ADAS Subroutine c7cxee

```
SUBROUTINE C7CXEE ( MXNENG , MXNSHL , NGRND , NTOT
                       NBOT , NTOP , IRZO , IRZ1
                       RAMSNO , TEV , TIEV , DENS DENSZ , ZEFF , BMAG , BMENG
    &
    &
                        ITHEOR , IBSTAT , IEMMS , NTU
                            , NMINF , NMAXF , NENRGY ,
                       NTL
    &
                       ENRGYA , ALPHAA , XSECNA , FRACLA ,
    &
                       ERATE
    \mathcal{S}
                      )
С
C
C-----
  ********* FORTRAN77 SUBROUTINE: C7CXEE ***************
С
С
С
 PURPOSE: CALCULATES THE J-RESOLVED EFFECTIVE EMISSIVITY RATE
C
            COEFFICIENT FOR THE GIVEN TRANSITION.
С
С
            IT IS APPLICABLE TO IMPURITIES IN PLASMA TRAVERSED BY
            NEUTRAL BEAMS OF H OR HE. THE RECOMBINED TARGET ION MAY BE
С
С
            H, LI OR NA-LIKE.
С
            THE MODEL INCLUDES CAPTURE, N-N' LEVEL CASCADE, AND MIXING
С
С
            AMONG L, J LEVELS OF SAME N BY COLLISIONS OR MAGNETIC
С
            FIELDS.
С
С
            ELECTRON IMPACT IONISATION IS INCLUDED TO GIVE COLLISION
С
            LIMIT EFFECT.
С
С
            AN INTERNAL EIKONAL APPROXIMATION IS USED FOR CAPTURE FROM
С
            EXCITED H OR HE STATES, ALTHOUGH NORMALLY THE EXTERNAL DATA
С
            SET SHOULD BE USED.
С
C CALLING PROGRAM: ADAS307
С
C INPUT: (1 * 4) MXNENG = MAXIMUM NO. OF ENERGIES IN DATA SET.
  INPUT : (1 * 4) MXNSHL = MAXIMUM NUMBER OF N SHELLS.
С
 INPUT : (1 * 4) NGRND
                         = PRINCIPAL QUANTUM NUMBER OF GROUND STATE.
С
                         = PRINCIPAL QUANTUM NUMBER OF HIGHEST BOUND
С
 INPUT: (I*4) NTOT
С
                            STATE.
C INPUT : (1*4) NBOT = MINIMUM PRINCIPAL QUANTUM NUMBER FOR
С
                            RATE TABLES.
C INPUT: (I*4) NTOP
                          = MAXIMUM PRINCIPAL QUANTUM NUMBER FOR
С
                            RATE TABLES.
С
 INPUT : (I \star 4) IRZ0
                          = RECEIVER NUCLEAR CHARGE.
C INPUT : (1 \star 4) IRZ1
                          = RECEIVER ION INITIAL CHARGE.
С
  INPUT : (R*8) RAMSNO
                          = RECEIVER ATOMIC MASS.
C INPUT: (R*8) TEV
                          = ELECTRON TEMPERATURE.
С
                            UNITS: EV
C INPUT: (R*8) TIEV = ION TEMPERATURE.
С
                            UNITS: EV
C INPUT: (R*8) DENS = ELECTRON DENSITY.
```

```
С
                              UNITS: CM-3
C INPUT: (R*8) DENSZ
                            = PLASMA ION DENSITY.
С
                              UNITS: CM-3
C INPUT : (R*8)
                  ZEFF
                            = EFFECTIVE ION CHARGE.
C INPUT: (R*8) BMAG
                            = PLASMA MAGNETIC INDUCTION.
С
                              UNITS: TESLA
C INPUT: (R*8) BMENG
                            = BEAM ENERGY.
С
                              UNITS: EV/AMU
С
 INPUT : (I * 4)
                            = CHARGE EXCHANGE MODEL OPTION.
                  ITHEOR
С
                              1 => USE INPUT DATA SET.
С
                              2 => USE EIKONAL MODEL.
