ADAS Subroutine bftran

С

SUBROUTINE BFTRAN(TYP, C, LNEG, AIN , WVNOU , WVNOL , WTU , WTL , 8 TEIN , UPSIN , NV & , TEOUT , UPSOUT , NVN &) 8 C-----_____ С С C PURPOSE : TO IMPLEMENT THE TRANSFORMATION DESCRIBED BY BURGESS AND TULLY (SEE REFERENCE (1)) WHICH С С IS USED TO ASSESS AND COMPACT DATA. С С C REFERENCES: С (1) A.BURGESS AND J.A.TULLY С ON THE ANALYSIS OF COLLISION STRENGTHS С AND RATE COEFFICIENTS. С ASTRON.ASTROPHYS.254,436-453 (1992) С С (2) SUMMERS.H.P С ADAS USERS MANUAL (1ST EDITION). С C INPUT : = BURGESS & TULLY TRANSITION TYPE CODE С (C*1) TYP С (R*8) C = THE ADJUSTABLE PARAMETER ASSOCIATED С WITH THE BURGESS AND TULLY С TRANSFORMATION (SEE REFERENCE (1)). (L) LNEG С = IF TYPE 2 GOES NEGATIVE AT HIGH С TEMPERATURES THE COLLISION STRENGTH HAS С A ZERO LIMITING VALUE AT INFINITY. С (R*8) AIN = THE EINSTEIN 'A' CO-EFFICIENT. THIS С IS READ DIRECTLY FROM THE ADF04 С TYPE FILE. (R*8) WVNOU = THE WAVENUMBER OF THE UPPER LEVEL. С С THIS IS READ DIRECTLY FROM THE ADF04 С TYPE FILE. (R*8) WVNLO = THE WAVENUMBER OF THE LOWER LEVEL. С С THIS IS READ DIRECTLY FROM THE ADF04 С TYPE FILE. С = THE STATISTICAL WEIGHT OF THE UPPER (R*8) WTU С LEVEL. THIS IS OBTAINED BY С С = THE STATISTICAL WEIGHT OF THE LOWER (R*8) WTL С LEVEL. THIS IS OBTAINED BY С С (R*8) TEIN = THE TEMPERATURE ARRAY (K). THIS С DATA IS READ DIRECTLY FROM THE С ADF04 TYPE FILE. (R*8) UPSIN = THE ARRAY CONTAING THE EFFECTIVE С С COLLISION STRENGTH. THIS DATA IS

C			READ DIRECTLY FROM THE ADF04
С	(- ()		TYPE FILE.
С	(⊥*4)	NV	= THE NUMBER OF TEMPERATURE/EFFECTIVE
C			COLLISION STRENGTH PAIRS FOR A GIVEN
C			TRANSITION.
C	(⊥*4)	NVN	= THE NUMBER OF TEMPERATURES/EFFECTIVE
C			COLLISION STRENGTH PAIRS FOR A GIVEN
C			TRANSITION. THIS PARAMETER IS IN
C			FACT THE NUMBER OF USER DEFINED
C			IEMPERATURE POINTS AT WHICH THE
C			EFFECTIVE COLLISION SIRENGIH
C	(\mathbf{D}, \mathbf{O})	TTAIT	HAS IO BE EVALUATED AL.
C	(R*8)	IEOUI	= THE TEMPERATURE RANGE FOR WHICH
C			THE EFFECTIVE COLLISION STRENGTH IS
C			REQUIRED.
C			
C	001201:		
C	(D, 0)	UDCOUT	- THE ADDAY OF FEFECTIVE COLLISION
C	(K*0)	025001	= INE ARRAY OF EFFECTIVE COLLISION
C			SIRENGINS INAL ARE REQUIRED.
C			
C	(D+Q)	с.	- TUE MATUEMATICAI CONSTANT E
C	(IX*0) (R*8)	CONST	= CLUSTER OF PHYSICAL CONSTANTS
C	(1(*0))	CONSI	SEE DAGE 12 OF REFERENCE (2)
C	(R+8)	FTJTN	= THE TRANSITION ENERGY (RVD)
C	(R*8)	FLIIN	= THE OSCILLATOR STRENGTH
C	(R+8)	ET	= GENERAL CONSTANT
C	(R*8)	C	= THE BURGESS C PARAMETER
C	(R*8)	с х	= THE X ARRAY ASSOCIATED WITH THE
C	(100)	23	BURGESS AND TULLY TRANSFORMATION.
C	(R*8)	Y	= THE Y ARRAY ASSOCIATED WITH THE
С	(_	BURGESS AND TULLY TRANSFORMATION.
C	(R*8)	DY	= DERIVATIVES AT INPUT KNOTS.
С	(-		SEE XXSPLN FOR FUTHER DETAILS.
С	(R*8)	XOUT	= X ARRAY ASSOCIATED WITH THE
С	(-		BURGESS AND TULLY TRANSFORMATION.
С	(R*8)	YOUT	= Y ARRAY ASSOCIATED WITH THE
С	, , , , , , , , , , , , , , , , , , ,		BURGESS AND TULLY TRANSFORMATION.
С	(R*8)	FINTX	= INTERPOLATING X COORDINATE
С			TRANSFORMATION (SEE SUBROUTINE
С			XXSPLN). EXTERNAL FUNCTION.
С	(I*4)	NVMAX	= THE MAXIMUM NUMBER OF TEMPERTURES
С			THAT CAN BE READ.
С	(I*4)	NFIT	= NVMAX+1 - ALLOWS LIMIT POINT TO BE
С			ADDED TO TYPE 1 AND 4 FITS.
С	(I*4)	IOPT	= GENERAL PARAMETER ASSOCIATED WITH
С			THE SUBROUTINE XXSPLN.
С	(I*4)	I	= GENERAL VARIABLE WHICH IS USED AS
С			A COUNTER.
С	(LOG)	LSETX	= PARAMETER ASSOCIATED WITH THE
С			SUBROUTINE XXSPLN.
С			

```
C ROUTINES:
   ROUTINE SOURCE BRIEF DESCRIPTION
С
         _____
С
         I4UNITADASFETCH UNIT NUMBER FOR OUTPUT OF MESSAGESR8CONSTADASRETURNS FUNDAMENTAL ATOMIC CONSTANTS
С
С
С
С
C AUTHOR: H. P. SUMMERS, UNIVERSITY OF STRATHCLYDE
         JA8.08
С
С
         TEL. 0141-553-4196
С
C DATE: 04/06/98
С
C UPDATE:
С
C VERSION: 1.1 DATE: 09/08/98
C MODIFIED: RICHARD MARTIN
C - PUT UNDER SCCS CONTROL.
С
C VERSION: 1.2 DATE: 15/04/99
C MODIFIED: Martin O'Mullane
             - If type 1 or 4 add in the limit point
С
С
              to the spline fit.
C - Added support for type 4 transitions.
С
C VERSION: 1.3 DATE: 08/10/99
C MODIFIED: Martin O'Mullane
             - Certain type 2 and 3 transitions have a limiting
С
               point of zero at infinity. We deduce this by
С
С
               fitting and if the values go negative rerun with
С
               LNEG set and add y=0 at x=1 to the fit.
С
C-----
     CHARACTER
                      TYP
     INTEGER
                     NV,
                                NVN
     LOGICAL
                     LNEG
                     AIN, C, TEIN(NV)
TEOUT(NVN), UPSIN(NV), UPSOUT(NVN), WTL
     REAL*8
     REAL*8
     REAL*8
                     WTU,
                                 WVNOL,
                                            WVNOU
```