })}\right] q_{n}^{(C X)}
$$

and

$$
W_{n l j, n^{i v}}=\sum_{l^{\prime \prime}, j^{\prime \prime}, l^{\prime}, j^{\prime}} M_{(n) l j, l^{\prime \prime} j^{\prime \prime}}^{-1} A_{n l^{\prime} j^{\prime \prime}, n^{\prime} l j^{\prime}} W_{n^{\prime} l^{\prime} j^{\prime}, n^{i v}}
$$

The solution can proceeed recursively downwards in n with compact vector and array storage.
Tabulations of experimental or theoretical state selective charge exchange cross-section data span a range of principal quantum shells $\sigma_{n l j}^{(C X)}(v): n_{0} \leq n \leq n_{1}$. Cascade from levels $n>n_{1}$ may contribute significantly to the populations of lower levels especially at high collision energies when the decrease of the direct charge exchange cross-sections with n is slow ($\sigma_{n} \sim n^{-\alpha}$ and $\alpha \sim 3$). However, redistribution amongst $l j$ sub-levels of the higher n-shells is high, approaching statistical in most circumstances. Therefore the cascade solution is initiated at some $n_{\max }$ (~ 20 typically) for complete n-shell populations only (matrices $W^{(h i g h)}$), with subshells implicitly statistically populated, down to n_{1} whereupon the $l j$ resolved solution (matrices $W^{(l o w)}$) is commenced.

In general observable spectrum lines are associated with upper principal quantum shells $n \leq n_{1}$. If $\quad M_{\text {rep }}$, lines are identified each with a distinct upper n-shells $\bar{n}_{\text {irep }}:$ irep $=1, \ldots, M_{\text {rep }}$, then a 'condensation' may be imposed such that

$$
q_{n}^{(C X)}=\sum_{\text {irep }=1}^{M_{\text {rep }}} L_{n, \text { irep }} q_{\bar{n}_{\text {irep }}}^{(C X)} \quad \text { for } n_{0} \leq n \leq n_{1}
$$

and

$$
q_{n}^{(C X)}=\left(n / n_{1}\right)^{\alpha} q_{n_{1}}^{(C X)} \quad \text { for } n>n_{1}
$$

giving, after integration along the line-of-sight, a matrix relation

$$
\left[\begin{array}{c}
I_{\bar{n}_{1} \rightarrow \bar{n}_{1}^{\prime}} \\
\cdot \\
I_{\bar{n}_{M_{r p} \rightarrow} \rightarrow \vec{n}_{M_{r e p}}^{\prime}}
\end{array}\right]=\left(\int_{S} N_{D} N^{+} d s\right)\left[\begin{array}{ccc}
a_{11} \cdot & \cdot & a_{1 M_{r e p}} \\
\cdot & \cdot & \cdot \\
a_{M_{r p} 1} & \cdot & a_{M_{r p} M_{r e p}} \\
M_{\bar{\prime}}
\end{array}\right]\left[\begin{array}{c}
(C X) \\
q_{\left.\bar{n}_{1}\right)}^{(C X)} \\
q_{\bar{n}_{r e p}}^{(C)}
\end{array}\right]
$$

The coefficients of the matrix are theoretically calculated quantities. The equations may be solved for the the $q_{\overline{\bar{n}}_{i}}^{(C X)}$ and the emission measure $\int_{S} N_{D} N^{+} d s$ subject to the constraint

$$
\sum_{\text {irep }=1}^{M_{\text {rep }}} q_{\bar{n}_{\text {irep }}}^{(C X)}=\sum_{\text {irep }=1}^{M_{\text {rep }}} q_{\bar{n}_{\text {irep }}}^{(C X)(\text { theor })}
$$

Energy levels:

Precise energy levels are required in calculating collisional redistribution between the degenerate and nearly degenerate states. This is also required in reconstructing precise $n-n^{\prime}$ line feature shapes. The cases of hydrogen-like ions and lithium-like ions are treated separately