С
  INPUT : (I * 4) IBSTAT
                            = DONOR STATE FOR EIKONAL MODEL.
С
                              1 => H(1S)
С
                              2 => H(2S)
С
                              3 => H(2P)
С
                              4 => HE (1S2)
C
                              5 \Rightarrow HE(1S2S)
C INPUT: (1 \star 4) IEMMS
                            = EMISSION MEASURE MODEL OPTION.
С
                              1 => CHARGE EXCHANGE.
С
                              2 => ELECTRON IMPACT EXCITATION.
С
                              3 => RADIATIVE RECOMBINATION.
C INPUT : (1 * 4) NTL
                            = LOWER PRINCIPAL QUANTUM NUMBER OF
С
                              TRANSITION.
С
 INPUT : (I * 4)
                  NTU
                            = UPPER PRINCIPAL QUANTUM NUMBER OF
С
                              TRANSITION.
C INPUT: (1 * 4) NMINF
                            = LOWEST N-SHELL FOR WHICH DATA READ.
                            = HIGHEST N-SHELL FOR WHICH DATA READ.
C INPUT : (I * 4) NMAXF
C INPUT : (I \star 4) NENRGY
                          = NUMBER OF ENERGIES READ FROM DATA SET.
С
  INPUT : (R*8) ENRGYA() = COLLISION ENERGIES READ FROM INPUT DATA
С
                              SET.
С
                              UNITS: EV/AMU
С
                              DIMENSION: ENERGY INDEX
 INPUT: (R*8) ALPHAA() = EXTRAPOLATION PARAMETER ALPHA READ FROM
С
C
                              INPUT DATA SET.
                              DIMENSION: ENERGY INDEX
С
С
  INPUT: (R*8) XSECNA(,) = N-RESOLVED CHARGE EXCHANGE CROSS-SECTIONS
                              READ FROM INPUT DATA SET.
С
С
                              UNITS: CM2
                              1ST DIMENSION: ENERGY INDEX
С
С
                              2ND DIMENSION: N-SHELL
С
  INPUT : (R*8) FRACLA(,) = L-RESOLVED CHARGE EXCHANGE CROSS-SECTIONS.
С
                              AFTER CXDATA: ABSOLUTE VALUES (CM2).
С
                              AFTER CXFRAC: FRACTION OF N-RESOLVED
С
                                             DATA.
                              1ST DIMENSION: ENERGY INDEX
С
С
                              2ND DIMENSION: INDEXED BY I4IDFL(N,L)
С
С
   OUTPUT: (R*8) ERATE
                            = EFFECTIVE EMISSIVITY RATE COEFFICIENT FOR
С
                              REQUESTED TRANSITION
С
                              SPECTRUM LINE.
С
                              UNITS: CM3 SEC-1
С
C PARAM : (I*4) MXN
                            = MXNSHL.
```

C C C	PARAM :	(I * 4)		=	MAXIMUM NUMBER OF J SUB-SHELLS. MAXIMUM NUMBER OF BEAM COMPONENTS. MAXIMUM NUMBER OF OBSERVED SPECTRUM
C C C	PARAM:	(I*4)	MXPRSL	=	LINES. MAXIMUM NUMBER OF SPECTRUM LINES TO PREDICT.
C C C	PARAM:	(R*8)	EMP	=	REDUCED MASS FOR POSITIVE ION. UNITS: ELECTRON MASSES
С		(I * 4)	NBEAM	=	NUMBER OF BEAM ENERGIES.
С					NUMBER OF OBSERVED SPECTRUM LINES.
С					NUMBER OF SPECTRUM LINES TO PREDICT.
С			NUMIN		MINIMUM UPPER PRINCIPAL QUANTUM NUMBER
С		(+ " +)	11011111		FOR OBSERVED SPECTRUM LINES.
С		(T. 4)	NTTTN/7\ \Z	_	
		(1*4)	NUMAX	_	MAXIMUM UPPER PRINCIPAL QUANTUM NUMBER
С					FOR OBSERVED SPECTRUM LINES.
С		(= 0)			
С		(R*8)	EM	=	EMMISSION MEASURE.
