ADAS Subroutine bxmpop

```
SUBROUTINE BXMPOP ( NDMET ,
     ξ
                        NMET
    &
                        CRED
                        RHS , CRMAT ,
    &
                        STKM
     &
                      )
C-----
   ******* FORTRAN77 SUBROUTINE: BXMPOP *****************
С
С
С
 PURPOSE: TO CALCULATE AND STACK UP IN 'STKM' THE METASTABLE LEVEL
С
           POPULATIONS FOR A GIVEN TEMPERATURE AND DENSITY.
С
           ALSO OUTPUTS INVERTED METASTABLE RATE MATRIX.
С
С
С
 CALLING PROGRAM: ADAS205/ADAS206
C
C SUBROUTINE:
С
 INPUT: (I*4) NDMET = MAXIMUM NUMBER OF METASTABLE LEVELS ALLOWED
С
С
С
 INPUT: (1*4) NMET = NUMBER OF METASTABLE LEVELS
С
С
 INPUT: (R*8) CRED(,) = MATRIX OF TRANSITION RATES BETWEEN
С
                            METASTABLE LEVELS.
С
                            (UNITS: SEC-1)
С
                            VALUES FOR GIVEN TEMPERATURE AND DENSITY.
С
                            1st DIMENSION: METASTABLE LEVEL INDEX
С
                            2nd DIMENSION: METASTABLE LEVEL INDEX
C
С
  OUTPUT: (R*8) RHS() = GENERAL MATRIX SOLUTION WORK SPACE:
С
                            USED IN SOLUTION OF 'NMET-1' LINEAR EONS.
С
                                           A.X=B
С
                            INPUT TO XXMINV: RIGHT HAND SIDE VECTOR 'B'
С
                              (RHS(IM) = -(RATE FROM LEVEL 'IM+1' TO 1))
С
                              (UNITS: SEC-1)
С
                            OUTPUT FROM XXMINV: SOLUTION VECTOR 'X'
С
                              (RHS (IM) = POPULATION OF LEVEL 'IM+1')
С
                            VALUES FOR GIVEN TEMPERATURE AND DENSITY.
С
                            DIMENSION: METASTABLE LEVEL - 1
  OUTPUT: (R*8) CRMAT(,) = INVERTED METASTABLE LEVEL RATE MATRIX
С
С
                            COVERING ALL TRANSITIONS BETWEEN METASTABLE
С
                            LEVELS EXCEPT THOSE INVOLVING LEVEL 1.
С
                            VALUES FOR GIVEN TEMPERATURE AND DENSITY.
С
                            BEFORE INPUT TO
                                              XXMINV: NOT INVERTED
C
                            AFTER OUTPUT FROM XXMINV: AS-ABOVE
С
                            1st DIMENSION: METASTABLE LEVEL INDEX - 1
С
                            2nd DIMENSION: METASTABLE LEVEL INDEX - 1
С
С
 OUTPUT: (R*8) STKM() = METASTABLE LEVEL POPULATION MATRIX.
С
                            VALUES FOR GIVEN TEMPERATURE AND DENSITY.
С
                            DIMENSION: METASTABLE LEVEL INDEX
```

```
С
С
           (L \star 4) LSOLVE = PARAMETER = .TRUE.
С
                                   => USE 'XXMINV' TO SOLVE A SET OF
С
                                      LINEAR EQUATIONS A.X = B, WHERE
С
                                      A, X, B ARE MATRICES/VECTORS AND:
С
                                      A='CRMAT(,)' INPUT TO
С
                                       B='RHS()'
                                                   INPUT TO XXMINV
                                       X='RHS()'
С
                                                  OUTPUT FROM XXMINV
С
           (I \star 4) NMET1 = 'NMET - 1'
С
           (I \star 4) IM
С
                         = METASTABLE LEVEL ARRAY INDEX
С
           (I \star 4) IM1
                         = METASTABLE LEVEL ARRAY INDEX
С
           (I \star 4) IM2
                         = METASTABLE LEVEL ARRAY INDEX
С
С
           (R*8) DMINT = +1 or -1 DEPENDING ON WHETHER THE NUMBER OF
С
                            ROW INTERCHANGES WAS EVEN OR
С
                            RESPECTIVELY, WHEN INVERTING A MATRIX USING
С
                            'XXMINV'.
С
C ROUTINES:
С
                    SOURCE BRIEF DESCRIPTION
          ROUTINE
С
          ______
С
          XXMINV ADAS INVERTS MATRIX AND SOLVES EQUATIONS.
С
C NOTE:
С
        THE SOLUTION OF METASTABLE POPULATIONS GIVEN BELOW IS BASED ON
С
        METASTABLE LEVEL 1 HAVING A POPULATION OF UNITY (1.0).
С
        IF: m = number of metastable levels - 1
С
С
С
            R(mxm) = Rate matrix (sec-1) covering transistions between
С
                     all possible pairs of metastable levels (except 1)
С
                     row : final level
С
                     column: initial level
С
                     (R(mxm) = 'CRMAT(,)' on input to XXMINV)
С
                     (R-1 (mxm) = 'CRMAT(,)' on output from XXMINV)
С
                   = Rate vector (sec-1) covering transistions between
С
                     each metastable level (except 1) and met. level 1
С
                     ( = 'RHS()' on input to XXMINV)
С
            P (m)
                   = Metastable level populations - levels 2 -> 'NMET'
С
                     ( = 'RHS()' on output from XXMINV)
С
С
           Therefore: R(mxm) \cdot P(m) = V(m)
С
С
                      P(m) = R-1(mxm).V(m)
            =>
С
С
C AUTHOR: PAUL E. BRIDEN (TESSELLA SUPPORT SERVICES PLC)
С
          K1/0/81
С
          JET EXT. 4569
С
C DATE: 09/10/90
```

C					
С					
C					
	LOGICAL	LSOLVE			
C					
	INTEGER		NDMET,	NMET	
	REAL*8		CRED (NDMET, NDMET),		CRMAT (NDMET, NDMET)
	REAL*8		RHS (NDMET),	STKM (NDMET)	