ADAS Subroutine b4proj

	SUBROUTINE B4PROJ (W1 , JTE , JDENS ,&NMIN , NMAX , NREP , IMAX ,&NRESU , ARED , RHS , CIONPT ,&TRECPT , DRECPT , RRECPT , XRECPT ,&NPRT , NMAXI , NREPI ,&IMAXI , AREDI , RHSI ,&IMAXI , IECION , RHSIC ,&IEDMAT , IECION , IETREC ,&IEDREC , IERREC , IERREC ,&OPEN18 , OPEN19 , OPEN20 ,&PRB						
C-							
C C	************ FORTRAN77 SUBROUTINE: B4PROJ ************************************						
C	****************** FORIRAN // SUBROUTINE. Dierou ********************************						
С	VERSION: 1.1						
C C	PURPOSE: SUBROUTINE TO ESTABLISH THE PROJECTED INFLUENCE OF HIGH						
C	N-SHELLS IN THE BUNDLE-N COLLISIONAL DIELECTRONIC MODEL						
С	ON LOW N-SHELLS						
C C	BOTH THE RECOMBINATION AND IONISATION PATHWAYS THROUGH THE HIGH						
С	LEVELS ARE TAKEN INTO ACCOUNT AS WELL AS THE INDIRECT COUPLINGS OF						
С	LOW RESOLVED LEVELS VIA THE HIGH BUNDLE-N LEVELS.						
C C	THE SUBROUTINE IS USED AS AN ARBITRARY CALL FROM WITHIN THE						
С	CONVENTIONAL BNDLEN ROUTINE FOLLOWING ESTABLISHMENT OF THE						
C C	CONDENSED COLLISIONAL-DIELECTRONIC MATRIX AND RIGHT-HAND SIDE						
C	THE ROUTINE PROVIDES TABULAR OUTPUT AND FOR THE MOMENT PREPARES A						
С	PASSING FILE FOR FURTHER PROCESSING IN THE A-D-A-S STRUCTURE						
C C							
C	INPUT:						
С	W1 = GROUND STATE RADIATION DILUTION FACTOR						
С	JTE = TEMPERATURE INDEX						
C	JDENS = DENSITY INDEX						
C C	NMIN = LOWEST N-SHELL NMAX = HIGHEST N-SHELL						
C	NREP(I) = SET OF REPRESENTATIVE LEVELS						
С	IMAX = NUMBER OF REPRESENTATIVE LEVELS						
C	NRESU = UPPER LIMIT OF PROJECTED N-SHELLS						
C C	ARED(I,J) = CONDENSED COLLISONAL-DIELECTRONIC MATRIX (CN SOLUTION)						
C	(EXCLUDES AUTO-IONISATION RATES FOR LEVELS LE NRESU)						
С	RHS(I) = CONDENSED RIGHT-HAND-SIDE (CN SOLUTION)						
C C	(EXCLUDES AUTO-IONISATION RATES FOR LEVELS LE NRESU) CIONPT(I) = COLLISIONAL IONISATION CONTRIBUTION TO ARED(I,I)						
C	CTOMET(T) = CONDISIONAL TONISATION CONTRIBUTION TO ARED(T, T)						

```
TRECPT(I) = THREE BODY RECOMBINATION CONTRIBUTION TO RHS(I)
С
С
      DRECPT(I) = DIELECTRONIC RECOMBINATION CONTRIBUTION TO RHS(I)
С
      RRECPT(I) = RADIATIVE RECOMBINATION CONTRIBUTION TO RHS(I)
      XRECPT(I) = CHARGE EXCHANGE RECOMB. CONTRIBUTION TO RHS(I)
С
С
              = NUMBER OF PARENT STATES
С
      NPRT
С
      IMAXI
С
      NMAXI
С
      NREPI(I) DATA FOR PROJECTION OF IONISATION VECTORS
С
                          SMALL (40X40) MATRIX , CN SOLUTION
      AREDI(I,J)
С
      RHSI(I)
С
      RHSIRC(I) = RECOMBINATION CONTRIBUTION TO RHS
С
      CIONRI = DIRECT IONISATION DATA, PARENT RESOLVED
      CIONRA = AUTO-IONISATION DATA, PARENT RESOLVED
С
С
С
      SSYSWT = SPIN SYSTEM WEIGHT
С
      IPRTCAL = INDEX OF PARENT FOR CALCULATION
С
С
      DVEC(I) = CONVERSION FACTOR FOR BN --> POPULATION
С
      ACNST = 1.03928D - 13 \times Z \times ATE \times DSQRT (ATE)
С
      A1CNST = 6.60074D-24*DENS*(157890.0/TE)**1.5
С
С
     PCION(I) = DIRECT IONISATION RATE FROM LOW LEVEL SET
                         POPULATION REPRESENTATION
С
С
      PRB
              = RECOM/CASCADE/BREMS. POWER COEFFT.
С
С
      OUTPUT - POPULATION REPRESENTATION (WRITTEN TO FILE CBNM.PASS)
С
      _____
С
      PCRMAT(I,J) = PROJECTED INFLUENCE OF HIGH LEVELS ON LOW LEVEL SET
С
      PCRL(I,J) = DIRECT EXCIT/RADIATIVE COUPLING IN LOW LEVEL SET
С
      PCIONRP(IPRT,I) = PROJECTED IONISATION VECTOR (PARENT RESOLVED)
      PCIONRI(IPRT,I) = DIRECT IONISATION VECTOR FROM LOW LEVEL SET
С
С