С					UNITS: CM-5
С					
С		(I * 4)	NL()	=	LIST OF LOWER PRINCIPAL QUANTUM NUMBERS
С					OF OBSERVED SPECTRUM LINES.
С					DIMENSION: SPECTRUM LINE INDEX.
С		(I * 4)	NU()	=	LIST OF UPPER PRINCIPAL QUANTUM NUMBERS
С					OF OBSERVED SPECTRUM LINES.
С					DIMENSION: SPECTRUM LINE INDEX.
С		$(I \star 4)$	NPL()	=	LIST OF LOWER PRINCIPAL QUANTUM NUMBERS
С					OF SPECTRUM LINES TO PREDICT.
С					DIMENSION: SPECTRUM LINE INDEX.
С		(I * 4)	NPU()	=	LIST OF UPPER PRINCIPAL QUANTUM NUMBERS
С					OF SPECTRUM LINES TO PREDICT.
С					DIMENSION: SPECTRUM LINE INDEX.
С					
С		(R*8)	BMFRA()	=	BEAM COMPONENT FRACTIONS.
С					DIMENSION: COMPONENT INDEX.
С		(R*8)	BMENA()	=	BEAM ENERGY COMPONENTS.
С					UNITS: EV/AMU
С		(R*8)	EMISA()	=	LIST OF EMISSIVITIES OF OBSERVED SPECTRUM
С					LINES.
С					UNITS: PH CM-2 SEC-1
С					DIMENSION: SPECTRUM LINE INDEX.
С		(R*8)	TBLF ()	=	TABLE OF RADIATIVE LIFETIMES.
С		(21 0)	1221 ()		UNITS: SECS
С					DIMENSION: REFERENCED BY 141DFL(N,L).
С		(R+8)	OTHIN()	_	IONISATION RATE COEFFICIENT.
С		(14,0)	× + + + + + + / /	_	UNITS: CM3 SEC-1
С					DIMENSION: N SHELL INDEX.
С		(D : 0)		_	MEAN EXCITATION RATE COEFFICIENTS FOR
C		(1/*0)	Δ111ΓV ()	_	N-LEVELS AVERAGED OVER BEAM FRACTIONS.
C					UNITS: CM3 SEC-1
C		(D , O)	OTHCH ()	_	DIMENSION: N SHELL INDEX.
С		([[\times\)	OTUCU()	=	MEAN CHARGE EXCHANGE COEFFICIENTS FOR

C C				N-LEVELS AVERAGED OVER BEAM FRACTIONS. UNITS: CM3 SEC-1
C C	(R*8)	QTHRC()	=	DIMENSION: N SHELL INDEX. MEAN RECOMBINATION RATE COEFFICIENTS FOR N-LEVELS AVERAGED OVER BEAM FRACTIONS.
C C				UNITS: CM3 SEC-1 DIMENSION: N SHELL INDEX.
C C	(R*8)	QEX()	=	DIMENSION: N SHELL INDEX.
C C	(R*8)	TOTPOP()	=	TOTAL COLLISION POP. FOR PREDICTED SPECTRUM LINE. UNITS: CM-2
C	(R*8)	TOTEMI()	=	DIMENSION: PREDICTED LINE INDEX. TOTAL COLLISION EMISSIVITIES FOR PREDICTED
C C	(1(* 0)	1011111 ()		SPECTRUM LINE. UNITS: PH CM-2 SEC-1
C C	(R*8)	AVRGWL()	=	DIMENSION: PREDICTED LINE INDEX. AVERAGE AIR WAVELENGTH FOR PREDICTED SPECTRUM LINE.
C	(= 0)			UNITS: A DIMENSION: PREDICTED LINE INDEX.
C C	(R*8)	QEFF()	=	EFF. RATE COEFFICIENT FOR PREDICTED SPECTRUM LINE. UNITS: CM3 SEC-1
C C				DIMENSION: PREDICTED LINE INDEX.