Case(i): hydrogen-like ions

$$
\begin{align*}
E\left(n l^{2} L_{l+1 / 2}\right) & =-\left(z_{\text {eff } 1}^{2} / n^{2}\right) I_{H}-R M C_{n l}\left(z_{\text {eff } 2}\right) \\
& +\frac{1}{2} l Z E T A_{n l}\left(z_{\text {eff } 2}\right)+\delta_{l, 0} Q E D_{n}\left(z_{\text {eff } 2}\right) \\
E\left(n l^{2} L_{l-1 / 2}\right) & =-\left(z_{\text {eff } 1}^{2} / n^{2}\right) I_{H}-R M C_{n l}\left(z_{\text {eff } 2}\right) \\
& +\frac{1}{2}(l+1) Z E T A_{n l}\left(z_{\text {eff } 2}\right)
\end{align*}
$$

where

$$
\begin{align*}
& \text { RMC }_{n l}(z)= \begin{cases}\left(\alpha^{2} z^{4} / n^{4}\right)\left[\left(n / l+\frac{1}{2}\right)-\frac{3}{4}\right] I_{H} & l>0 \\
\left(\alpha^{2} z^{4} / n^{4}\right)\left[(n / l+1)-\frac{3}{4}\right] I_{H} & l=0\end{cases} \\
& \text { ZETA }_{n l}(z)= \begin{cases}\left(2 \alpha^{2} z^{4} / n^{4}\right)[n / l(2 l+1)(l+1)] I_{H} & l>0 \\
0 & l=0\end{cases} \\
& Q E D_{n}(z)=\left(8 \alpha^{3} z^{4} / 3 \pi n^{3}\right)\left\{\ln \left[1 /(\alpha z)^{2}\right]+\frac{19}{30}+L_{n}\right\} I_{H}
\end{align*}
$$

with $L_{1}=-2.984128, L_{2}=2.811768, L_{3}=-2.767699, L_{4}=-2.749859$ and $L_{n}=-2.71632-$ $0.02402(5 / n)^{3 / 2}$. The effective charge prescription is $z_{\text {eff }}=z_{\text {eff } 2}=z_{0}$.
Case (ii): lithium-like ions

$$
\begin{align*}
& E\left(1 s^{2} n l^{2} L_{l+1 / 2}\right)=E^{E d l e n}\left(z_{\text {eff } 1}\right)+\frac{1}{2} l Z E T A_{n l}\left(z_{\text {eff } 2}\right) \\
& E\left(1 s^{2} n l^{2} L_{l-1 / 2}\right)=E^{E d l e n}\left(z_{\text {eff } 1}\right)+\frac{1}{2}(l+1) Z E T A_{n l}\left(z_{\text {eff } 2}\right)
\end{align*}
$$

where the $E^{\text {Edlen }}$ are obtained from Ritz formulae for s and p orbitals and from polarisabilities for $l>1$ due to Edlen (1979). The effective charge prescription is $z_{\text {eff }}=z_{0,} z_{\text {eff } 2}=z_{0 .}-2$.

Alternate driving processes:

Primary fundamental state selective charge exchange cross-section data for the calculations are taken from ADAS compilations (type ADF01) in general. For contrast, a calculation may be carried out using state selective cross-sections from analytic expressions in the high energy Eikonal approximation. These analystic expressions are available for $1 \mathrm{~s}, 2$ sand 2 p donor states of neutral hydrogen and for the $1 \mathrm{~s}^{2}$ and 1 s 2 s states of neutral helium. It is of interest to compare the analysis with that which would occur with two alternative driving mechanisms. These are free electron capture and collisional excitation by electron impact from the ground state of the hydrogen-like impurity ion. The previous formulation remains the same but with the emission measure and capture rate coefficients redefined as

$$
\int_{S} N_{e} N^{+} d s \quad \text { and } \quad q_{\bar{n}_{i}}^{(r e c)}
$$

or

$$
\int_{S} N_{e} N^{\left(z_{0}-1\right)}(1 s) d s \quad \text { and } \quad q_{1 \rightarrow \bar{n}_{i}}^{(e x c)}
$$

respectively.