                                                    (PARENT RESOLVED)
С
      PCQINRP(IPRT) = INDIRECT PARENT CROSS COUPLING COEFFICIENT
С
                                                    (PARENT RESOLVED)
С
      PCRRHS(I) = PROJECTED INFLUENCE OF HIGH LEVELS ON RHS
      PTREC(I) = DIRECT THREE BODY RECOMBINATION RATE
С
С
      PDREC(I) = DIRECT DIELECTRONIC RECOMBINATION RATE
С
      PRREC(I) = DIRECT RADIATIVE RECOMBINATION RATE
С
      PXREC(I) = DIRECT CX RECOMBINATION RATE
С
                = RECOM/CASCADE/BREMS. POWER COEFFT.
      PRB
С
С
С
      OUPUT CONTROL CHARACTERS
С
      _____
С
      IEDMAT = 0 PCRL ADDED ONTO PCRMAT
С
                1 PCRL NOT ADDED ON
      IECION = 0 PCION ADDED ONTO TO PCRMAT
С
С
                   PCIONRI ADDED ONTO PCIONRP
                1 PCION NOT ADDED ON
С
С
                  PCIONRI NOT ADDED ON
С
      IETREC = 0 PTREC ADDED ONTO PCRRHS
С
                 1 PTREC NOT ADDED ON
```

```
IEDREC = 0 PDREC ADDED ONTO PCRRHS
С
С
                1 PDREC NOT ADDED ON
    IERREC = 0 PRREC ADDED ONTO PCRRHS
С
С
                1 PRREC NOT ADDED ON
С
     IEXREC = 0 PXREC ADDED ONTO PCRRHS
                1 PXREC NOT ADDED ON
С
С
     IERSYS = 0 RECOMBINATION AND INDIRECT PARENT CROSS COUPLING
                  RATES MULTIPLIED BY SPIN SYSTEM WEIGHT
С
С
                 1 RECOMBINATION AND INDIRECT PARENT CROSS COUPLING
С
                   RATES NOT MULTIPLIED BY SPIN SYSTEM WEIGHT
С
С
C AUTHOR: WILLIAM J. DICKSON, JET JOINT UNDERTAKING
С
C DATE: 24TH AUGUST 1992
С
C UPDATE: 30/01/97 HP SUMMERS - CHANGED NAME TO B4PROJ FROM V2CLDBN
С
C UPDATE: 29/04/97 HP SUMMERS - ADJUSTMENTS DURING RE-VALIDATION
С
C UPDATE: 09/07/97 HP SUMMERS - INTRODUCE IOUT18 AND IOUT19 FOR CBNM
                                 AND CBNMPR PASSING FILES
С
С
C UPDATE: 09/03/98 HP SUMMERS - RECOM/CASCADE/BREMS. POWER NOW
С
                                 FETCHED AS INPUT PRB AND RELAYED TO
С
                                 CBNM FILE. CONVERTED TO EXPLICIT
С
                                 TYPE DECLARATIONS.
С
C-----
С
C VERSION: 1.1 DATE: 05-03-98
C MODIFIED: H.SUMMERS, L.HORTON, M.O'MULLANE
C - BASED ON v2cldbc.for v1.2.
C VERSION: 1.2 DATE: 09-03-98
C MODIFIED: H.SUMMERS, L.HORTON, M.O'MULLANE
C - RECOM/CASCADE/BREMS. POWER NOW FETCHED AS INPUT PRB AND
  RELAYED TO CBNM FILE. CONVERTED TO EXPLICIT TYPE DECLARATIONS.
С
C VERSION: 1.3 DATE: 08-12-98
C HP SUMMERS & RICHARD MARTIN
C - REMOVED TWO OBSOLETE WRITE STATEMENTS.
С
C VERSION: 1.4 DATE: 03-08-2000
C Martin O'Mullane
C - Changed IPRT\N to IPRT/N to avoid \N being interpreted
С
                as an escape character.
С
C VERSION: 1.5 DATE: 11-09-2002
C Martin O'Mullane
C - Add open18 and open19 to give finer control over the
                output files; extra logic to use them added throughout.
С
С
C VERSION: 1.6 DATE: 16-05-2007
C Allan Whiteford
```

C - Modified comments as part of subroutine documentation C procedure.

C					
INTEGER	IECION,	IEDMAT,	IEDREC,	IERREC	
INTEGER	IERSYS,	IETREC,	IEXREC,	IMAX	
INTEGER	IMAXI,	IPRTCAL,	JDENS,	JTE	
INTEGER	NMAX,	NMAXI,	NMIN,	NPRT	
INTEGER	NREP(NDIM+1	NREP(NDIM+1),		NREPI(NDIM+1)	
INTEGER	NRESU				
LOGICAL	OPEN18,	OPEN19,	OPEN20		
REAL*8	A1CNST, ACNST, AREDI (NDIM, NDIM), CIONRA (NDMET, NDIM),		ARED (NDIM, NDIM) CIONPT (NDIM) CIONRI (NDMET, NDIM)		
REAL*8					
REAL*8					
REAL*8	DRECPT(NDIM),		DVEC(NDIM),	PRB	
REAL*8	RHS(NDIM),	RHSI(NDIM),	RHSIRC (NDIM)		
REAL*8	RRECPT (NDIM),	SSYSWT		
REAL*8	TRECPT (NDIM),	W1		
REAL*8	XRECPT (NDIM)			

С