C C C C	(R*8)	FTHEXJ(,)	=	FRACTION OF N-LEVEL MEAN EXCITATION RATE COEFFICIENTS IN NLJ-LEVEL. 1ST DIMENSION: J SHELL INDEX WHERE: 1 GIVES J=L+0.5 2 GIVES J=L-0.5
C C	(R*8)	FTHCHJ(,)	=	2ND DIMENSION: REFERENCED BY I4IDFL(N,L). FRACTION OF N-LEVEL MEAN CHARGE EXCHANGE COEFFICIENTS IN NLJ-LEVEL.
C C C				1ST DIMENSION: J SHELL INDEX WHERE: 1 GIVES J=L+0.5 2 GIVES J=L-0.5
C C	(R*8)	FTHRCJ(,)	=	2ND DIMENSION: REFERENCED BY 14IDFL(N,L). FRACTION OF N-LEVEL MEAN RECOMBINATION
C C C				RATE COEFFICIENTS IN NLJ-LEVEL. 1ST DIMENSION: J SHELL INDEX WHERE: 1 GIVES J=L+0.5 2 GIVES J=L-0.5
C C	(R*8)	TBQMEP(,)	=	2ND DIMENSION: REFERENCED BY 14IDFL(N,L). ELECTRON COLLISIONAL RATE COEFFT. FOR
C C				NLJ->NL+1J'. 1ST DIMENSION: J->J' TRANSITION INDEX. 2ND DIMENSION: REFERENCED BY 141DEL(N.L)
C C	(R*8)	TBQMEM(,)	=	2ND DIMENSION: REFERENCED BY 141DFL(N,L). ELECTRON COLLISIONAL RATE COEFFT. FOR NLJ->NL-1J'.
C C	(R*8)	TBQMIP(,)	=	1ST DIMENSION: J->J' TRANSITION INDEX. 2ND DIMENSION: REFERENCED BY 14IDFL(N,L). POSITIVE ION COLLISIONAL RATE COEFFT. FOR

С			NLJ->NL+1J'.
C			1ST DIMENSION: J->J' TRANSITION INDEX.
C			2ND DIMENSION: REFERENCED BY 141DFL(N,L).
C	(D+8)	TROMIM() -	POSITIVE ION COLLISIONAL RATE COEFFT. FOR
C	(1(^ 0)	IDQIIII(,) —	NLJ->NL-1J'.
C			1ST DIMENSION: J->J' TRANSITION INDEX.
C	(D : 0)		2ND DIMENSION: REFERENCED BY 141DFL(N,L).
С	(K*8)	IBFMP(,) =	B-FIELD DEPENDENT MIXING RATE COEFFT. FOR
С			NLJ->NL+1J'.
C			1ST DIMENSION: J->J' TRANSITION INDEX.
C	(= 0)		2ND DIMENSION: REFERENCED BY 14IDFL(N,L).
C	(R*8)	TBFM(,) =	B-FIELD DEPENDENT MIXING RATE COEFFT. FOR
С			NLJ->NLJ'.
С			1ST DIMENSION: J->J' TRANSITION INDEX.
С			2ND DIMENSION: REFERENCED BY I4IDFL(N,L).
С	(R*8)	TBFMM(,) =	B-FIELD DEPENDENT MIXING RATE COEFFT. FOR
С			NLJ->NL-1J'.
С			1ST DIMENSION: J->J' TRANSITION INDEX.
С			2ND DIMENSION: REFERENCED BY I4IDFL(N,L).
С			
С	(R*8)	TBLPOP(,,) =	TABLE OF COLLISION POP. FOR PREDICTED
С			SPECTRUM LINE.
С			UNITS: CM-2
С			1ST DIMENSION: J->J' TRANSITION INDEX.
С			2ND DIMENSION: REFERENCED BY 14IDLI().
С			3RD DIMENSION: PREDICTED LINE INDEX.
С	(R*8)	TBLEMI(,,)=	TABLE OF COLLISION EMISSIVITIES FOR
С			PREDICTED SPECTRUM LINE.
С			UNITS: PH CM-2 SEC-1
С			1ST DIMENSION: J->J' TRANSITION INDEX.
С			2ND DIMENSION: REFERENCED BY 14IDLI().