Source data :

The program operates on collections of fundamental state selective charge exchange crosssection data. The allowed content, organisation and formatting of these files are specified in ADAS data format ADF01 (see appendix). Centrally supported data collections are archived using the file naming convention as follow:

1. qcx\#h0_(<ion>).dat: individually prepared, preferred or default data with a ground state neutral hydrogen donor, where <ion> is the receiving fully ionised ion (for example, C6). The dataset usually covers an extended range of energies achieved by combining data from different sources.
2. qcx\#h0_(<initial><ion>).dat: ground state neutral hydrogen donor data in general from a particular source, where <initials> is a three character identifier of the source and <ion> is the receiving fully ionised ion (for example C6). Sources include KVI (cross-beam experiment based data from Kernversneller Instituut, Groningen); HMI (CCAO data from the calculations of Fritsch); GYT (continuum distorted wave data from the calculations of Gayet); CTM (CTMC data from the calculations of Olson). <initials> prefix of the form H2S etc. is used for excited hydrogen donors.
3. qcx\#he0_(<ion>).dat: individually prepared, preferred or default data with a ground state neutral helium donor, where <ion> is the receiving fully ionised ion (for example C6). The dataset usually covers and extended range of energies achieved by combining data from different sources.
4. qcx\#he0_(<initial><ion>).dat: ground state neutral helium donor data in general from a particular source, where <initials> is a three character identifier of the source and <ion> is the receiving fully ionised ion (for example C6). Sources include KVI (cross-beam experiment based data from Kernversneller Instituut, Groningen); HMI (CCAO data form the calculations of Fritsch); GYT (continuum distorted wave data from the calculations of Gayet); CTM (CTMC data from the calculations of Olson). <initials> prefix of the form H2S etc. is used for excited hydrogen donors.

Program steps:

These are summarised in the figure 4.6.
Figure 4.6

Interactive parameter comments:

Move to the directory in which you wish any ADAS created files to appear. These include the output text file produced after executing any ADAS program (paper.txt is the default) and the graphic file if saved (e.g. graph.ps if a postscript file).

The file selection window has the usual appearance shown below.

1. adf01 is the appropriate format for use by the program ADAS306. Your personal data of this type should be held in a similar file structure to central ADAS, but with your identifier replacing the first adas.
2. Available sub-directories are shown in the large file display window. Scroll bars appear if the number of entries exceed the file display window size. There are a large number of these. They are stored in sub-directories by donor which is usually neutral but not necessarily so (eg. $q c x \# h 0$). The individual members are identified by the subdirectory name, a code and then fully ionised receiver (eg. qcx\#h0_old\#c6.dat). The data sets generally contain $n l$-resolved cross-section data but n-resolved and $n l m$-resolved are handled. Resolution levels must not be mixed in datasets.
3. The codes distinguish different sources. The first letter o or the code old has been used to indicate that the data has been produced from JET compilations which originally had parametrised l-distribution of cross-sections. The nl-resolved data with such code has been reconstituted from them. Data of code old is the preferred JET data. Other sources codes include ory (old Ryufuku), ool (old Olson), ofr (old Fritsch) and omo (old molecular orbital). There are new data such as kvi.
4. Click on a name to select it. The selected name appears in the smaller selection window c) above the file display window. Then the individual datafiles are presented for selection. Datafiles all have the termination .dat.
5. Once a data file is selected, the set of buttons at the bottom of the main window become active.
6. Clicking on the Browse Comments button displays any information stored with the selected datafile. It is important to use this facility to find out what has gone into the dataset and the attribution of the dataset. The possibility of browsing the comments appears in the subsequent main window also.
7. Clicking the Done button moves you forward to the next window. Clicking the Cancel button takes you back to the previous window