С			3RD DIMENSION: PREDICTED LINE INDEX.
С	(R*8)	TBLWLN(,,)=	TABLE OF WAVELENGTHS FOR PREDICTED
С	, ,	,,,,	SPECTRUM LINE.
C			UNITS: A
C			1ST DIMENSION: J->J' TRANSITION INDEX.
C			2ND DIMENSION: REFERENCED BY 14IDLI().
C			3RD DIMENSION: PREDICTED LINE INDEX.
C			one bindhoton. Indbiolib bind indbin.
C ROUTINES	:		
C		E SOURCE	BRIEF DESCRIPTION
C			
C			RETURNS UNIT NO. FOR OUTPUT OF MESSAGES.
			FILLS L-RESOLVED RADIATIVE LIFETIME
C	CVIPTL	ADAS	
C	CETDIN	ADAS	TABLE. FILLS N-RESOLVED ELECTRON IMPACT
C	COIDIN	ADAS	IONISATION RATE TABLE.
C	ССТОПУ	7 D 7 C	
C	COIDEX	ADAS	FILLS N AND J-RESOLVED ELECTRON IMPACT
C	CCOUTY	7 D 7 C	EXCITATION RATE TABLES.
C	COQEIK	ADAS	FILLS N AND J-RESOLVED CHARGE EXCHANGE
С	acovarr	71 17 77 77	RATE TABLES USING EIKONAL APPROXIMATION.
С	CoQXCH	ADAS	FILLS N AND J-RESOLVED CHARGE EXCHANGE
С			RATE TABLES USING INPUT DATA SET.

```
С
         C6TBRC ADAS FILLS N AND J-RESOLVED RADIATIVE
С
                            RECOMBINATION RATE TABLES.
С
         C6TBQM ADAS
                            FILLS N AND J-RESOLVED COLLISIONAL RATE
С
                            TABLES.
         C6TBFM ADAS
                           FILLS N AND J-RESOLVED B-FIELD
С
С
                            DEPENDENT MIXING RATE TABLES.
С
        C7EMIS ADAS
                            PREDICTS THE J-RESOLVED EMISSIVITY FOR
С
                            REQUESTED TRANSITIONS.
С
C NOTES:
C 1) THE J->J' TRANSITION INDEX IS AS FOLLOWS:
С
             1 : J=L+0.5 \rightarrow J'=L'+0.5
С
             2 : J=L+0.5 \rightarrow J'=L'-0.5
С
             3 : J=L-0.5 \rightarrow J'=L'+0.5
С
             4 : J=L-0.5 \rightarrow J'=L'-0.5
С
C AUTHOR: JONATHAN NASH (TESSELLA SUPPORT SERVICES PLC)
        K1/0/87
С
         JET EXT. 5183
С
С
C DATE: 26/11/93
С
C UNIX-IDL PORT:
C AUTHOR: WILLIAM OSBORN (TESSELLA SUPPORT SERVICES PLC)
C DATE: 24TH MAY 1996
С
C VERSION: 1.1
                                 DATE: 24-05-96
C MODIFIED: WILLIAM OSBORN
             - FIRST VERSION
С
С
C-----
                      IBSTAT, IEMMS, IRZO, ITHEOR, MXNENG, MXNSHL,
     INTEGER
                                                      IRZ1
                                 MXNENG,
                                                         NBOT
     INTEGER
                      NENRGY,
                                  NGRND,
                                              NMAXF,
     INTEGER
                                                          NMINF
     INTEGER
                      NTL,
                                   NTOP,
                                              NTOT,
                                                          NTU
                       ALPHAA (MXNENG),
     REAL*8
                                              BMAG,
                                                          BMENG
     REAL*8
                       DENS,
                             DENSZ,
                                              ENRGYA (MXNENG)
     REAL * 8
                      ERATE
     REAL*8
                      FRACLA (MXNENG, (MXNSHL*(MXNSHL+1))/2), RAMSNO
     REAL*8
                      TEV,
                                   TIEV
     REAL*8
                      XSECNA (MXNENG, MXNSHL),
                                              ZEFF
```