The processing options window has the appearance shown below
8. Information is given on the fully ionised impurity receiver and the neutral beam donor at a). The atomic mass of the receiver should also be entered at b).
9. Details of observed line of sight spectral emissivities to be analysed, specification of beam parameters, and details of emissivities to be predicted are entered at c). Input data of each of these three types may be addressed in turn by activation of the relevant button. The a sub-window at d) then presents the appropriate table. Each table may be edited by
clicking on the Edit Table button. The Observed spectrum lines table is shown at d). In principle, a number of observed intensities are introduced here. It is possible to enter values which do not allow a consistent solution. The code advises of this but it is the responsibility of the user to check that the data is unblended etc. It is also a usual practice to enter just one line, possibly with a fictitious emissivity merely to obtain effective emission coefficients and line component details. The Beam parameter information button causes display of the window at d'). The table becomes editable in the usual way by clicking the Edit Table button. Note that no check is made that the various beam energy fractions sum to unity. This is the responsibility of the user. The Required emissivity predictions button causes the window at d'") to be displayed. This activates the predictive part of the code which becomes possible once the observed lines have been analysed in terms of emission measure. Then any set of lines within the N -shell limits may be predicted. The standard output includes the mean wavelength and effective emisison coefficient, but for up to five lines an extended tabulation of line component emissivities may be produced. Graphs may be produced for two selected line. Indicate these selections in the Key column.

10. At e) plasma parameters are entered. For ADAS306, there is a known deficiency in that the code underestimates severely the effect of the magnetic field B Magn. This is not a serious error in practice since the effect of collisions is usually dominant. Enter one value for B Magn as a place holder at this time.
11. The sub-window at f) allows model and theory choices. Details are given in the ADAS User Manual. For each type, clicking on the selection window drops down a short menu of choices. Click on the appropriate choice. The ADAS data base source numerical data of type adf01 is the most usual, that is the Use input data set choice button. Note that the Select emission measure model choice includes Radiative Recombination and Electron impact excitation as well as Charge exchange.
12. A number of tables of rate coefficients used at intermediate stages of the calculation can be printed. Select YES for rate table printing and click the buttons of the tables required.

The Output options window follows the usual pattern. Note that two plots are produced if required. The Plot A is the stick diagram of component line-of-sight emissivities. The Plot B is of the Doppler broadened profile of the line at the plasma ion temperature. Separate explicit scaling is possible for the two plots.
13. As in the previous window, the full pathway to the file being analysed is shown for information. Also the Browse comments button is available.
14. Graphical display is activated by the Graphical Output button a). This will cause a graph to be displayed following completion of this window. When graphical display is active, an arbitrary title may be entered which appears on the top line of the displayed graph. By default, graph scaling is adjusted to match the required outputs. Press the Explicit Scaling button b) to allow explicit minima and maxima for the graph axes to be inserted. Activating this button makes the minimum and maximum boxes editable. Plot A axes limits refer to the 'stick diagram and Plot B axes limits to the Doppler broadened profile.
15. Hard copy is activated by the Enable Hard Copy button c). The File name box then becomes editable. If the output graphic file already exits and the Replace button has not been activated, a 'pop-up' window issues a warning.
16. A choice of output graph plotting devices is given in the Device list window d). Clicking on the required device selects it. It appears in the selection window above the Device list window.
17. The Text Output button activates writing to a text output file. The file name may be entered in the editable File name box when Text Output is on. The default file name 'paper.txt'may be set by pressing the button Default file name. A 'pop-up' window issues a warning if the file already exists and the Replace button has not been activated.

Illustration:

The analysis of charge exchange emission by the programme is shown in figure 4.6 a and table 4.6a. Emission following electron capture by C^{+6} from neutral deuterium beam atoms in their ground state is illustrated. A single observed line-of sight emissivity in the transition CVI ($\mathrm{n}=$ $8-->n=7$) is analysed. Figure 4.6 a shows the theoretical breakdown of emission in the above line into multiplets and the expected Doppler broadened profile of the feature.

Figure 4.6a

Table 4.6a shows the tabular output. A detailed tabulation of the component photon fluxes is allowed for one spectrum line. In this case CVI ($n=8-7$) is given in detail. For the other selected charge exchange lines only the mean line of-sight photon flux, the mean wavelength and effective emission coefficient are predicted. The predicted photon fluxes are computed using the calculated emission measure. The spectrum lines CVI ($n=7-6$) and CVI ($n=9-7$) are shown.

Table 4.6a

Notes:

